Carbon Stock in Coastal Ecosystems of Tombolos of the White and Baltic Seas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Analysis
2.3. Vegetation Collection and Analysis
2.4. Statistical Processing and Mapping
3. Results
3.1. C Stock at the Kolezhma Plot (the White Sea)
3.1.1. Soil C Reserves
3.1.2. Above-Ground Plant Biomass C Reserves
3.2. C Stock at the Gakkovo Plot (the Baltic Sea)
3.2.1. Soil C Reserves
3.2.2. Plant Biomass C Reserves
4. Discussion
4.1. C Stocks of Coastal Ecosystems
4.2. The Difference in C Stocks between the Coasts of the White and Baltic Seas
4.3. The Role of Allochthonous C
4.4. Ecosystem Services of Coastal Wetlands
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Soil Horizon, Depth (cm) | C, g·kg−1 | BD *, g·cm−3 | C Stock per Layer, Mg C·ha−1 | C Stock 0–30 cm, Mg C·ha−1 |
---|---|---|---|---|
T01K | ||||
Oe (0–5) | 231.5 | 0.34 | 38.94 | |
A (5–15) | 164.5 | 0.62 | 101.99 | 144.29 |
Eg (15–20) | 2.1 | 0.83 | 0.87 | |
Bg (20–30) | 2.0 | 1.25 | 2.49 | |
BC (30–40) | 2.3 | 2.12 | 4.88 | |
T02K | ||||
Oa (0–5) | 53.4 | 0.14 | 3.64 | |
ABeg (5–15) | 17.2 | 0.62 | 10.66 | 16.90 |
Bl (15–35) | 1.0 | 1.73 | 3.46 | |
BCl (35–50) | 2.0 | 1.68 | 5.05 | |
Cl (35–70) | 3.5 | 1.21 | 14.80 | |
T01L | ||||
A (0–15) | 5.6 | 1.09 | 9.18 | |
Cl (15–30) | 1.9 | 1.44 | 4.10 | 13.29 |
2Cl (30–60) | 1.0 | 1.25 | 3.76 | |
3Cl (60–70) | 0.8 | 1.50 | 1.20 | |
T03K | ||||
Oe (0–10) | 100.5 | 0.30 | 29.90 | |
C (10–30) | 29.0 | 1.34 | 77.96 | 107.86 |
2C (30–40) | 4.0 | 1.41 | 5.65 | |
2Cg (40–60) | 1.6 | 1.70 | 5.44 | |
T04K | ||||
Oi (0–10) | 100.5 | 0.11 | 11.02 | |
C (10–20) | 31.2 | 1.33 | 41.44 | 59.77 |
2C (20–40) | 5.4 | 1.35 | 14.62 | |
2Cl (40–50) | 3.1 | 1.65 | 5.11 | |
T05K | ||||
Oi (0–6 (12)) | 100.9 | 0.13 | 16.20 | |
Aeg (6 (12)–42) | 5.1 | 1.64 | 20.08 | 31.26 |
BCg (42–60) | 1.0 | 1.37 | 2.46 | |
T06K | ||||
Oi (0–7) | 223.0 | 0.30 | 46.77 | |
B (7–37) | 6.2 | 1.40 | 26.08 | 66.76 |
BCg (37–50) | 1.2 | 1.70 | 4.68 | |
BC (50–60) | 2.2 | 1.29 | 2.83 | |
T07K | ||||
Oi (0–10) | 254.0 | 0.38 | 96.52 | |
AB (10–50) | 15.9 | 1.37 | 87.27 | 140.15 |
Bg (50–60) | 20.4 | 1.77 | 36.04 | |
T08K | ||||
Oa (0–7) | 67.3 | 0.42 | 19.97 | |
ABg (7–15) | 60.4 | 1.72 | 82.94 | 139.99 |
Bg (15–35) | 27.9 | 0.89 | 49.44 | |
BCg (35–60) | 0.3 | 1.88 | 1.41 | |
T09K | ||||
Oi (0–10 (15)) | 200.5 | 0.28 | 84.12 | |
Ag (10 (15)–50) | 4.9 | 1.65 | 28.24 | 96.22 |
B (50–60) | 2.0 | 1.74 | 3.47 | |
T10K | ||||
Oa (0–11) | 65.0 | 0.40 | 28.44 | |
AB (11–38) | 49.1 | 0.43 | 56.90 | 68.48 |
C (38–60) | 17.2 | 0.85 | 32.27 | |
2C (60–80) | 11.6 | 1.33 | 30.96 | |
T11K | ||||
Oa (0–7) | 267.5 | 0.46 | 85.59 | |
Ag (7–13) | 38.2 | 0.92 | 28.15 | 142.05 |
B (13–32) | 13.1 | 1.27 | 31.64 | |
BC (32–38) | 4.0 | 1.56 | 3.75 | |
T12K | ||||
A (0–5) | 21.6 | 1.09 | 11.81 | |
AB (5–20) | 10.1 | 1.03 | 15.61 | 29.80 |
BC (20–30) | 1.9 | 1.25 | 2.38 | |
2BC (30–50) | 1.2 | 1.88 | 4.50 | |
3BC (50–60) | 1.7 | 1.92 | 3.27 | |
T13K | ||||
Oi (0–9) | 112.0 | 0.15 | 14.99 | |
B (9–45) | 34.1 | 1.61 | 197.62 | 130.27 |
Cl (45–60) | 3.4 | 1.99 | 10.13 | |
T14K | ||||
Oi (0–9) | 105.0 | 0.21 | 19.56 | |
ABl (9–20) | 7.4 | 1.44 | 11.72 | 33.09 |
BCl (20–60) | 1.0 | 1.80 | 7.22 | |
Cl (60–70) | 2.3 | 1.93 | 4.45 | |
T15K | ||||
O (0–7) | 111.5 | 0.33 | 25.83 | |
B (7–30) | 14.6 | 1.37 | 45.89 | 71.71 |
Bl (30–40) | 2.9 | 1.74 | 5.04 | |
T16K | ||||
Oe (0–7 (10)) | 169.0 | 0.36 | 61.16 | |
ABg (7 (10)–50) | 3.0 | 1.45 | 17.40 | 69.86 |
Cg (50–70) | 2.0 | 1.25 | 5.02 | |
T17K | ||||
ABl (0–10) | 2.0 | 1.70 | 3.41 | |
Bl (10–26) | 2.1 | 1.62 | 5.45 | 9.63 |
BCl (26–55) | 1.2 | 1.59 | 5.55 | |
Cl (55–70) | 3.3 | 1.54 | 7.63 | |
T18K | ||||
Oi (0–9) | 239.0 | 0.25 | 53.88 | |
Bg (9–35) | 9.9 | 1.44 | 37.15 | 83.89 |
BCg (35–55) | 2.3 | 1.60 | 7.36 | |
T19K | ||||
Ah (0–3) | 8.1 | 0.46 | 1.11 | |
Bwg (3–30) | 8.7 | 1.59 | 37.45 | 38.56 |
Cg (30–40) | 1.6 | 0.33 | 0.53 | |
2Cl (40–50) | 1.5 | 1.54 | 2.31 | |
T20K | ||||
Oi (0–7) | 289.0 | 0.20 | 40.01 | |
ABeg (7–40) | 16.9 | 1.18 | 65.56 | 85.71 |
Cg (40–50) | 0.8 | 1.64 | 1.31 | |
2Cl (50–75) | 1.6 | 1.72 | 6.89 | |
T21K | ||||
Oe (0–10 (15)) | 179.0 | 0.17 | 60.36 | |
Bg (10 (15)–35) | 14.7 | 1.22 | 26.98 | 72.25 |
2Bl2 (35–45) | 1.2 | 1.65 | 1.98 | |
3Bl3 (45–55) | 1.9 | 1.44 | 2.73 | |
T22K | ||||
Bhl (0–30) | 18.8 | 1.14 | 64.44 | 64.44 |
Cl (30–50) | 17.7 | 0.33 | 11.83 | |
T23K | ||||
Oe (0–12) | 138.0 | 0.30 | 50.14 | |
Bh (12–40) | 35.2 | 0.86 | 84.45 | 104.43 |
Cl (40–50) | 18.3 | 1.21 | 22.12 | |
T24K | ||||
Oe (0–13) | 117.5 | 0.11 | 16.96 | |
AB (13–40) | 15.6 | 1.56 | 65.83 | 58.40 |
BC (40–50) | 1.5 | 1.39 | 2.08 | |
Cl (50–60) | 1.6 | 1.79 | 2.86 | |
T25K | ||||
Oe (0–10) | 126.0 | 0.14 | 17.01 | |
ABg (10–25) | 9.2 | 1.41 | 19.51 | 40.96 |
Bg (25–40) | 6.7 | 1.32 | 13.29 | |
BC (40–50) | 1.5 | 1.39 | 2.08 | |
Cl (50–60) | 3.7 | 1.66 | 6.15 | |
T26K | ||||
Oe (0–7 (10)) | 68.5 | 0.30 | 20.71 | |
AB (7 (10)–40) | 8.1 | 1.16 | 28.19 | 39.50 |
Cg (40–50) | 2.4 | 1.73 | 4.15 | |
T27K | ||||
Oa (0–16) | 73.5 | 0.30 | 35.55 | |
BC (16–40) | 22.1 | 1.16 | 61.53 | 71.44 |
C (40–50) | 14.2 | 1.73 | 24.54 | |
T28K | ||||
Oe (0–13) | 107.5 | 0.21 | 28.87 | |
AB (13–30) | 36.8 | 0.86 | 85.58 | 82.76 |
Cl (30–40) | 27.4 | 1.18 | 32.24 | |
T29K | ||||
Oi (0–5) | 80.0 | 0.31 | 12.21 | |
BCl (5–40) | 13.7 | 1.60 | 76.53 | 66.88 |
2Cl (40–50) | 2.3 | 1.29 | 2.96 | |
T30K | ||||
Agh (0–5) | 13.7 | 0.70 | 4.78 | |
Bh (5–30) | 5.6 | 1.38 | 19.35 | 24.13 |
Cl (30–60) | 1.7 | 1.18 | 6.01 | |
T31K | ||||
O (0–11 (19)) | 60.5 | 0.33 | 37.76 | |
Bl (11 (19)–25) | 23.1 | 1.85 | 25.63 | 66.16 |
2Cl (25–30) | 3.0 | 1.85 | 2.77 | |
T32K | ||||
O (0–11) | 110.5 | 0.33 | 39.93 | |
ABg (11–40) | 20.0 | 1.03 | 60.00 | 79.24 |
BC (40–50) | 14.2 | 1.73 | 24.54 | |
Cl (50–60) | 2.0 | 1.85 | 3.70 |
Soil Horizon, Depth (cm) | C, g·kg−1 | BD *, g·cm−3 | C Stock per Layer, Mg C·ha−1 | C Stock 0–30 cm, Mg C·ha−1 |
---|---|---|---|---|
T01G | ||||
Oi (0–50) | 240.0 | 0.19 | 229.56 | |
Bl (50–60) | 4.9 | 1.09 | 5.32 | 137.74 |
Cl (60–70) | 1.4 | 1.34 | 1.88 | |
T02G | ||||
Oi (0–5) | 258.0 | 0.08 | 10.22 | |
Oe (5–15) | 123.2 | 0.23 | 27.99 | 73.29 |
Oi (15–25) | 108.0 | 0.32 | 34.37 | |
Ch (25–30) | 2.8 | 0.51 | 0.72 | |
2Ahb (30–44) | 2.9 | 1.33 | 5.41 | |
2Clb1 (44–75) | 8.6 | 1.26 | 33.54 | |
2Clb2 (75–80) | 1.5 | 2.07 | 1.55 | |
T03G | ||||
Oi (0–7) | 240.5 | 0.16 | 26.82 | |
C (7–30) | 2.1 | 1.59 | 7.66 | 34.48 |
2Agb (30–41) | 59.0 | 1.33 | 86.06 | |
2Gb (41–49) | 32.0 | 0.87 | 22.34 | |
3Agb (49–56) | 76.8 | 0.85 | 45.57 | |
4C (56–69) | 3.3 | 0.61 | 2.60 | |
4C2 (69–80) | 0.9 | 1.40 | 1.39 | |
4C3 (80–95) | 0.9 | 1.56 | 2.11 | |
T04G | ||||
Oi (0–10) | 309.0 | 0.13 | 40.94 | |
Ap (10–40) | 53.1 | 0.87 | 139.02 | 133.62 |
C (40–59) | 1.3 | 1.79 | 4.43 | |
2Cl1 (59–80) | 0.8 | 1.57 | 2.63 | |
3Cl2 (80–90) | 0.8 | 1.77 | 1.41 | |
T05G | ||||
Oi (0–14) | 216.0 | 0.19 | 57.52 | |
Ah (14–35) | 47.0 | 1.55 | 153.47 | 174.44 |
Cl1 (35–71) | 1.7 | 1.47 | 9.00 | |
2Cl2 (71–80) | 0.8 | 1.58 | 1.14 | |
T06G | ||||
Oi (0–9) | 253.0 | 0.23 | 53.44 | |
Ah (9–35) | 47.8 | 0.89 | 111.02 | 143.11 |
Agb (35–56) | 40.8 | 0.87 | 74.30 | |
Cg1 (56–63) | 1.5 | 1.54 | 1.62 | |
Cg2 (63–81) | 7.0 | 1.59 | 8.93 | |
T07G | ||||
Oi (0–16) | 197.0 | 0.16 | 49.05 | |
Ap (16–34) | 65.6 | 0.61 | 72.56 | 105.48 |
A (34–53) | 21.4 | 0.87 | 35.55 | |
Cg1 (53–72) | 3.0 | 1.51 | 8.59 | |
Cg2 (72–94) | 0.8 | 1.47 | 2.59 | |
Cg3 (94–105) | 2.3 | 1.99 | 5.03 | |
T08G | ||||
Oi (0–15) | 268.5 | 0.21 | 85.34 | |
Ag (15–26) | 87.2 | 0.66 | 62.85 | 150.21 |
C1 (26–80) | 3.3 | 1.53 | 27.30 | |
2Cl2 (80–90) | 2.7 | 1.99 | 5.37 | |
T09G | ||||
Oi (0–50) | 103.0 | 0.05 | 28.07 | |
Cl (50–60) | 7.1 | 1.34 | 9.50 | 16.84 |
T10G | ||||
Oi (0–31) | 270.0 | 0.08 | 64.87 | |
Cl (31–75) | 1.2 | 1.62 | 8.55 | 62.78 |
T11G | ||||
Oa (0–20) | 44.5 | 0.15 | 13.47 | |
Ap (20–45) | 45.0 | 0.54 | 60.89 | 37.82 |
C (45–95) | 0.9 | 1.48 | 6.67 | |
T12G | ||||
Oh (0–9) | 270.5 | 0.22 | 54.24 | |
Ap (9–26) | 34.5 | 0.82 | 48.18 | 103.20 |
C (26–63) | 1.4 | 1.40 | 7.23 | |
Cl (63–100) | 0.6 | 1.42 | 3.15 | |
T13G | ||||
Oi (0–11) | 161.5 | 0.19 | 33.72 | |
Ah (11–25) | 21.6 | 0.83 | 25.15 | 77.49 |
A (25–35) | 58.3 | 0.64 | 37.23 | |
C1 (35–65) | 0.7 | 1.41 | 2.97 | |
Cl2 (65–84) | 0.7 | 1.41 | 1.88 | |
C3 (84–90) | 0.4 | 1.35 | 0.32 | |
T14G | ||||
Oi (0–11) | 238.0 | 0.11 | 29.69 | |
Ah (11–42) | 135.2 | 0.23 | 97.74 | 89.59 |
Cl (42–75) | 1.2 | 0.50 | 1.99 | |
T15G | ||||
Oi (0–25) | 159.0 | 0.08 | 31.84 | |
Cg (25–50) | 1.9 | 1.50 | 1.42 | 33.26 |
T16G | ||||
Oi (0–7) | 177.0 | 0.14 | 17.79 | |
A (7–27) | 68.1 | 0.41 | 55.54 | 73.99 |
E (27–41) | 1.7 | 1.29 | 3.06 | |
Bw (41–54) | 0.9 | 1.56 | 1.83 | |
Cl (54–61) | 2.3 | 1.58 | 2.55 | |
T17G | ||||
Oi (0–26) | 309.5 | 0.28 | 103.55 | |
A (26–49) | 36.7 | 0.69 | 42.84 | 146.48 |
Cl1 (49–70) | 0.7 | 1.32 | 2.49 | |
Cl2 (70–80) | 0.4 | 1.63 | 0.59 | |
T18G | ||||
Oi (0–26) | 218.5 | 0.37 | 208.15 | |
C1 (26–49) | 147.2 | 0.63 | 211.90 | 245.00 |
2Cl2 (49–70) | 1.3 | 1.54 | 4.19 | |
3Cl3 (70–80) | 2.8 | 1.94 | 5.42 | |
T19G | ||||
Oe (0–24) | 197.5 | 0.60 | 286.01 | |
C1 (24–45) | 48.3 | 1.72 | 174.87 | 335.97 |
2C2 (45–50) | 2.6 | 1.88 | 2.44 | |
T20G | ||||
Oi (0–15) | 344.5 | 0.11 | 54.88 | |
Oe (15–50) | 171.5 | 0.12 | 74.49 | 86.80 |
Cl (50–69) | 2.9 | 1.44 | 7.93 | |
2Cl (69–75) | 2.8 | 1.84 | 3.09 |
Phytocenosis | Sampling Point | Dry Biomass, g | Vegetative C Stocks, Mg C·ha−1 |
---|---|---|---|
Low marsh plant communities | T01L1 | 34.4 | 2.48 |
T01L2 | 45.0 | 3.24 | |
T01L2 | 40.2 | 2.89 | |
T11K1 | 86.8 | 6.25 | |
T11K3 | 30.6 | 2.20 | |
T11K1 | 53.6 | 3.86 | |
T12K1 | 44.3 | 3.19 | |
T12K3 | 43.7 | 3.15 | |
T12K2 | 93.5 | 6.73 | |
T14K1 | 53.4 | 3.84 | |
T14K2 | 24.9 | 1.79 | |
T14K3 | 34.4 | 2.48 | |
T17K | 13.0 | 0.94 | |
T21K2 | 77.6 | 5.59 | |
T21K3 | 21.9 | 1.58 | |
T21K1 | 45.9 | 3.30 | |
T27K1 | 88.7 | 6.39 | |
T27K3 | 57.8 | 4.16 | |
T27K2 | 63.7 | 4.59 | |
Middle marsh plant communities | T01K1 | 57.1 | 4.11 |
T01K2 | 52.3 | 3.77 | |
T01K3 | 57.2 | 4.12 | |
T04K2 | 55.9 | 4.02 | |
T04K3 | 49.1 | 3.54 | |
T09K3 | 23.4 | 1.68 | |
T09K1 | 80.3 | 5.78 | |
T09K2 | 28.6 | 2.06 | |
P. australis communities | T23K3 | 195.0 | 14.04 |
T23K1 | 65.6 | 4.72 | |
T23K2 | 28.6 | 2.06 |
Phytocenosis | Sampling Point | Dry Biomass, g | Vegetative C Stocks, Mg C·ha−1 |
---|---|---|---|
Hygrophytic plant communities of zonal species | T03G 1 | 45.2 | 3.25 |
T03G 2 | 92.3 | 6.65 | |
T03G 3 | 37.7 | 2.71 | |
T05G 1 | 38.7 | 2.78 | |
T05G 2 | 34.9 | 2.51 | |
T05G 3 | 34.4 | 2.48 | |
P. australis communities | T09G 1 | 47.8 | 3.44 |
T09G 2 | 89.5 | 6.44 | |
T09G 3 | 99.2 | 7.14 | |
T14G 1 | 107.8 | 7.76 | |
T14G 2 | 72.4 | 5.21 | |
T14G 3 | 146.5 | 10.55 | |
Mixed plant communities | T10G 1 | 64.3 | 4.63 |
T10G 2 | 44.1 | 3.18 | |
T10G 3 | 61.9 | 4.46 | |
T17G 1 | 142.2 | 10.24 | |
T17G 2 | 81.2 | 5.85 | |
T17G 3 | 65.8 | 4.74 |
References
- IPCC. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II & III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, C.E.; Reef, R. Variable impacts of climate change on blue carbon. One Earth 2020, 3, 195–211. [Google Scholar] [CrossRef]
- Nellemann, C.; Corcoran, E.; Duarte, C.M.; Valdés, L.; De Young, C.; Fonseca, L.; Grimsditch, G. (Eds.) Blue Carbon. A Rapid Response Assessment; United Nations Environment Programme; Birkeland Trykkeri AS: Arendal, Norway, 2009; 78p. [Google Scholar]
- Ouyang, X.; Lee, S.Y. Carbon accumulation rates in salt marsh sediments suggest high carbon storage capacity. Biogeosci. Discuss. 2013, 10, 19155–19188. [Google Scholar] [CrossRef]
- Mason, V.G.; Burden, A.; Epstein, G.; Jupe, L.L.; Wood, K.A.; Skov, M.W. Blue carbon benefits from global saltmarsh restoration. Glob. Chang. Biol. 2023, 29, 6517–6545. [Google Scholar] [CrossRef] [PubMed]
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 2003, 17, 22-1–22-11. [Google Scholar] [CrossRef]
- Roulet, N.T. Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: Prospects and significance for Canada. Wetlands 2000, 20, 605–615. [Google Scholar] [CrossRef]
- Kennedy, H.; Beggins, J.; Duarte, C.M.; Fourqurean, J.W.; Holmer, M.; Marbà, N.; Middelburg, J.J. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob. Biogeochem. Cycles 2010, 24, GB4026. [Google Scholar] [CrossRef]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 2013, 3, 961–968. [Google Scholar] [CrossRef]
- Rossi, A.M.; Rabenhorst, M.C. Pedogenesis and landscape relationships of a Holocene age barrier island. Geoderma 2016, 262, 71–84. [Google Scholar] [CrossRef]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Craft, C. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes. Limnol. Oceanogr. 2007, 52, 1220–1230. [Google Scholar] [CrossRef]
- Chapman, V.J. Salt Marshes and Salt Deserts of the World; Leonard Hill Limited: London, UK, 1960; 392p. [Google Scholar]
- Pennings, S.C.; Bertness, M.D. Chapter 11. Salt marsh communities. In Marine Community Ecology; Sinauer Associates: Sunderland, UK, 2001; pp. 289–316. [Google Scholar]
- Zhang, M.; Ustin, S.; Rejmankova, E.; Sanderson, E. Monitoring Pacific coast salt marshes using remote sensing. Ecol. Appl. 1997, 7, 1039–1053. [Google Scholar] [CrossRef]
- de Leeuw, J.; van den Dool, A.; de Munck, W. Factors influencing the soil salinity regime along an intertidal gradient. Estuar. Coast. Shelf Sci. 1991, 32, 87–97. [Google Scholar] [CrossRef]
- Huckle, J.M.; Potter, J.A.; Marrs, R. Influence of environmental factors on the growth and interactions between salt marsh plants: Effects of salinity, sediment and waterlogging. J. Ecol. 2000, 88, 492–505. [Google Scholar] [CrossRef]
- Bang, J.H.; Bae, M.-J.; Lee, E.J. Plant distribution along an elevational gradient in a macrotidal salt marsh on the west coast of Korea. Aquat. Bot. 2019, 147, 52–60. [Google Scholar] [CrossRef]
- Crain, C.M.; Silliman, B.R.; Bertness, S.L.; Bertness, M.D. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 2004, 85, 2539–2549. [Google Scholar] [CrossRef]
- Williams, A.K.; Rosenheim, B.E. What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis. Geochem. Geophys. Geosystems 2015, 16, 2322–2335. [Google Scholar] [CrossRef]
- Kelleway, J.J.; Saintilan, N.; Macreadie, P.I.; Ralph, P.J. Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes. Ecosystems 2016, 19, 865–880. [Google Scholar] [CrossRef]
- Ford, H.; Garbutt, A.; Duggan-Edwards, M.; Pagès, J.F.; Harvey, R.; Ladd, C.; Skov, M.W. Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type. Biogeosciences 2019, 16, 425–436. [Google Scholar] [CrossRef]
- Sidorova, V.A.; Svyatova, E.N.; Tseits, M.A. Spatial variability of the properties of marsh soils and their impact on vegetation. Eurasian Soil Sci. 2015, 48, 223–230. [Google Scholar] [CrossRef]
- Sousa, A.I.; Santos, D.B.; Silva, E.F.D.; Sousa, L.P.; Cleary, D.F.; Soares, A.M.; Lillebø, A.I. ‘Blue carbon’ and nutrient stocks of salt marshes at a temperate coastal lagoon (Ria de Aveiro, Portugal). Sci. Rep. 2017, 7, 41225. [Google Scholar] [CrossRef] [PubMed]
- Bagdasarov, I.E.; Tseits, M.A.; Kryukova, Y.A.; Taskina, K.B.; Konyushkova, M.V. A comparative characterization of the soils and plant cover of tombolos on the coasts of the White and Baltic Seas. Mosc. Univ. Soil Sci. Bull. 2023, 78, 1–12. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO: Rome, Italy, 2014. [Google Scholar]
- Howard, J.; Hoyt, S.; Isensee, K.; Telszewski, M.; Pidgeon, E. (Eds.) Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses; Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature: Arlington, VA, USA, 2014; 180p. [Google Scholar]
- Tseits, M.A.; Dobrynin, D.V. Morphogenetic diagnostics and classification of tidal marsh soils in Karelia (White Sea Coast). Eurasian Soil Sci. 1997, 30, 352–358. [Google Scholar]
- Oreshnikova, N.V.; Krasilnikov, P.V.; Shoba, S.A. Marsh soils of the Karelian shore of the White Sea. Moscow Univ. Soil Sci. Bull. 2012, 67, 152–158. [Google Scholar] [CrossRef]
- Tseits, M.A.; Marechek, M.S. The formation of soil cover patterns on tidal marshes of the Arctic of Russia. Moscow Univ. Soil Sci. Bull. 2021, 76, 273–282. [Google Scholar] [CrossRef]
- Bartholomée, O.; Grigulis, K.; Colace, M.P.; Arnoldi, C.; Lavorel, S. Methodological uncertainties in estimating carbon storage in temperate forests and grasslands. Ecol. Indic. 2018, 95, 331–342. [Google Scholar] [CrossRef]
- Shamrikova, E.V.; Deneva, S.V.; Kubik, O.S. Spatial patterns of carbon and nitrogen in soils of the Barents Sea coastal area (Khaypudyrskaya Bay). Eurasian Soil Sci. 2019, 52, 507–517. [Google Scholar] [CrossRef]
- Crooks, S.; Rybczyk, J.; O’Connell, K.; Devier, D.L.; Poppe, K.; Emmett-Mattox, S. Coastal Blue Carbon Opportunity Assessment for the Snohomish Estuary: The Climate Benefits of Estuary Restoration; Environmental Science Associates, Western Washington University, EarthCorps, and Restore America’s Estuaries: Bellingham, WA, USA, 2014; 102p. [Google Scholar]
- Chastain, S.G.; Kohfeld, K.; Pellatt, M.G. Carbon stocks and accumulation rates in salt marshes of the Pacific coast of Canada. Biogeosci. Discuss. 2018, 1–45. [Google Scholar] [CrossRef]
- Eze, S.; Palmer, S.M.; Chapman, P.J. Soil organic carbon stock in grasslands: Effects of inorganic fertilizers, liming and grazing in different climate settings. J. Environ. Manag. 2018, 223, 74–84. [Google Scholar] [CrossRef]
- Meyerson, L.A.; Cronin, J.T.; Pyšek, P. Phragmites australis as a model organism for studying plant invasions. Biol. Invasions 2016, 18, 2421–2431. [Google Scholar] [CrossRef]
- Tripathee, R.; Schäfer, K.V.R. Above-and belowground biomass allocation in four dominant salt marsh species of the eastern United States. Wetlands 2015, 35, 21–30. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon balance in salt marsh and mangrove ecosystems: A global synthesis. J. Mar. Sci. Eng. 2020, 8, 767. [Google Scholar] [CrossRef]
- Gu, J.; van Ardenne, L.B.; Chmura, G.L. Invasive Phragmites increases blue carbon stock and soil volume in a St. Lawrence estuary marsh. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005473. [Google Scholar] [CrossRef]
- Omengo, F.O.; Geeraert, N.; Bouillon, S.; Govers, G. Deposition and fate of organic carbon in floodplains along a tropical semiarid lowland river (Tana River, Kenya). J. Geophys. Res. Biogeosci. 2016, 121, 1131–1143. [Google Scholar] [CrossRef]
- Van de Broek, M.; Temmerman, S.; Merckx, R.; Govers, G. Controls on soil organic carbon stocks in tidal marshes along an estuarine salinity gradient. Biogeosciences 2016, 13, 6611–6624. [Google Scholar] [CrossRef]
- Santos, I.R.; Maher, D.T.; Larkin, R.; Webb, J.R.; Sanders, C.J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Oceanogr. 2019, 64, 996–1013. [Google Scholar] [CrossRef]
- Xu, X.; Chen, M.; Yang, G.; Jiang, B.; Zhang, J. Wetland ecosystem services research: A critical review. Glob. Ecol. Conserv. 2020, 22, e01027. [Google Scholar] [CrossRef]
- Windham, L.; Weis, J.S.; Weis, P. Metal dynamics of plant litter of Spartina alterniflora and Phragmites australis in metal-contaminated salt marshes. Part 1: Patterns of decomposition and metal uptake. Environ. Toxicol. Chem. 2004, 23, 1520–1528. [Google Scholar] [CrossRef]
- Meraj, G.; Singh, S.K.; Kanga, S.; Islam, M.N. Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Model. Earth Syst. Environ. 2022, 8, 15–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagdasarov, I.; Tseits, M.; Kryukova, I.; Taskina, K.; Bobrik, A.; Ilichev, I.; Cheng, J.; Xu, L.; Krasilnikov, P. Carbon Stock in Coastal Ecosystems of Tombolos of the White and Baltic Seas. Land 2024, 13, 49. https://doi.org/10.3390/land13010049
Bagdasarov I, Tseits M, Kryukova I, Taskina K, Bobrik A, Ilichev I, Cheng J, Xu L, Krasilnikov P. Carbon Stock in Coastal Ecosystems of Tombolos of the White and Baltic Seas. Land. 2024; 13(1):49. https://doi.org/10.3390/land13010049
Chicago/Turabian StyleBagdasarov, Ilya, Michail Tseits, Iuliia Kryukova, Kseniya Taskina, Anna Bobrik, Igor Ilichev, Junxiang Cheng, Ligang Xu, and Pavel Krasilnikov. 2024. "Carbon Stock in Coastal Ecosystems of Tombolos of the White and Baltic Seas" Land 13, no. 1: 49. https://doi.org/10.3390/land13010049
APA StyleBagdasarov, I., Tseits, M., Kryukova, I., Taskina, K., Bobrik, A., Ilichev, I., Cheng, J., Xu, L., & Krasilnikov, P. (2024). Carbon Stock in Coastal Ecosystems of Tombolos of the White and Baltic Seas. Land, 13(1), 49. https://doi.org/10.3390/land13010049