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Abstract: Atlantic White Cedar (Chamaecyparis thyoides) (AWC) anchors a globally threatened ecosys-
tem that is being impacted by climate change, as these trees are vulnerable to hurricane events,
sea-level rises, and increasing salinity at the forest–marsh ecotone. In this study, we determined
the current amount and distribution of AWC in an area that is experiencing sea-level rises that are
higher than the global average rate. We used a combination of a field investigation and aerial photo
interpretation to identify known locations of AWC, then integrated Sentinel-1 and 2A satellite data
with abiotic variables into a species distribution model. We developed a spectral signature of AWC
to aid in our understanding of phenology differences from nearby species groups. The selected
model had an out-of-bag error of 7.2%, and 8 of the 11 variables retained in the final model were
derived from remotely sensed data, highlighting the importance of including temporal data to exploit
divergent phenology. Model predictions were strong in live AWC stands and, accurately, did not
predict live AWC in stands that experienced high levels of mortality after Hurricane Sandy. The
model presented in this study provides high utility for AWC management and tracking mortality
dynamics within stands after disturbances such as hurricanes.

Keywords: species distribution modeling; Chamaecyparis thyoides; sea-level rise; ecotone; ghost forests

1. Introduction

The outcomes of climate change (e.g., sea-level rises and increasing storm frequency
and intensity) threaten numerous coastal species [1–4]. These threats are especially detri-
mental to plant species that exist in a narrow range and are sensitive to environmental
change. Atlantic White Cedar (referred to as AWC), Chamaecyparis thyoides (L.) Britton,
Sterns & Poggenb. (Cupressaceae), anchors a globally threatened ecosystem that is being
impacted by climate change. These trees are vulnerable to hurricane events, wind-driven
water-level fluctuations and salinity, sea-level rises, and drainage ditches designed to lower
the water table for agriculture [5]. Collectively, these changes, driven in large part by the
climate, are shifting the marsh–forest ecotone [1]. Therefore, in order to better manage
and conserve AWC, a species sensitive to sea-level dynamics, more accurate information is
needed on the location and condition of live stands. An understanding of ecotone dynamics
is critical to understanding the effects of climate change; yet it is these areas of the landscape
that pose challenges to species mapping efforts as AWC is interspersed with other types of
similar vegetation.

1.1. Coastal Forests and Climate Change

Coastal forests and wetlands provide many ecosystem services, including wildlife
habitat, coastal erosion protection, water purification and regulation, nutrient cycling, and
recreation [6]. However, coastal forests and wetlands are currently threatened by long-
term sea-level rises and increased storm intensity and frequency. The spatial distribution
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of forested wetland areas appears to be closely related to saltwater intrusion and the
occurrence of extreme events that control short-term water levels [7]. Forested wetlands
are often dominated by tree communities that are not well adapted to increasing saline
conditions [7], causing entire forests in the Mid-Atlantic region (of the United States) to
shift in favor of more salt-tolerant species. It can be difficult to estimate the projected
changes in these coastal forests because the systems are dynamic [8]. However, ecotones,
including the marsh–forest boundary, provide a critical location to study the impact of
climate change and extreme events on species residing in ecotones because they are often
sensitive to change [2].

Globally, wetlands and coastal forests are at risk from sea-level rises, but wetlands
in the Mid-Atlantic region are especially at risk. New Jersey has experienced increased
rates of sea-level rises over the past 40 years, with a rate of 0.2 inches/year, which is higher
than the global average of 0.1 inch/year [9]. Coastal wetlands will need to migrate in order
to compete with sea-level rises; however, inland migration could be blocked by bluffs,
development, and shoreline protection structures [10]. Trees and other vegetation within
the coastal forests can be killed by tidal flooding and storm surges if they are not flood-
tolerant or tolerant to the salinity of the flood waters [3]. The exposure to saltwater can
create “ghost forests”, areas of standing dead trees [4], which represent the conversion of
forest into marsh as those areas become inundated, leaving a patch of dead trees behind [1].
This is driven by sea-level rises as well as disturbance events [7]. Therefore, ghost forests
provide evidence of a shifting marsh–forest ecotone and can be used to track the movement
of the ecotone boundary over time [11].

Hurricanes and severe storms are a threat to the wetlands and coastal forests in the
Mid-Atlantic region of the United States. An estimated 400,000 acres of wetlands were
inundated as a result of Hurricane Sandy, a category 3 hurricane that struck in late October
2012 [12]. Hurricane Sandy inundated forested areas by creating breaches in the natural
barriers that protect these areas from saltwater intrusion. However, it is challenging
to understand the impacts of Hurricane Sandy alone on these forests because there are
multiple stressors [13]. After Hurricane Sandy, it was reported that severe degradation
occurred in 41.4% of wetlands, and 51.1% of the damage from all types of degradation
(including severe, moderate, and low) was long-term damage [6]. Some plant species will
be more tolerant to the increased salinity that can be the result of a disturbance event;
however, those others unable to adapt will need to migrate or could face widespread
mortality due to these increasing threats.

1.2. Atlantic White Cedar Ecosystem Biogeography and Vulnerability

Atlantic White Cedar is a coniferous, evergreen species that is found in the Eastern
United States, from Maine to Mississippi, in a narrow band [5], rarely more than 200 km
from the coast [14]. AWC generally occurs in narrow belts along streams and can persist
seaward to tidal areas where it anchors the forest–marsh ecotone [15]. AWC influences
soil characteristics through peat building and provides a habitat for rare and endangered
species [5,16,17].

AWC is vulnerable to anthropogenic climate change, which is causing increased
storm frequency, intensity, and coastal flooding. The species is salt-intolerant and can
experience reduced growth and increased mortality in response to inundation. AWC ghost
forests are prevalent in coastal areas of the Mid-Atlantic regions of the US due to increased
pressure from sea-level rises [4]. The increase in ghost forests at the marsh–forest ecotone is
effectively tracking hotspots of increased salinity and inundation [7,11]. There have been
ghost forests further inland in response to periods of inundation [4], and AWC ghost forest
formation was reported after Hurricane Sandy in New Jersey [5].

1.3. Predictive Habitat Distribution Modelling

Species distribution models (SDMs) relate species distribution data to the environmen-
tal characteristics of an area and have been utilized in diverse environments for a wide
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variety of species (e.g., Assal et al., 2015, 2021; Hailu et al., 2017; He et al., 2019) [18–21].
SDMs can be used to estimate the potential distribution of a species, then to predict the
extent of suitable habitat over a given area [22,23]. SDMs are used to forecast forest species
ranges that may be the most impacted by climate change or extreme events, providing
valuable knowledge for potential management or mitigation practices [24]. Atlantic White
Cedar wetlands are difficult to access due to the surrounding environmental conditions,
making it more difficult to monitor these stands [25]. Therefore, an AWC SDM would be
beneficial for informing the current and potential areas, as well as identifying areas of the
landscape that may be more susceptible to impacts from climate change.

SDMs use environmental data, including both abiotic and biotic variables, to map
and predict species occurrence across a landscape. Incorporating remote sensing data into
the process, known as predictive habitat distribution modelling [19,26], allows for a more
dynamic model because it captures vegetation phenology [27]. Advances in multispectral
satellite capabilities provide the opportunity to identify a more complete spectral signature,
or response, of a species. A spectral signature is the unique reflectance of a specific
material or object over a range of wavelengths [28,29] and aids in discriminating vegetation
types and plant stress [30,31]. More recent satellite sensors such as Sentinel-1 (Synthetic
Aperture Radar) and Sentinel-2 (multispectral imagery) have been used for vegetation
classification and habitat monitoring [32]. The inclusion of both Sentinel satellites in forest
mapping has led to higher model accuracy [33]. The combination of remotely sensed and
abiotic variables to map and predict species distributions across spatiotemporal scales is a
technique that is applicable to many scales and locations due to increases in data availability
and computational power.

1.4. Research Questions and Objectives

Understanding AWC distribution will help inform management and mitigation loss
strategies associated with climate change impacts. A species distribution model will enable
efficient mapping, as AWC grows in wetlands that can be challenging to access. The
purpose of this study is to determine the distribution of Atlantic White Cedar throughout
southern New Jersey, an area that experienced a severe disturbance, Hurricane Sandy, in
2012. Our primary goal is to create a transferable framework to map the distribution of
Atlantic White Cedar and provide managers with the current extent of the range. The main
objective of this study is to (A) determine the distribution of AWC throughout southern
New Jersey. To help address the primary research goal, there were two smaller research
questions addressed: (B) What are the driving predictors of AWC presence across the
landscape? (C) What is the spectral signature of Atlantic White Cedar? This research will
address a data gap about the distribution of Atlantic White Cedar, provide insight on the
vegetation dynamics within these stands of trees, and lead to a better understanding of
where AWC is able to persist on the landscape.

2. Materials and Methods
2.1. Study Area

The study domain comprises 36 HUC-12 watersheds (Hydrologic Unit Code (HUC)
12) [34] throughout southern New Jersey that contained known stands of Atlantic White
Cedar (Figure 1). This area, 3,430 square kilometers, contains part of the New Jersey
Pinelands, which support a wide variety of plant and animal communities that are threat-
ened by water-quality changes and degradation of watersheds from development and
agriculture throughout the southern part of the state [35]. Average annual precipitation
range is 106.7–116.8 cm, and the average annual temperature is 0–2.2 ◦C in winter and
between 22.2 and 25 ◦C in the summer months [36]. The pinelands are composed of many
different tree species, including pitch pine, red maple, oak tree varieties, and Atlantic White
Cedar, which dominates the wetlands areas [36,37].
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2.2. Sample Data Collection

Live and dead AWC stands were documented using a GPS unit (Geode GNSS Receiver;
Juniper Systems; Logan, UT, USA) and photographs during a field campaign in August
2022 (Figure 2). Information on the stand condition and setting was documented, including
photographs, to provide reference for the position of the stand of AWC during the aerial
photograph interpretation process. A total of 30 field sites were visited. The number of
stands able to be reached was limited due to the relative inaccessibility of AWC stands on
public land (we accessed private lands when permission from the landowner was received)
for aerial photograph characterization of AWC. Additional AWC presence points were
created through aerial photo interpretation in inaccessible areas.

Land 2024, 13, x FOR PEER REVIEW 5 of 20 
 

Figure 1. Location of the study area in southern New Jersey. Background: ESRI Base Maps (2023). 

2.2. Sample Data Collection 

Live and dead AWC stands were documented using a GPS unit (Geode GNSS Re-

ceiver; Juniper Systems; Logan, UT, USA) and photographs during a field campaign in 

August 2022 (Figure 2). Information on the stand condition and setting was documented, 

including photographs, to provide reference for the position of the stand of AWC during 

the aerial photograph interpretation process. A total of 30 field sites were visited. The 

number of stands able to be reached was limited due to the relative inaccessibility of AWC 

stands on public land (we accessed private lands when permission from the landowner 

was received) for aerial photograph characterization of AWC. Additional AWC presence 

points were created through aerial photo interpretation in inaccessible areas. 

 

Figure 2. Multiple perspectives of Atlantic White Cedar stands. Panel (A)—Field photograph of an 

AWC stand taken during the 2022 field season. Panel (B)—Natural color NAIP imagery showing an 

AWC stand that was visited during the 2022 field season. Panel (C)—Same AWC stand as panel B, 

shown in color infrared with a contrast stretch applied. AWC is distinguished by its unique texture, 

tone (the blueish-gray tone), and shape as these stands are typically linear. 

Images from the National Agriculture Imagery Program (NAIP) were obtained from 

the USDA data gateway [38] for the southern New Jersey area. The most recent NAIP 

photos at the time of analysis were used (26 July–29 September 2019) and had a spatial 

resolution is 0.6 m in four spectral bands (blue, green, red, and near-infrared (NIR)). The 

NIR was critical to delineate vegetation from the surrounding environments and distin-

guish differences in vegetation types (Figure 2). The stands in the field sites served as ref-

erence areas for photo interpretation of AWC stands to then develop additional training 

points (n = 362, 134 AWC presence points, 228 absence points). Contrast stretches were 

applied to the NAIP imagery to highlight the unique texture and pattern of AWC com-

pared to the surrounding vegetation. This photo interpretation technique has been used 

previously to develop presence/absence data in SDMs [18–21]. 

We derived a dataset of mapped AWC polygons from a 2012 Land Use/Land Change 

(LULC) dataset [39] that had been iteratively updated from the original 1986 dataset cre-

ated through photo interpretation using a minimum mapping unit of 2.5 acres. This is the 

only known dataset of mapped AWC in this area, and it was last generated in 2012, just 

Figure 2. Multiple perspectives of Atlantic White Cedar stands. Panel (A)—Field photograph of an
AWC stand taken during the 2022 field season. Panel (B)—Natural color NAIP imagery showing an
AWC stand that was visited during the 2022 field season. Panel (C)—Same AWC stand as panel B,
shown in color infrared with a contrast stretch applied. AWC is distinguished by its unique texture,
tone (the blueish-gray tone), and shape as these stands are typically linear.

Images from the National Agriculture Imagery Program (NAIP) were obtained from
the USDA data gateway [38] for the southern New Jersey area. The most recent NAIP
photos at the time of analysis were used (26 July–29 September 2019) and had a spatial
resolution is 0.6 m in four spectral bands (blue, green, red, and near-infrared (NIR)). The
NIR was critical to delineate vegetation from the surrounding environments and distinguish
differences in vegetation types (Figure 2). The stands in the field sites served as reference
areas for photo interpretation of AWC stands to then develop additional training points
(n = 362, 134 AWC presence points, 228 absence points). Contrast stretches were applied to
the NAIP imagery to highlight the unique texture and pattern of AWC compared to the
surrounding vegetation. This photo interpretation technique has been used previously to
develop presence/absence data in SDMs [18–21].

We derived a dataset of mapped AWC polygons from a 2012 Land Use/Land Change
(LULC) dataset [39] that had been iteratively updated from the original 1986 dataset created
through photo interpretation using a minimum mapping unit of 2.5 acres. This is the
only known dataset of mapped AWC in this area, and it was last generated in 2012, just
prior to Hurricane Sandy (late October 2012). This afforded an opportunity to compare
the pre-hurricane AWC with our updated model and document any change in AWC
stands since that time. The LULC data also informed the training dataset using a modified
stratified random technique to ensure adequate coverage of vegetation types that may
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occur near AWC stands. Training points were deterministically placed in six LULC classes:
AWC, other coniferous species, water, built/urban, deciduous, and agriculture. Later,
additional absence points were added to assist with model training: 10.7% of the training
points were water, 12.4% deciduous, 3.0% built environment, 4.4% agriculture, and 18.5%
other conifers/pine. More points were placed in areas that may have had more similar
characteristics to AWC, such as deciduous and other conifers/pine. After points were
classified, the classification scheme was later collapsed to simply AWC presence (1) and
absence (0) for use in the random forests model.

2.3. Satellite Data

Remotely sensed variables were derived from Sentinel-1 and Sentinel-2 imagery, as
both provide information about stand structure, age, vegetation biophysical parameters,
chlorophyll content, leaf area index, aboveground biomass, and more [33,40,41]. We utilized
a suite of multispectral bands from the Sentinel-2 surface reflectance (Level 2A) product
(“COPERNICUS/S2_SR”) in Google Earth Engine (GEE), as well as two derived vegetation
indices (Table 1). We acquired imagery during a leaf-on period (15 June–15 September)
and a leaf-off period (1 January–15 February and 1–31 December), all during 2021 for
consistency (a portion of the study area experienced a wildfire in 2022). We enforced a
minimum observation threshold of four clear-sky observations during the leaf-on period
for a given pixel to be considered in the analysis; the leaf-off period only required one
observation. If a pixel failed to meet the minimum valid observations, it was dropped from
the analysis as it could influence the composite image [18]. AWC is a coniferous species
that retains needles during the late fall and winter seasons, whereas deciduous vegetation
does not retain leaves during that time. We use two time periods as an opportunity to
exploit the divergent phenology of AWC from nearby deciduous trees [18,19]. After the
minimum observation filter was applied, the mean composite images were exported from
GEE for each band and time period (Table 1). We also chose to incorporate the Sentinel-1 C-
Band Synthetic Aperture Radar (SAR) (“COPERNICUS/S1_GRD”) to account for potential
distinct polarization characteristics that coniferous AWC might exhibit over the growth
form of deciduous species. We compiled mean composites for the VV and VH band from
the same time periods from ascending orbit of the satellite. No minimum observation
threshold was applied as SAR is not affected by clouds [33]. Sentinel 2-A bands 5–7, 8A,
and 11–12 were resampled from 20 m to 10 m using bilinear interpolation to match the
spatial resolution of Sentinel-1 and Sentinel-2-A bands (2–4 and 8) in GEE. All composite
bands (Table 1) were exported for further processing in the R statistical software (version
R-4.2.2) [42] using the raster package [43].

Table 1. Description of explanatory variables considered in the analysis.

Variable

Biotic
VV Band C-Band SAR vertical transmission/reception
VH Band C-Band SAR vertical transmission and horizontal reception
Band 2 Blue band
Band 3 Green band
Band 4 Red band
Band 5 Red Edge band 1
Band 6 Red Edge band 2
Band 7 Red Edge band 3
Band 8 Visible and near infrared
Band 8A Visible and near infrared
Band 11 Shortwave infrared (SWIR)
Band 12 Shortwave infrared (SWIR)
NDVI (Normalized Difference Vegetation Index) NDVI = (B3 refletance − B2 reflectance)/(B3 reflectance + B2 reflectace) [44]
NDRE (Normalized Difference Red Edge) NDRE = (B8 reflectance − B6 reflectance)/(B8 reflectance + B6 reflectance) [45]
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Table 1. Cont.

Variable

Abiotic
Percent sand in soil Percent sand found in soil at a depth of 30–60 cm
Saturated soil water content Saturated soil water content at a depth of 30–60 cm
Elevation Derived from DEM
Slope Derived from DEM
Aspect Derived from DEM

Topographic Position Index A measure of slope position and landform type with respect to adjacent grid
cells [46]

Topographix Wetness Index A measure of topographic control on hydrologic processes [47]
Topographic Ruggedness Index A measure of the elevational difference between a cell and adjacent cells [48]
Northness Cosine transformation of aspect
Eastness Sine transformation of aspect
Distance to water Distance from each cell center to the closest water source
Distance to head of tide Distance from each cell center to the closest point inland that the tide reaches
Latitude Latitude at the cell center
Longitude Longitude at the cell center

Spectral Signatures and Phenology

Spectral signatures of multiple vegetation types were created to determine if the
spectral signature of AWC was similar to other vegetation types within the study area, as
the inclusion of phenology in SDMs is often overlooked [49], and, to our knowledge, the
spectral signature of AWC measured by Sentinel-2A has never been documented. There-
fore, we investigated the spectral signature of AWC and other nearby vegetation during
the leaf-off and leaf-on periods to aid our understanding of satellite-derived reflectance
changes throughout the year in these vegetation types. Spectral responses are influenced by
plant physiological traits such as leaf type, chlorophyll content, and water content [31,50].
Coniferous species are known to be more absorptive than deciduous forests and tend
to have low values in the near-infrared region [51]. Some vegetation types emit similar
spectral responses, and to determine if any of the surrounding vegetation had similar
reflectance values in any of the Sentinel-2A bands, the responses for 8 different vegetation
types were determined for both the leaf-on and leaf-off periods.

2.4. Topographic and Abiotic Data

We derived a suite of topographic variables from a 10 m digital elevation model (DEM)
accessed in GEE (“USGS/3DEP/10m”) to be used as predictor variables (Table 1). A new
dataset was derived to determine the distance to water using an NJ Coastline dataset [52]
and an NHDPlus dataset [34] that provided mapped tributaries, canals, and drainage
ditches. The two datasets were intersected in a GIS to create a single dataset representing
the coastline, river and tributary banks, and the centerline of smaller streams. Finally, a
proximity raster was created that represented the Euclidian distance for each cell to the
nearest water source. The distance to the head of tide (HOT), the furthest point inland on
any tributary where the tide reaches, was created by calculating the Euclidian distance of
each raster cell to the HOT [53]. Given AWC’s sensitivity to changing salinities, this was an
important variable to consider as vegetation within the tidal zones may be more prone to
mortality in the future with an increase in the sea level. We obtained both percent sand and
saturated soil water content (at depth of 30 to 60 cm) from the Polaris dataset [54], available
through GEE. This depth was chosen based on the root characteristics of AWC, which are
shallow and only reach about 0.3–0.6 m [25]. The 30 m data were resampled to 10 m to
match the scale of all other covariates using bilinear interpolation.
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2.5. Predictive Habitat Distribution Modelling

To relate the presence and absence points to the underlying environmental conditions
to be able to predict AWC presence, a random forests (RF) machine learning approach
was used [55]. RF has a long history in ecological studies and is shown to have a high
classification accuracy when used in species distribution modelling [56]. Multicollinearity
is common among remotely sensed variables and derived indices [18,57] and can lead to
uncertainty within a model [58]. Multicollinearity between the predictor variables was
addressed by calculating the variable inflation factors (VIFs) and the maximum linear
correlation of each variable using the usdm package in R (version 4.2.2) [59]. Variables with
high correlation (VIF > 0.8) were removed from consideration, resulting in 22 variables
considered for model testing [18,60,61].

The selected model with optimal out-of-bag error and class error was then used to
predict the probability of AWC occurrence throughout the study area. We converted the
continuous prediction to a binary presence/absence map using the threshold where the
sensitivity was equal to the specificity. The receiver-operator characteristic curve was
calculated, and the area under the curve (AUC) was used to assess model accuracy. Finally,
the model was spatially constrained, a posteriori, to only include the zones delineated in
the LULC dataset (based on the Anderson Classification System) that are consistent with
the ecological characteristics of AWC.

3. Results
3.1. Spectral Signatures and Phenology

The spectral signatures of the selected vegetation types and zones showed that AWC
had a similar signature to that of other coniferous species within the study area (Figure 3).
The deciduous and coniferous species exhibited clear differences during the leaf-on period
in the red edge 2 and 3 (bands 6 and 7), and the NIR, and the NIR narrow regions (bands
8–8a). In the short-wave infrared bands (bands 11 and 12), there is little separation during
the leaf-on period. During the leaf-off period, there is greater separation between the
vegetation types in the short-wave infrared region. The spectral signatures of AWC and
pitch pine (Pinus rigida) are extremely similar. However, there is subtle separation between
these two species in the red edge, NIR, and NIR narrow regions during the leaf-on period
(Figure 3), confirming that phenology considerations are important when considering
remotely sensed data.

3.2. Species Distribution Model Evaluation

Atlantic White Cedar presence was best predicted by a combination of spectral and
topographic variables selected during the model fitting process. The RF model used
to predict AWC presence had an out-of-bag error of 7.2% and a maximized occurrence
threshold of 0.32. The probability of AWC class presence and absence error was 11.9%
and 4.4%, respectively, and the model predicted AWC with high accuracy, as indicated
by an AUC value of 0.97. There were 11 variables included in the final model, and NDVI
during the leaf-off period was the most important variable for predicting Atlantic White
Cedar presence (Figure 4). Distance to water was the third most important variable in the
model predictions, accounting for AWC preference to grow near streams and tidal areas.
The NIR band (band 8) for both the leaf-on and leaf-off periods was retained in the model
and potentially important to discriminate between AWC and pitch pine (Figure 3). The
leaf-off VH band, a proxy for vegetation structure retained in the final model, was likely
important in delineating AWC from deciduous and potentially other coniferous species
with a different growth form.
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3.3. Atlantic White Cedar Mapping

The model output was used to create a spatially explicit map of AWC presence
(Figure 5). The model was then spatially constricted to wetland zones and predicted
149 km2 of AWC within those zones. The Atlantic White Cedar Wetlands class from the
LULC map had the highest amount of the total predicted AWC (42.6%), followed by
coniferous forest with greater than 50% crown closure (25.7%). The mean probability of
occurrence mirrored the area of predicted AWC for each zone (Table 2). The predicted
AWC showed strong agreement with aerial photographs at the stand scale (Figures 6 and 7).
At the watershed scale (HUC-10), the vast majority of the predicted AWC occurs in the
Wading River (39.4%) and Mullica River (33.8%) watersheds, which contain the majority of
the protected areas in a number of state forests (Table 3).

Table 2. The percentage of total predicted AWC within the spatially constrained area of RF predictions
by zone.

Zone Type Percentage Mean Probability

AWC Wetlands 42.6% 0.67
Coniferous Forest (>50% crown closure) 25.7% 0.46

Coniferous Wooded Wetlands 18.2% 0.5
Mixed Wooded Wetlands (Coniferous Dom.) 5.9% 0.48

Coniferous Forest (10–50% crown closure) 4.8% 0.44
Mixed Wooded Wetlands (Deciduous Dom.) 1.8% 0.46

Deciduous Wooded Wetlands 1.0% 0.43

Table 3. Amount of predicted AWC within each HUC-10 watershed. Percentages are the amount of
the total predicted AWC within each watershed.

Name Amount of Predicted AWC in Each Watershed (km2)

Wading River 58.8 (39.4%)
Mullica River 50.4 (33.8%)

Lower Great Egg Harbor River 7.4 (5.0%)
Dennis Creek-Delaware Bay 7.1 (4.8%)

Manahawkin Bay-Little Egg Harbor 6.2 (4.2%)
Upper Great Egg Harbor River 6.0 (4.0%)

Lower Maurice River 5.2 (3.5%)
Barnegat Bay 4.8 (3.2%)

Tuckahoe River 1.8 (1.2%)
Great Egg Harbor Bay-Barrier Islands 1.3 (0.9%)

While the model was able to distinguish live AWC stands, it likely overpredicted in
some of the upland areas, where pitch pine was more abundant. The model predicted
149 km2 across the study area in the spatially constrained zones compared with the NJDEP
2012 dataset which identified 116 km2 of AWC. Although the model may have overpre-
dicted, the mapping effort could have missed AWC stands that were less conspicuous to
aerial photography interpreters. However, the model only identifies 64 km2 of live AWC
inside the 2012 mapped AWC polygons, indicating a decrease of 51 km2 (44%) of AWC
between 2012 and 2021.

AWC mortality was documented both in the field and in aerial photographs through-
out the study area. The model performed well to identify live AWC and distinguish it from
dead AWC (Figures 8 and 9). The model did not predict live AWC in areas at the edge of
the forest–marsh ecotone that were mapped as AWC prior to Hurricane Sandy (Figure 8).
Aerial photo interpretation identified these areas as dead stands of AWC. Low-lying ar-
eas between the Bass and Wading Rivers experienced heavy flooding in the weeks after
Hurricane Sandy and experienced large amounts of mortality confirmed in the field. The
model was able to distinguish between the live and dead AWC (ghost forest) and correctly
mapped the healthy, live stands (Figures 8 and 9).
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Figure 9. Panel (A)—Mapped AWC polygons from NJDEP (vintage 2012) overlaid on 2019 NAIP
imagery. Areas of dead AWC are visible as large gray patches on the landscape that was confirmed
with a field visit in 2022. Panel (B)—The model only predicts where live patches of AWC exist and
does not predict AWC presence in the distinct areas of mortality.

4. Discussion

This model fills a needed data gap on the interaction of landscape position, soils, and
hydrology on Atlantic White Cedar occurrence [62] and the driving variables of AWC
presence in this region. Using an SDM is an improvement upon more traditional species
distribution data types such as polygons or occurrence points because it uses fewer data
to create distribution estimations, relies on open-source data, can be recreated for future
time periods, and balances omission and commission errors, which are typically higher
in distributions that are based solely on species occurrences or range maps [63]. The
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2012 dataset, while useful and providing a good reference for this project, was created by
updating a previous dataset using aerial photograph interpretation. It was limited by the
minimum mapping unit and human interpretation. Furthermore, a severe disturbance
event (Hurricane Sandy) occurred after that product was created, resulting in unmapped
mortality of AWC. The RF model created here provides a transferable framework for the
mapping of AWC throughout its range and is an improvement on previously created
distribution maps.

4.1. Remote Sensing Is Critical in Mapping Atlantic White Cedar

It is not uncommon to have under- or overprediction within SDMs, which can either
make the distribution of a species appear to be smaller or larger than it truly is. While
SDMs may not always capture the true distribution of a species, they can be used as a
hypothesis of where a species is located and how the species fares in different locations [64].
Although we were unable to include species interactions or dispersal constraints in our
SDM [63,64], we were successful in identifying the current distribution of live, healthy
AWC stands (Figure 5). Furthermore, the model can be utilized as a tool for tracking
changes in the distribution of this species across the landscape. The model was developed
using fine-scale (~10 m) data, which enabled small stands of AWC to be mapped across
this landscape. The framework relies on open-source data and is, therefore, transferrable to
model other areas within AWC’s range. Consideration of a large suite of potential predictor
variables allowed the modelling process to identify those most important for predicting
AWC presence (Figure 4). Eight of the eleven predictor variables were from satellite data,
highlighting the value of including remotely sensed data and phenology insight into species
distribution models.

Our results show that there has been a loss of AWC in some areas that were previously
mapped as live AWC, as the model is able to distinguish between the live and dead AWC
(Figures 8 and 9). We identified a 44% loss of AWC between 2012 and 2021 in southern New
Jersey. There is clear aerial photographic evidence that some of this stand loss occurred
since 2012. However, a qualitative assessment of aerial photos from the 2000s identified
small pockets of mortality within 2012 mapped stands, suggesting that the AWC dataset
had not been updated during that period, thus making direct comparisons difficult. Moving
forward, this model could be used to quantify and track AWC loss across a landscape
due to climate change or other pressures in the future. Sea-level rises, inundation, and
more frequent and intense storms all present a threat to AWC, as this species is sensitive
to changes in the water level and salinity. These issues are especially pressing in the Mid-
Atlantic region, which has the highest rates of SLR globally [9] and will continue to press
AWC further inland in areas where the migration is not blocked by urbanization. The
conversion of AWC to ghost forest has been documented by other researchers as well [4,7].
In this study we extend that knowledge and document AWC conversion to ghost forest in a
new region. Furthermore, the model presented here can be extended to future time periods
to track those changes across the landscape and determine which stands are experiencing
increased stress or mortality.

4.2. Ecological and Technological Considerations

The model had a low error component with reasonable predictions of AWC presence;
however, there were some areas of overprediction (Figure 8). Overprediction within an
SDM occurs when the model predicts the species to have a broader distribution than
reality due to the inadequate capture of biotic interactions or dispersal constraints on the
species [63]. We believe there are a few reasons for overprediction in the model. First, the
available data might be too coarse to capture fine scale variability across the landscape.
SDMs should be created at a scale relevant to biological interactions, and for many sessile
species (such as plants), it is necessary to use smaller scales to produce models with high
predictive capabilities [65]. For all the datasets to match in resolution, we chose to use
more coarse-scale abiotic variables (10 m) than were available to match the scale of the
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spectral variables. Using finer-scale abiotic variables would have required scaling up
datasets, which can cause issues with fine-scale heterogeneity, interactions, nonlinearity,
and feedbacks [66]. To maintain the integrity of the data, coarser-scale abiotic variables
were used to best match the resolution of the Sentinel-1 and Sentinel-2A bands. The coarser
spatial scale of the datasets likely contributed to the overprediction in the model due to
the generalization of the underlying environmental conditions. Mapping narrow, linear
vegetation patterns on the landscape similar to AWC presents a challenge with satellite
data [18]. Furthermore, AWC is influenced by changes in microtopography [14], and the
spatial resolution of 10 m may not have been adequate to detect those fine-scale changes
in topography.

While RF models are known for their utility within ecology and their high classification
accuracy within SDMs, there are some limitations when creating an SDM utilizing a
machine learning approach, such as overfitting in some cases [24]. Random forests provide
more accurate predictions across a landscape than other methods, but if RF is used to
extrapolate and project those predictions to an area outside of the placement of the training
data provided, there can be some resulting issues with both over- and underprediction [67].

Another potential reason for the overprediction in the model may have been the
placement of the presence and absence points used in the training data (Figure 1). There
may have been AWC in locations that were not truly suitable for species to live long
term, such as in relict populations, and there may have been absence points placed in
areas that are truly suitable for this species, but no AWC was present due to dispersal
limitations, biotic interactions, or environmental stochasticity [64]. It is advised to avoid
placing absence points in an area near presence points [68]. However, the small study
area made the placement of points an appropriate distance apart from each other more
challenging. The placement of the presence and absence points may not have represented
the true niche of this species, and the distance between the presence and absence points
may not have been large enough to provide the necessary variability in the data to help the
model distinguish between AWC and the other nearby classes.

Overprediction in SDMs is a common issue, and many studies do not find clear support
for their model predictions [64]. In this study, we attempted to correct for the overprediction
by adding variables that we had not previously considered, as well as spatially constraining
the model to only predict within areas that are ecologically relevant to the study. The most
frequent model overprediction correction approach is the use of geographical barriers [63],
which was performed here by determining ecologically appropriate spatial zones, then
constraining the model predictions to those areas. Spatially constraining the model allowed
us to identify and remove predictions from the model output that fell within zones that
clearly did not contain AWC and those where it was unlikely that AWC was present. It can
be challenging to identify if an area is truly overpredicted without quantitative field data;
our assumptions of overpredicted areas are based on our interpretation of the aerial imagery
and known AWC locations. Even in light of these considerations, the SDM presented here
correctly identified live pixels of AWC in a matrix of live and dead AWC (Figure 8), as well
as distinguished AWC pixels from the surrounding deciduous vegetation (Figure 6).

There are a number of other coniferous species present, such as pitch pine, which is the
most common pine throughout the New Jersey Pinelands. Pitch pine can be codominant
within AWC stands in New Jersey [25] and has a very similar spectral response to AWC
(Figure 3), which could potentially be contributing to the overprediction in the model.
The spectral response of a given pixel is an amalgamation of all elements, including other
conifer species, present in the pixel [69,70]. Spectral variables were important predictors in
the SDM (Figure 4); therefore, if multiple species had similar responses, it is likely that this
would cause the model to predict those areas as AWC, especially if it was a species that can
exist in the same underlying environmental conditions, such as pitch pine. We believe it
is advantageous to document the spectral response of AWC using the expanded spectral
capabilities of Sentinel-2A. Advances in future sensors will likely provide more spectral
information that could be used to build upon the work presented here.
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4.3. Management Implications for Atlantic White Cedar

Atlantic White Cedar is facing increasing mortality along the coast in the face of
anthropogenic climate change. Species within the marsh–forest ecotone will respond
differently to these environmental changes [2], and the ghost forests provide the opportunity
to track the migration of species within the marsh–forest ecotone. The marsh–forest ecotone
is shifting in response to increasing storms and sea-level rises [3], and AWC is one of the
most conspicuous species that is experiencing loss from these disturbances. After Hurricane
Sandy in 2012, there were notable AWC ghost forests in southern New Jersey [5], and many
of these areas did not recover post-hurricane. The model was able to distinguish between
live and dead AWC (Figures 8 and 9), which allows for the tracking of AWC loss at the
stand level to be monitored over time. Knowledge of where some potential areas for active
management (e.g., planting new trees) or maintaining the live, healthy stands is important
to have to help best protect and preserve this species in this region.

We created a transferable model that documents the baseline amount of Atlantic White
Cedar throughout southern New Jersey. The use of random forests in species distribution
models is beneficial for inventory and monitoring purposes as these models are run without
a priori assumptions about the ecological influences of variables on the species, allowing
them to better predict a species across space than some traditional SDM methods [71]. In
areas where there is limited information about underlying processes, species interactions,
dispersal limits, and nonlinear relationships, the use of RF models can help create a model
with the best predictive capabilities without knowing any of the information about which
processes may be influencing a species distribution across a landscape. The information
provided from SDMs can be used to monitor species and help create management and
loss mitigation strategies to conserve species in the future. In coastal regions, it is very
challenging to predict where and when storm surges will occur [72]; however, SDMs
provide information that could help managers locate stands of trees that may be in an
area that is more susceptible to these threats. The model outputs capture the loss of AWC
on the landscape in recent years, as the model was able to distinguish areas of mortality
(Figures 8 and 9). This work provides much needed information to managers about AWC
stands and helps us better understand stand dynamics (Table 3). Illuminating which
environmental drivers were the most important to AWC within the model provides insight
into what drives the distribution of the species across the landscape. Distance to water was
the third most important predictor of AWC presence (Figure 4), which was not surprising
given this species thrives only within 200 km of the coast [14] and tends to grow along
streams and rivers [15] (Figure 6). These areas are more susceptible to inundation from
sea-level rises or storm surges and may be more at risk of experiencing loss of AWC and
stands within these areas should be carefully monitored.

Our analysis demonstrates that Atlantic White Cedar stands are dynamic and have
experienced change since Hurricane Sandy (2012). The use of predictive habitat distribution
modelling, using both remotely sensed and abiotic variables, is an effective method for
the mapping of species distributions for use in management and loss mitigation. This
work demonstrates the importance of including remotely sensed variables in species
distribution models [27] (Figure 4). The use of SDMs to create spatially explicit maps of
species distributions that are difficult to map using field methods is an important data gap
to address due to the pressures of climate change on this important ecotone.

5. Conclusions

In this study, we aimed to create a spatially explicit map of Atlantic White Cedar
presence throughout southern New Jersey. To help meet this goal, we determined the
driving variables of AWC presence as well as the spectral signature of AWC compared
to surrounding vegetation types to better understand the dynamics of this important,
sensitive species. A combination of field methods and aerial photograph interpretation
allowed for the creation of a training dataset that was used to create a random forests model.
The results showed that both remotely sensed and abiotic variables were important in
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predicting AWC presence and that there has been some AWC mortality experienced on the
landscape. The model presented in this study provides high utility for AWC management
and tracking mortality dynamics within stands after disturbances such as hurricanes. This
study established a baseline on the amount and locations of AWC occurrence throughout
southern New Jersey. Our work can be extended across the full distribution of the species
and applied to future time periods to track those changes across the landscape to assess
changing environmental conditions. Additional research can build on the work presented
here by utilizing new sensors, such as those mounted on unmanned aerial vehicles. These
would provide imagery with finer resolution and incorporate additional field data to
understand if and why overprediction occurs in the model.
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