Effect of Biochar on Composting of Cow Manure and Kitchen Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compost Feedstock Characterization
2.1.1. Physical Properties
2.1.2. Chemical Properties
2.1.3. Biological Properties
2.2. Biochar Production
2.3. Composting Experiment
2.4. Data Collection Process
2.5. Analytical Observations
2.6. Statistical Analysis
3. Results
3.1. Temperature Variation
3.2. pH Variation
3.3. EC Variation
3.4. Chemical Parameter Results after Composting
3.5. Variability of Chemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Sharma, K.D.; Jain, S. Municipal solid waste generation, composition, and management: The global scenario. Soc. Responsib. J. 2020, 16, 917–948. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Chicago, IL, USA, 2018. [Google Scholar]
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; World Bank Publications: Chicago, IL, USA, 2012. [Google Scholar]
- Maalouf, A.; Mavropoulos, A. Re-assessing global municipal solid waste generation. Waste Manag. Res. 2023, 41, 936–947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Huang, G.; Xu, Y.; Zhou, B. Waste Management Strategies for Urban Sustainability. Sustain. Cities Soc. 2022, 74, 103–119. [Google Scholar]
- Kumar, S.; Singh, R. Advancements in Solid Waste Management: A Review. Waste Manag. Res. 2023, 41, 215–230. [Google Scholar]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Zorpas, A.A. Strategy development in the framework of waste management. Sci. Total Environ. 2020, 716, 137088. [Google Scholar] [CrossRef]
- Pajura, R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis-a recent review. Sci. Total Environ. 2023, 912, 169221. [Google Scholar] [CrossRef]
- Buda, G. Seven Businesses Using Principles of Circular Economy in Sub-Saharan Africa: Results of Field Research in Uganda. Hung. J. Afr. Stud. 2022, 16, 5. [Google Scholar] [CrossRef]
- Guo, X.X.; Liu, H.T.; Zhang, J. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef]
- Chiappero, M.; Norouzi, O.; Hu, M.; Demichelis, F.; Berruti, F.; Di Maria, F.; Mašek, O.; Fiore, S. Review of biochar role as additive in anaerobic digestion processes. Renew. Sustain. Energy Rev. 2020, 131, 110037. [Google Scholar] [CrossRef]
- Raclavská, H.; Růžičková, J.; Raclavský, K.; Juchelková, D.; Kucbel, M.; Švédová, B.; Slamová, K.; Kacprzak, M. Effect of biochar addition on the improvement of the quality parameters of compost used for land reclamation. Environ. Sci. Pollution Res. 2021, 30, 8563–8581. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, S.; Yuan, Z. Adoption of solid organic waste composting products: A critical review. J. Clean. Prod. 2020, 272, 122712. [Google Scholar] [CrossRef]
- Chen DM, C.; Bodirsky, B.L.; Krueger, T.; Mishra, A.; Popp, A. The world’s growing municipal solid waste: Trends and impacts. Environ. Res. Lett. 2020, 15, 074021. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology, and Implementation; Routledge: London, UK, 2015. [Google Scholar]
- Laird, D.A.; Rogovska, N. Biochar and Soil Properties; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kammann, C.; Ratering, S.; Eckhard, C.; Müller, C. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Agric. Ecosyst. Environ. 2012, 144, 175–187. [Google Scholar]
- Schmidt, H.P.; Pandit, B.H.; Martinsen, V.; Cornelissen, G.; Conte, P. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 2015, 5, 723–741. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Diogo RV, C.; Bizimana, M.; Nieder, R.; Rukazambuga Ntirushwa, D.T.; Naramabuye, F.X.; Buerkert, A. Effects of compost type and storage conditions on climbing bean on Technosols of Tantalum mining sites in Western Rwanda. J. Plant Nutr. Soil Sci. 2017, 180, 482–490. [Google Scholar] [CrossRef]
- Uwamahoro, L.; Nyagatare, G.; Shingiro, C. Effect of different composts on soil chemical conditions and green bean yield in Bugesera District, Eastern Province of Rwanda. Agric. Biol. Sci. J. 2019, 5, 132–137. [Google Scholar]
- Prajapati, P.; Varjani, S.; Singhania, R.R.; Patel, A.K.; Awasthi, M.K.; Sindhu, R.; Zhang, Z.; Binod, P.; Awasthi, S.K.; Chaturvedi, P. Critical review on technological advancements for effective waste management of municipal solid waste—Updates and way forward. Environ. Technol. Innov. 2021, 23, 101749. [Google Scholar] [CrossRef]
- Abu Qdais, H.; Wuensch, C.; Dornack, C.; Nassour, A. The role of solid waste composting in mitigating climate change in Jordan. Waste Manag. Res. 2019, 37, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.I.; Shahzad, K. Food waste recycling for compost production and its economic and environmental assessment as circular economy indicators of solid waste management. J. Clean. Prod. 2021, 317, 128467. [Google Scholar] [CrossRef]
- Rynk, R.; Schwarz, M.; Richard, T.L.; Cotton, M.; Halbach, T.; Siebert, S. Compost feedstocks. In The Composting Handbook; Academic Press: Cambridge, MA, USA, 2022; pp. 103–157. [Google Scholar]
- Savage, G.M. The importance of waste characteristics and processing in the production of quality compost. In The Science of Composting; Springer: Dordrecht, The Netherlands, 1996; pp. 784–791. [Google Scholar]
- Xie, Y.; Zhou, L.; Dai, J.; Chen, J.; Yang, X.; Wang, X.; Wang, Z.; Feng, L. Effects of the C/N ratio on the microbial community and lignocellulose degradation, during branch waste composting. Bioprocess Biosyst. Eng. 2022, 45, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Peña, H.; Mendoza, H.; Diánez, F.; Santos, M. Parameter selection for the evaluation of compost quality. Agronomy 2020, 10, 1567. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, L.; Li, R. Effects of additives on physical, chemical, and microbiological properties during green waste composting. Bioresour. Technol. 2021, 340, 125719. [Google Scholar] [CrossRef]
- Mohammad, A.; Goli VS, N.S.; Barroso, P.M.; Vaverková, M.D.; Singh, D.N. Effect of physico-chemico-biological and operational parameters on composting of organic fraction of municipal solid waste and gaseous products emission. Environ. Technol. Rev. 2021, 10, 271–294. [Google Scholar] [CrossRef]
- Gondek, M.; Weindorf, D.C.; Thiel, C.; Kleinheinz, G. Soluble salts in compost and their effects on soil and plants: A review. Compos. Sci. Util. 2020, 28, 59–75. [Google Scholar] [CrossRef]
- Hou, Y.; Zeng, W.; Hou, M.; Wang, Z.; Luo, Y.; Lei, G.; Zhou, B.; Huang, J. Responses of the soil microbial community to salinity stress in maize fields. Biology 2021, 10, 1114. [Google Scholar] [CrossRef]
- Goldan, E.; Nedeff, V.; Barsan, N.; Culea, M.; Panainte-Lehadus, M.; Mosnegutu, E.; Tomozei, C.; Chitimus, D.; Irimia, O. Assessment of manure compost used as soil amendment—A review. Processes 2023, 11, 1167. [Google Scholar] [CrossRef]
- Ghinea, C.; Leahu, A. Monitoring of fruit and vegetable waste composting process: Relationship between microorganisms and physico-chemical parameters. Processes 2020, 8, 302. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. Approved Methods Committee; American Association of Cereal Chemists: Saint Paul, MN, USA, 2000. [Google Scholar]
- Wang, D.; Jiang, P.; Zhang, H.; Yuan, W. Biochar production and applications in agro and forestry systems: A review. Sci. Total Environ. 2020, 723, 137775. [Google Scholar] [CrossRef] [PubMed]
- Marsolla, L.D.; Brito, G.M.; Freitas, J.C.C.; Coelho, E.R.C. Effect of Pyrolysis Temperature on Biochar and Biochar Composites Produced from Agricultural Biomass and Marble Waste; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Arslan, E.; Obek, E.; Kirbag, S.; Ipek, U.; Topal, M. Determination of the effect of compost on soil microorganisms. Int. J. Sci. Technol. 2008, 3, 151–159. [Google Scholar]
- Andrade, R.R.; Tinôco ID, F.F.; Damasceno, F.A.; Freitas LC DS, R.; Ferreira CD, F.S.; Barbari, M.; de Jesus Folgôa Baptista, F.; de Rezende Coelho, D.J. Spatial distribution of bed variables, animal welfare indicators, and milk production in a closed compost-bedded pack barn with a negative tunnel ventilation system. J. Ther. Biol. 2022, 105, 103111. [Google Scholar] [CrossRef] [PubMed]
- Chitthaluri, S.; Rao, P.V. Composting of grease trap scum waste and green waste: Studying the effects of mix composition on physicochemical and biological process parameters. Int. J. Recycl. Org. Waste Agric. 2023, 12, 305–324. [Google Scholar]
- Bartusevics, F. The Applicability of a Field pH Meter in a Laboratory Setting: Evaluation of Field pH Meter in Compost and Soil Monitoring as a Resource-Efficient Alternative to Standardised Methodology. Master’s Thesis, Tampere University of Applied Sciences, Ampere, Finland, 2022. [Google Scholar]
- Pudełko, A.; Chodak, M. Estimation of total nitrogen and organic carbon contents in mine soils with NIR reflectance spectroscopy and various chemometric methods. Geoderma 2020, 368, 114306. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Wang, Y. Comparative Analysis of Four Methods for Accurate Estimation of Soil Phosphorus Storage Capacity: A Case Study in a Typical Red Soil. Eurasian Soil Sci. 2024, 57, 1163–1175. [Google Scholar] [CrossRef]
- Chandra, S.; Medha, I.; Bhattacharya, J. Potassium-iron rice straw biochar composite for sorption of nitrate, phosphate, and ammonium ions in soil for timely and controlled release. Sci. Total Environ. 2020, 712, 136337. [Google Scholar] [CrossRef]
- Chaudhry, A.H.; Nayab, S.; Hussain, S.B.; Ali, M.; Pan, Z. Current understandings on magnesium deficiency and future outlooks for sustainable agriculture. Int. J. Mol. Sci. 2021, 22, 1819. [Google Scholar] [CrossRef]
- Li, F.; Liang, X.; Niyungeko, C.; Sun, T.; Liu, F.; Arai, Y. Effects of biochar amendments on soil phosphorus transformation in agricultural soils. Adv. Agron. 2019, 158, 131–172. [Google Scholar]
- Abdelghany, G. Agronomic Investigations of Australian Native Rice Species to Support Indigenous Enterprise Development in Tropical Northern Australia. Doctoral Dissertation, Charles Darwin University, Casuarina, NT, Australia, 2024. [Google Scholar]
- Li, M.; Li, S.; Chen, S.; Meng, Q.; Wang, Y.; Yang, W.; Guo, X.; Shi, L.; Ding, F.; Zhu, J.; et al. Measures for controlling gaseous emissions during composting: A review. Int. J. Environ. Res. Public Health 2023, 20, 3587. [Google Scholar] [CrossRef]
- Ajaweed, A.N.; Hassan, F.M.; Hyder, N.H. Evaluation of physio-chemical characteristics of bio fertilizer produced from organic solid waste using composting bins. Sustainability 2022, 14, 4738. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, J.; Mao, X. Removal of pathogens in onsite wastewater treatment systems: A review of design considerations and influencing factors. Water 2021, 13, 1190. [Google Scholar] [CrossRef]
- Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, A. Co-composting of poultry manure mixtures amended with biochar–The effect of biochar on temperature and C-CO2 emission. Bioresour. Technol. 2016, 200, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.B.; Liu, T.T.; Song, J.L.; Lv, J.H.; Jiang, J.S. Effects of chemical additives on emissions of ammonia and greenhouse gas during sewage sludge composting. Process Saf. Environ. Prot. 2020, 143, 129–137. [Google Scholar] [CrossRef]
- Xiong, S.; Liu, Y.; Zhang, H.; Xu, S.; Li, S.; Fan, X.; Chen, R.; Ding, G.; Li, J.; Wei, Y. Effects of chemical additives and mature compost on reducing nitrogen loss during food waste composting. Environ. Sci. Pollut. Res. 2023, 30, 39000–39011. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, M.; Trakal, L.; Gallagher, B.N.; Šimek, P.; Soudek, P.; Pohořelý, M.; Mohan, D.; Beesley, L.; Jačka, L.; Kovář, M.; et al. Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. Chemosphere 2020, 242, 125255. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Martínez-Gaitán, C.; Kuikman, P.J.; Sinicco, T.; Mondini, C. Agronomic evaluation of biochar, compost and biochar-blended compost across different cropping systems: Perspective from the European project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef]
- Sanchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N.J.B.T. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, S.K.; Liu, T.; Duan, Y.; Ren, X.; Zhang, Z.; Pandey, A.; Awasthi, M.K. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. J. Hazard. Mater. 2020, 389, 121908. [Google Scholar] [CrossRef]
- Bello, A.; Deng, L.; Sheng, S.; Jiang, X.; Yang, W.; Meng, Q.; Wu, X.; Han, Y.; Zhu, H.; Xu, X. Biochar reduces nutrient loss and improves microbial biomass of composted cattle manure and maize straw. Biotechnol. Appl. Biochem. 2020, 67, 799–811. [Google Scholar] [CrossRef]
- Kong, X.; Luo, G.; Yan, B.; Su, N.; Zeng, P.; Kang, J.; Zhang, Y.; Xie, G. Dissolved organic matter evolution can reflect the maturity of compost: Insight into common composting technology and material composition. J. Environ. Manag. 2023, 326, 116747. [Google Scholar] [CrossRef] [PubMed]
- Jien, S.H.; Wang, C.C.; Lee, C.H.; Lee, T.Y. Stabilization of organic matter by biochar application in compost-amended soils with contrasting pH values and textures. Sustainability 2015, 7, 13317–13333. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, S.; Liu, L.; Liu, J.; Ding, X. Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant Soil 2022, 474, 233–249. [Google Scholar] [CrossRef]
- Githongo, M.; Ngatia, L.; Kiboi, M.; Muriuki, A.; Fliessbach, A.; Musafiri, C.; Fu, R.; Ngetich, F. The structural quality of soil organic matter under selected soil fertility management practices in the central highlands of Kenya. Sustainability 2023, 15, 6500. [Google Scholar] [CrossRef]
- Coonan, E.C.; Kirkby, C.A.; Kirkegaard, J.A.; Amidy, M.R.; Strong, C.L.; Richardson, A.E. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutr. Cycl. Agroecosyst. 2020, 117, 273–298. [Google Scholar] [CrossRef]
- Zhang, X.; Si, J.; Li, Y.; Chen, Z.; Ren, D.; Zhang, S. Effects of Ca2+ and Mg2+ on Cu binding in hydrophilic and hydrophobic dissolved organic matter fractions extracted from agricultural soil. Chemosphere 2024, 352, 141441. [Google Scholar] [CrossRef]
- Liu, D. Root developmental responses to phosphorus nutrition. J. Integr. Plant Biol. 2021, 63, 1065–1090. [Google Scholar] [CrossRef]
- Ngoc, N.P.; Quynh, L.N.; Ly, L.M.; Thao PT, P.; Van Dang, L.; Em, T.H.; Hung, N.N. Enhancing NPK Uptake and Biomass of Blueberries in Alluvial Clay Soil Using Biochar and Compost. Open Agric. J. 2021, 17, e18743315278527. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Lin, C.; Hoang, H.G.; Sanderson, P.; Dang, B.T.; Bui, X.T.; Nguyen, N.S.; Vo, D.V.; Tran, H.T. Effects of biochar on soil properties and crop yield: A review. Bioresour. Technol. 2022, 358, 123984. [Google Scholar]
- Melo, L.C.A.; Lehmann, J.; Carneiro, J.S.D.S.; Camps-Arbestain, M. Impact of biochar on soil nutrient dynamics and crop productivity: Meta-analysis and future perspectives. Agric. Syst. 2023, 198, 103391. [Google Scholar]
- Chung, W.; Shim, J.; Chang, S.W.; Ravindran, B. Co-composting of agricultural waste with biochar: Influence on nutrient dynamics and greenhouse gas emissions. J. Clean. Prod. 2022, 358, 132019. [Google Scholar]
- Ge, M.; Shen, Y.; Ding, J.; Meng, H.; Zhou, H.; Zhou, J.; Liu, J.; Cheng, H.; Zhang, X.; Wang, J.; et al. New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting. Bioresour. Technol. 2022, 344, 126236. [Google Scholar] [CrossRef] [PubMed]
- Niamat, B.; Naveed, M.; Ahmad, Z.; Yaseen, M.; Ditta, A.; Mustafa, A.; Rafique, M.; Bibi, R.; Sun, N.; Xu, M. Calcium-enriched animal manure alleviates the adverse effects of salt stress on growth, physiology and nutrients homeostasis of Zea mays L. Plants 2019, 8, 480. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, A.; Li, G.; Wei, Y.; He, S.; Lin, Z.; Shen, X.; Wang, Q. Effect of different components of single superphosphate on organic matter degradation and maturity during pig manure composting. Sci. Total Environ. 2019, 646, 587–594. [Google Scholar] [CrossRef] [PubMed]
Composition in Percent Volume | |||
---|---|---|---|
Composting Unit | Cow Manure (CM) | Kitchen Waste (KW) | Biochar |
Control 1 (CM100) | 100 | 0 | 0 |
CM95 | 95 | 0 | 5 |
CM90 | 90 | 0 | 10 |
CM85 | 85 | 0 | 15 |
CM80 | 80 | 0 | 20 |
Control 2 (KW100) | 0 | 100 | 0 |
KW95 | 0 | 95 | 5 |
KW90 | 0 | 90 | 10 |
KW85 | 0 | 85 | 15 |
KW80 | 0 | 80 | 20 |
Control 3 (CMKW100) | 50 | 50 | 0 |
CMKW95 | 47.5 | 47.5 | 5 |
CMKW90 | 45 | 45 | 10 |
CMKW85 | 42.5 | 42.5 | 15 |
CMKW80 | 40 | 40 | 20 |
Compost Treatment | pH | OC (%) | OM (%) | Ca2+ (meq/gr) | Mg2+ (meq/gr) | TP (ppm) | AP (ppm) | TN (%) | AN (%) | TK (meq/100 gr) |
---|---|---|---|---|---|---|---|---|---|---|
CM80 | 9.21 ± 0.03 | 7.20 ± 0.10 | 12.41 ± 0.18 | 12.11 ± 0.17 | 1.03 ± 0.01 | 34.8 ± 0.49 | 30.12 ± 0.43 | 3.67 ± 0.05 | 1.02 ± 0.01 | 1.86 ± 0.03 |
CM85 | 9.15 ± 0.10 | 2.30 ± 0.03 | 3.96 ± 0.06 | 13.62 ± 0.19 | 4.10 ± 0.06 | 42.71 ± 0.60 | 36.42 ± 0.52 | 11.08 ± 0.16 | 2.16 ± 0.03 | 2.42 ± 0.03 |
CM90 | 9.68 ± 0.05 | 9.77 ± 0.23 | 16.84 ± 0.40 | 7.14 ± 0.17 | 5.24 ± 0.12 | 30.96 ± 0.73 | 28.46 ± 0.67 | 0.29 ± 0.01 | 0.08 ± 0.00 | 0.98 ± 0.02 |
CM95 | 10.07 ± 0.14 | 2.21 ± 0.04 | 3.81 ± 0.07 | 7.75 ± 0.15 | 2.75 ± 0.05 | 43.64 ± 0.82 | 32.71 ± 0.62 | 0.80 ± 0.02 | 0.16 ± 0.00 | 0.78 ± 0.01 |
CM100 | 9.83 ± 0.06 | 6.58 ± 0.14 | 11.34 ± 0.24 | 5.91 ± 0.13 | 5.73 ± 0.12 | 45.18 ± 0.96 | 30.23 ± 0.64 | 7.77 ± 0.16 | 1.03 ± 0.02 | 2.13 ± 0.05 |
CMKW80 | 10.80 ± 0.13 | 7.03 ± 0.12 | 12.11 ± 0.20 | 6.11 ± 0.10 | 0.16 ± 0.00 | 40.56 ± 0.67 | 26.46 ± 0.44 | 0.48 ± 0.01 | 0.81 ± 0.01 | 0.41 ± 0.01 |
CMKW85 | 10.05 ± 0.20 | 6.08 ± 0.07 | 10.48 ± 0.12 | 11.71 ± 0.14 | 0.10 ± 0.00 | 40.11 ± 0.47 | 33.15 ± 0.39 | 3.27 ± 0.04 | 1.07 ± 0.01 | 0.78 ± 0.01 |
CMKW90 | 10.92 ± 0.08 | 3.43 ± 0.04 | 5.91 ± 0.07 | 7.67 ± 0.09 | 2.60 ± 0.03 | 39.45 ± 0.46 | 30.42 ± 0.36 | 0.31 ± 0.00 | 0.26 ± 0.00 | 0.66 ± 0.01 |
CMKW95 | 10.06 ± 0.28 | 2.61 ± 0.03 | 4.49 ± 0.05 | 11.25 ± 0.13 | 0.97 ± 0.01 | 38.16 ± 0.45 | 34.18 ± 0.40 | 6.73 ± 0.08 | 1.16 ± 0.01 | 1.04 ± 0.01 |
CMKW100 | 11.23 ± 0.31 | 2.24 ± 0.05 | 3.86 ± 0.09 | 6.07 ± 0.14 | 3.30 ± 0.08 | 44.55 ± 1.05 | 31.48 ± 0.74 | 10.31 ± 0.24 | 1.88 ± 0.04 | 1.22 ± 0.03 |
KW80 | 10.07 ± 0.22 | 2.23 ± 0.04 | 3.84 ± 0.06 | 3.39 ± 0.06 | 1.36 ± 0.02 | 41.21 ± 0.68 | 38.66 ± 0.64 | 6.88 ± 0.11 | 1.05 ± 0.02 | 0.99 ± 0.02 |
KW85 | 10.24 ± 0.06 | 6.29 ± 0.07 | 10.84 ± 0.13 | 2.36 ± 0.03 | 2.05 ± 0.02 | 40.26 ± 0.47 | 34.62 ± 0.41 | 3.74 ± 0.04 | 0.83 ± 0.01 | 1.28 ± 0.02 |
KW90 | 10.63 ± 0.05 | 7.07 ± 0.08 | 12.18 ± 0.14 | 5.45 ± 0.06 | 1.37 ± 0.02 | 41.21 ± 0.49 | 33.12 ± 0.39 | 5.54 ± 0.07 | 0.82 ± 0.01 | 1.23 ± 0.01 |
KW95 | 10.50 ± 0.14 | 2.26 ± 0.03 | 3.89 ± 0.05 | 2.11 ± 0.02 | 5.40 ± 0.06 | 40.51 ± 0.48 | 31.51 ± 0.37 | 2.82 ± 0.03 | 0.42 ± 0.00 | 0.74 ± 0.01 |
KW100 | 10.87 ± 0.14 | 5.85 ± 0.14 | 10.08 ± 0.24 | 5.91 ± 0.14 | 2.17 ± 0.05 | 42.13 ± 0.99 | 30.58 ± 0.72 | 2.26 ± 0.05 | 0.19 ± 0.00 | 0.69 ± 0.02 |
Parameter | pH | OC | OM | Ca2+ | Mg2+ | TP | AP | TN | AN | TK |
---|---|---|---|---|---|---|---|---|---|---|
Standard deviation | 0.5912 | 2.4203 | 4.1723 | 3.4184 | 1.7926 | 3.5282 | 2.98 | 3.4162 | 0.5809 | 0.5546 |
F-statistic test | 1.4502 | 0.1188 | 0.119 | 6.6346 | 0.7264 | 0.1585 | 1.2368 | 0.0097 | 0.574 | 1.0438 |
p-value | 0.2621 | 0.8887 | 0.8885 | 0.0074 | 0.4981 | 0.8547 | 0.3152 | 0.9904 | 0.5738 | 0.3736 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebahire, F.; Faridullah, F.; Irshad, M.; Bacha, A.U.R.; Hafeez, F.; Nduwamungu, J. Effect of Biochar on Composting of Cow Manure and Kitchen Waste. Land 2024, 13, 1545. https://doi.org/10.3390/land13101545
Sebahire F, Faridullah F, Irshad M, Bacha AUR, Hafeez F, Nduwamungu J. Effect of Biochar on Composting of Cow Manure and Kitchen Waste. Land. 2024; 13(10):1545. https://doi.org/10.3390/land13101545
Chicago/Turabian StyleSebahire, Felicien, Faridullah Faridullah, Muhammad Irshad, Aziz Ur Rahim Bacha, Farhan Hafeez, and Jean Nduwamungu. 2024. "Effect of Biochar on Composting of Cow Manure and Kitchen Waste" Land 13, no. 10: 1545. https://doi.org/10.3390/land13101545
APA StyleSebahire, F., Faridullah, F., Irshad, M., Bacha, A. U. R., Hafeez, F., & Nduwamungu, J. (2024). Effect of Biochar on Composting of Cow Manure and Kitchen Waste. Land, 13(10), 1545. https://doi.org/10.3390/land13101545