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Abstract: The significant increase in building energy consumption poses a major challenge to envi-
ronmental sustainability. In this process, urban morphology plays a pivotal role in shaping building
energy consumption. However, its impact may exhibit latent heterogeneity due to differences in
temporal resolution and spatial scales. For urban energy planning and energy consumption model-
ing, it is crucial to pinpoint when and where urban morphology parameters matter, an overlooked
aspect in prior research. This study quantitatively explores this heterogeneity, utilizing a detailed
dataset from old residential buildings within a university campus. Spatial lag models were employed
for cross-modeling across various temporal and spatial dimensions. The results show that annual
and seasonal spatial regression models perform best within a 150 m buffer zone. However, not all
significant indicators fall within this range, suggesting that blindly applying the same range to all
indicators may lead to inaccurate conclusions. Moreover, significant urban morphology indicators
vary in quantity, category, and directionality. The green space ratio exhibits correlations with energy
consumption in annual, summer, and winter periods within buffer zones of 150 m, 50~100 m, and
100 m, respectively. It notably displays a negative correlation with annual energy consumption but
a positive correlation with winter energy consumption. To address this heterogeneity, this study
proposes a three-tiered framework—macro-level project decomposition, establishing a key indicator
library, and energy consumption comparisons, facilitating more targeted urban energy model and
energy management decisions.

Keywords: energy consumption; urban morphology; old residential buildings; university campus;
spatio-temporal heterogeneity

1. Introduction

As populations agglomerate and cities expand, urban energy consumption increases
significantly. It now represents two-thirds of global energy consumption [1]. This exacer-
bates carbon emissions, posing substantial challenges to environmental sustainability [2,3].
The latest report from the Intergovernmental Panel on Climate Change (IPCC) once again
underscores the urgency of “guidelines on dismantling the climate time bomb” [4]. Alarm-
ing findings reveal that adverse climate effects have surpassed initial expectations in both
depth and severity. Furthermore, the global population is projected to reach 9.7 billion by
2050, with the majority residing in cities [5], increasing urban energy demands. The con-
struction industry is a major contributor to urban carbon emissions, accounting for about
40% of global emissions [6]. This is expected to rise by 40% in the next two decades [7].
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Therefore, finding solutions to reduce this energy consumption and enhance resource
efficiency is crucial for climate and energy goals, as well as environmental sustainability [8].

Extensive research has focused on reducing building energy consumption (BEC),
primarily at the individual building level [9]. Efficient design strategies for individual
buildings typically revolve around three fundamental aspects. Firstly, optimizing thermal
insulation and natural lighting involves adjusting key building parameters, such as the
building shape coefficient (BSC), orientation angle (OA), number of floors (NF), floor
area (FA), and the thermal properties of its envelope [10–12]. Secondly, passive building
design incorporates the use of renewable natural resources, like solar energy, wind energy,
and natural light [13]. Lastly, improving the efficiency of a building’s environmental
performance is accomplished by enhancing its equipment systems [14]. In China, various
types of national energy-saving standards have provided robust guidance for early-stage
building design in different regions [15–17].

While such efforts have shown promise, existing energy-saving standards for indi-
vidual buildings do not adequately address the challenges of urban energy planning. In
reality, urban-level building cluster energy consumption is not a simple sum of individual
building energy use. Furthermore, it demands a consideration of the impact of urban spatial
design [18]. Factors like mutual shading between buildings in clusters and localized micro-
climates within an urban neighborhood significantly affect BEC [19]. Research highlights
that urban morphology significantly influences urban energy efficiency [20], potentially
altering building energy needs by 10~30% [21]. Moreover, future urban development,
whether incremental construction or existing stock renewal, will reshape urban design,
directly impacting urban building energy consumption (UBEC). Thus, a comprehensive
understanding of the relationship between urban morphology and energy usage is crucial
for effective city-level policies to combat climate change.

Current research on the impact of urban morphology on BEC primarily focuses on
urban density, geometric shape, and environmental configuration. Urban density, a central
focus, is commonly used to assess land development intensity [22]. Ref. [23] demonstrated
that a higher floor area ratio significantly reduces BEC for winter heating in extremely cold
regions. Ref. [24] found that increased neighborhood density leads to higher electricity
consumption in slab and tower apartments during the summer. Similarly, research in Seat-
tle [25] revealed that annual energy consumption in multi-family housings decreases with
higher horizontal density and smaller variations in building height. These findings illustrate
the complex influence of urban morphology on BEC, encompassing spatial usage patterns,
climatic conditions, and interactions among different urban densities. Furthermore, early
geometric shape studies expanded upon and refined urban morphology typologies such
as courtyard, point, and slab morphology [26,27]. However, recent research places greater
emphasis on authentic urban morphology classifications representing diverse regions and
historical contexts. These studies utilize Ladybug Tools for performance simulation and
Wallacei for multi-objective optimization analysis, aiming to identify energy-efficient urban
morphologies [9,28]. Lastly, environmental configuration also plays a crucial role in modi-
fying BEC by altering microclimatic conditions. In Singapore, increasing factors such as tree
density, height, and greenery density have been shown to reduce cooling loads and BEC by
5~10% [29]. Ref. [30] extracted 40 urban building–vegetation morphology prototypes in
Nanjing, China, and a simulation revealed that, particularly in hot climate zones and hot
summer/cold winter zones, avoiding low greenery and low-density urban morphologies
is advisable. Hence, strategic urban morphology planning can significantly lower UBEC.

While progress has been made in related fields, obstacles still persist in bridging
research findings with policy formulation [1]. The existing research gaps can be discussed
as follows:

Controversy in Urban Morphology Effects: There is significant debate about how
urban morphology affects BEC [22]. This stems largely from discrepancies in time and
space resolution [31,32], making it difficult to compare research findings within the same
dimension. Specifically, the influence of time on BEC has been underexplored [3]. For
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instance, Ref. [25] investigated the effects of horizontal compactness, vertical density, and
variations in building height on the annual energy consumption of multifamily housing.
Ref. [23] primarily focused on the relationship between urban morphology and winter
heating energy consumption in cold regions. Ref. [29] investigated the effects of variations
in urban form—specifically density, height, and greenery density—during the summer,
based on a comprehensive analysis of 32 real-world cases representing different urban
morphologies. Whether this relationship varies seasonally remains uncertain. Additionally,
there is no consensus on the scale at which urban morphology significantly impacts BEC.
Ref. [33] found that, within a 50 m buffer zone, the regression coefficient of urban form and
building energy consumption in Singapore is relatively high. In a study from Seattle [25], it
was shown that the correlation between urban form and energy consumption is strongest
within a 100 m buffer zone. Similarly, Ref. [34] used multiple linear regression to discover
that at the block scale, the regression model’s R-squared value is maximized within a
100 m buffer zone in Harbin, China. However, earlier studies in cold regions employed a
150 m buffer zone for modeling [23]. Clearly defining the spatial boundaries for key urban
morphology parameters and their corresponding energy consumption periods is crucial
when developing comprehensive energy planning tools [35].

Reliance on Simulated Data: Most studies rely on simulated building energy data,
which diminishes the credibility of their findings in policymaking. Building simulation
research relies on detailed information about building composition to establish dynamic
heat transfer models based on thermodynamic principles, enabling the calculation of
building performance [36]. Traditional building simulation primarily focuses on individual
physical buildings and does not take into account their surrounding environment [37].
In fact, when the subject shifts from individual buildings to urban building clusters, the
entire energy consumption simulation requires substantial computational resources and
time [38]. This also involves the dual diversity of building types and human behavior [39].
The energy consumption simulation models inherently exhibit uncertainty, thus often
failing to precisely depict the actual energy consumption scenario [40]. The challenge lies
in acquiring detailed basic building data and actual energy usage data for urban energy
models [41]. Gathering these extensive data involves time-consuming efforts and raises
privacy and security concerns [42]. Nonetheless, the use of genuine and effective building
energy data remains crucial for accurately reflecting real conditions and enhancing research
reliability [39].

Overlooking Urban Climate: Even within the same city, localized climate variations
have a substantial impact on BEC [43]. This aspect has often been ignored in previous
studies [23,25], which focused on collecting building samples at a broader urban scale,
inevitably giving rise to potential climatic disparities.

Given the identified research gaps, this study aims to provide more empirical evidence
regarding the potential heterogeneous impacts of neighborhood-scale urban morphology
on BEC at different temporal and spatial resolutions within real geographical contexts. Few
studies have previously explored the interaction between urban morphology and BEC
simultaneously in both temporal and spatial dimensions. To achieve research goals, this
study prioritized ensuring the consistency of variables other than urban morphology when
selecting sample buildings. Hence, a detailed dataset was constructed using old residential
buildings within a university campus, encompassing integrated basic building data, urban
morphology data, and real BEC data. These buildings share similar occupant profiles,
income levels, education, daily routines, and are subject to the same energy policies and
electricity pricing. Crucially, they are all located in the same geographic region, ensuring
consistent urban climate and avoiding the influence of local climate variations. Our study
aims to answer the following questions to enhance the empirical understanding of how
urban morphology at different scales affects residential energy consumption across different
time periods:
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(1) After controlling for variations in a building’s basic information, local climate, and be-
havioral and socioeconomic factors, does the neighborhood-scale urban morphology
in mountainous cities correlate with BEC? How does it differ from other cities?

(2) Does the impact of urban morphology on BEC maintain consistency across different
spatial scales within the same timeframe? If not, how does this heterogeneity manifest?

(3) Within the same spatial scale, do the effects of urban morphology on BEC vary during
different time periods, including the entire year, summer, and winter?

2. Materials and Methods
2.1. The Framework of This Study

Figure 1 presents the three main steps of our study.
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• Step 1—data collection and integration: This study utilized ArcGIS 10.8 to construct a
database integrating basic building data, urban morphology data, and actual BEC data.
Building foundational data served as a control variable, while urban morphology data
at various spatial scales acted as independent variables, and actual BEC data acted as
the dependent variable, ensuring study comparability, reliability, and completeness.
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• Step 2—comparative regression model analysis: Three types of regression models
were employed to quantify urban morphology’s impact on BEC. Model applicabil-
ity was assessed through multicollinearity tests and spatial autocorrelation analysis.
Lagrange multiplier (LM) tests were used to select the model with the best fit and
explanatory power.

• Step 3—urban morphology’s impact on BEC: We cross-modeled BEC at different time
periods with urban morphology at various spatial scales using the selected model
from Step 2. In each group, a base model was established, not accounting for spatial
morphology. Comparative analysis with the base model enables a more objective
evaluation of urban morphology’s spatio-temporal heterogeneous effects on BEC.

2.2. Study Area

The research site is Chongqing, known as one of China’s “Four Furnace” cities, located
between 105◦17′ to 110◦11′ east longitude and 28◦10′ to 32◦13′ north latitude in Figure 2. As
one of China’s four directly administered municipalities, Chongqing boasts varying elevations
ranging from 73 to 2797 m, making it the largest mountainous city in China. According to the
Koppen–Geiger climate classification [44], it falls into the Cwa and Cfa climate zones, classified
as subtropical humid climates, with an annual average dry-bulb temperature of 27.8 ◦C. The
hottest and coldest months typically reach an average of 36.4 ◦C in summer and 3 ◦C in winter.
According to the Chinese standard GB 50176-2016 Code for Thermal Design of Civil Building [17],
Chongqing’s climate is categorized as a hot summer/cold winter zone, resulting in significant
cooling and heating demands for its buildings.
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2.3. Data Preparation
2.3.1. Using Basic Building Data as Control Variables

Differing from on-site measurements, this research obtained highly precise basic build-
ing data from construction blueprints, exclusively sourced from the Infrastructure Office of
Chongqing University. This approach significantly assures the authenticity, accuracy, and reli-
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ability of the data. Previous studies in the literature indicate that the physical characteristics
of buildings are closely related to BEC [45–47]. Therefore, exploring the significance of urban
morphological variables at the neighborhood scale on BEC requires consideration of the physical
features of buildings. Seven key building attributes were selected as control variables: year built
(YB), contiguity type (CT), NF, OA, FA, BSC, and total number of dwelling units (TDU). These
control variables can adequately reflect the morphological and performance characteristics of
the buildings themselves. Specifically, YB signifies the construction period, reflecting envelope
structure characteristics and heating system efficiency. Evolving building energy regulations in
China have influenced residential envelope design over different periods,1 resulting in some
consistency in envelope structure characteristics within the same era [23,51]. Regarding building
morphology, CT is a significant factor influencing BEC [52]. Housing types were categorized
into detached, row, and staggered layouts [10]. A larger BSC implies a greater surface area for
the same building volume, leading to increased heat dissipation and higher BEC, making it
less energy efficient. Additionally, previous studies in the literature have widely reported the
significant impact of residential building area on household electricity consumption, with larger
residential areas generally leading to higher absolute electricity usage [10,25,53,54]. Therefore,
variables such as the NF, FA, and TDU are also considered. We selected OA as a supplement to
building morphology, as south-facing buildings (in the Northern Hemisphere) typically receive
more sunlight, which aids in passive solar heating during winter but may increase cooling loads
in summer. For detailed descriptions of these variables, refer to Table 1.

Table 1. Description of selected variables.

Data Raw Data Unite Description Formula (or Data Processing) Data Source References

Energy use intensity

Annual electricity
usage (EUIA) kWh/m2

Annual electricity
consumption per unit area
of sample buildings.

EUIA = (EA/12)/AGF ,
where EA is the total annual
electricity consumption, and
AGF is the gross floor area.

Chongqing
University Energy
Conservation Office

[24]

Summer electricity
usage (EUIS) kWh/m2

Summer electricity
consumption per unit area
of sample buildings.

EUIS = (ES/3)/AGF , where
ES is the total summer
electricity consumption.

Chongqing
University Energy
Conservation Office

[24]

Winter electricity
usage (EUIW) kWh/m2

Winter electricity
consumption per unit area
of sample buildings.

EUIW = (EW /3)/AGF ,
where EW is the total winter
electricity consumption.

Chongqing
University Energy
Conservation Office

[24]

Basic building
information

Year built (YB) Year Sample buildings’ age
YB = Yi − YC , where Yi is the
current year, and YC is the
construction year.

Infrastructure Office
of Chongqing
University

[55]

Number of floors
(NF) Story Number of floors in the

sample buildings.

Count the number of floors
for sample buildings based on
the construction
design drawings.

Infrastructure Office
of Chongqing
University

[11,12]

Contiguity type (CT) - Contiguity type of the
sample buildings.

Determined based on sample
building plan form: “0”
represents a detached house
with no contiguity; “1”
represents a row house with
one common boundary; “2”
represents a staggered house
with two boundaries.

Infrastructure Office
of Chongqing
University

[10]

Orientation angle
(OA)

◦ Orientation angle of the
sample buildings.

The building facing directly
south is considered 0 degrees.
Calculate the angle formed
between the building’s
orientation and due south.

Infrastructure Office
of Chongqing
University

[56,57]

Floor area (FA) m2 Average floor area of the
sample buildings.

Calculate the average floor
area for sample buildings
based on the construction
design drawings.

Infrastructure Office
of Chongqing
University

[53]

Building shape
coefficient (BSC) m−1

The ratio of the exterior
surface area in contact with
outdoor air to the
enclosed volume.

BSC =
(

A f + Ar
)
/V, where

A f is the facade area, Ar is the
roof area, and V is
the volume.

Infrastructure Office
of Chongqing
University

[58,59]

Total number of
dwelling units
(TDU)

-
Number of households
inside the
sample buildings.

Conduct a survey of
residential households in
sample buildings based on the
construction design drawings.

Infrastructure Office
of Chongqing
University

[25,54]



Land 2024, 13, 1683 7 of 24

Table 1. Description of selected variables.

Data Raw Data Unite Description Formula (or Data Processing) Data Source References

Urban
morphology
information

Open space ratio
(OSR) Ratio

Reflecting the degree of
land development for
the buildings.

OSR = 1 − A f p/Ad , where
A f p is the footprint area, and
Ad is the sample district
(buffer zone) area.

Gaode map [60]

Floor area ratio
(FAR) Ratio

Reflecting the openness of
the two-dimensional space
around the buildings.

GSR = Ag f /Ad , where Ag f is
the sum of the areas of all
building floors.

Gaode map [60]

Total wall surface
area (WSA) km2

Sum of the exposed surface
area to air of all buildings
within the plots, excluding
the sample buildings.

WSA = ∑n
i=1 A f i + Ari ,

where A f i is the facade area of
building i in the buffer zone,
and Ari is the roof area of
building i in the buffer zone.

Gaode map [23]

Green space ratio
(GSR) Ratio Reflecting the level of

green construction.

GSR = Agg/Ad , where Agg is
the gross green space area in
the buffer zone.

Urban green space
dataset [25]

2.3.2. Utilizing Urban Morphology Data as Independent Variables

In contrast to flat cities with grid-like road networks, Chongqing’s buildings have a
fragmented spatial layout [61]. Therefore, most of the old residential buildings constructed
before 2000 in Chongqing do not have specific regular patterns or clusters. Previous studies
in other climatic regions typically define the scale of block morphology within a range
of 50 to 200 m [25,62]. Within this range, urban morphology can significantly influence
the urban thermal environment, which is a primary factor contributing to differences in
building energy consumption. To analyze the surrounding urban morphology, this study
created circular buffers around the sample buildings with radii ranging from 50 to 200 m to
assess the impact of urban morphology at various spatial scales in Figure 3. Vector graphic
information, including building base outlines and the number of floors, was extracted from
the Gaode Map. Subsequently, graphic corrections were conducted using GIS to obtain
morphological data for the building cluster. Green morphology data were sourced from the
high-resolution Urban Green Space dataset (UGS-1m), generated through deep learning on
Google Earth imagery [63]. This 1 m resolution data provided enhanced accuracy.
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This study employed four indicators—open space ratio (OSR), floor area ratio (FAR),
total wall surface area (WSA), and green space ratio (GSR)—to describe urban morphology,
as they influence heat island intensity, ventilation efficiency, and radiation effects, conse-
quently affecting BEC [3]. OSR reflects two-dimensional space openness around buildings,
with higher values indicating lower horizontal compactness. FAR indicates overall land
development level, with higher values indicating greater building density nearby. WSA
captures three-dimensional building group morphology, especially vertical compactness,
while GSR reflects green construction’s impact on the microclimate and BEC. The specific
formulas for these urban morphology indicators are detailed in Table 1.

2.3.3. Computing Building Energy Consumption as the Dependent Variable

This study obtained prior authorization from the Chongqing University Energy Con-
servation Office, enabling us to access water, electricity, and gas consumption data for all
users (5521 households). The heating system in China differs significantly from those in
other countries worldwide. In the 1950s, the central government established a north–south
heating boundary line across the nation, with regions south of this line refraining from cen-
tralized heating systems. Despite the cold and humid winters in Chongqing, the centralized
heating system did not gain traction, especially in these old residential buildings. Therefore,
in this study, the samples still rely on electricity as their primary fuel source, using air
conditioning predominantly for heating in winter. Summer electricity consumption was
calculated based on household electricity usage data from June to September 2015, while
winter electricity consumption was determined using data from December 2014 to February
2015. Since 2014, these old buildings and their surrounding environments have remained
unchanged, ensuring that the electricity consumption, environmental, and building data
used in this study are fully compatible.

Traditionally, most studies use electricity consumption per unit building area or volume
to assess building energy usage intensity (EUI). Considering that the building heights of most
sampled structures before 2000 primarily ranged from 2.8 to 3 m, and in light of the statistical
consistency in the number of occupants per unit of building area, the average monthly electricity
consumption per unit of building area was employed as the indicator for EUI. Its credibility and
reliability have been thoroughly substantiated in prior research [64].

Datasets often contain missing values and outliers. This study replaced missing values
with the mean value of the respective attribute [65]. Additionally, outliers can distort
research results. We used the box plot method, which is suitable for detecting outliers
in samples with unknown distribution shapes [66]. Outliers were categorized as mild or
extreme, as shown in Figure 4. To mitigate the impact of individual extreme users on BEC
while ensuring sample representativeness, extreme outliers were identified and removed.
Table 2 provides descriptive statistics for all variables after processing.

To further validate the processed data, this study categorized the construction years
of older residential buildings into four periods, 1949~1985, 1986~1992, 1993~2000, and
2001~2010, based on the release of China’s energy-saving design standards. The statistics
of EUI for different construction periods are depicted in Figure 5. The order of median and
mean values, from highest to lowest, follows this pattern: Summer energy usage intensity
(EUIS) > Winter energy usage intensity (EUIW) > Annual energy usage intensity (EUIA),
consistent with the BEC pattern in hot summer/cold winter zones. Comparing the four
periods, buildings constructed between 1949 and 1985 exhibit significantly higher median
and mean energy intensity values. As mentioned in Section 2.3.1, energy efficiency was not
a consideration in the design of buildings during this period. Subsequently, energy-saving
requirements improved with each iteration of China’s building energy-saving regulations,
leading to continuous enhancements in building envelope thermal insulation performance.
Consequently, EUIA, EUIS, and EUIW all exhibit a clear decreasing trend over time. These
analyses affirm the credibility and reliability of the processed dataset regarding BEC.
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Table 2. Descriptive statistics of the variables.

Variable Type Variables Mean Standard
Deviation Minimum Maximum

Dependent Variable
EUIA (kWh/m2) 2.01 0.62 0.44 4.26
EUIS (kWh/m2) 2.87 0.96 0.57 6.20
EUIW (kWh/m2) 2.14 0.76 0.51 4.68

Control Variable

YB (year) 38.79 10.84 20 70
NF (number) 7.21 4.53 2.00 32.00
CT 0.87 0.67 0 2
OA (◦) 20.50 19.74 0 87.00
FA (m2) 354.07 224.33 94.35 1274.77
BSC (m−1) 0.39 0.08 0.15 0.63
TDU (number) 40.60 35.49 4 256

Urban Morphology Variable

OSR in 50 m buffer zone (%) 0.75 0.07 0.33 0.87
FAR in 50 m buffer zone (%) 2.92 2.18 0.96 13.39
WSA in 50 m buffer zone (km2) 0.04 0.02 0.01 0.10
GSR in 50 m buffer zone (%) 0.49 0.18 0.03 0.92
OSR in 100 m buffer zone (%) 0.76 0.05 0.62 0.90
FAR in 100 m buffer zone (%) 3.34 1.34 0.60 7.16
WSA in 100 m buffer zone (km2) 0.17 0.06 0.03 0.33
GSR in 100 m buffer zone (%) 0.47 0.14 0.17 0.84
OSR in 150 m buffer zone (%) 0.76 0.04 0.67 0.88
FAR in 150 m buffer zone (%) 3.81 1.29 1.25 7.09
WSA in 150 m buffer zone (%) 0.40 0.13 0.16 0.77
GSR in 150 m buffer zone (%) 0.44 0.11 0.22 0.77
OSR in 200 m buffer zone (%) 0.76 0.03 0.69 0.86
FAR in 200 m buffer zone (%) 3.93 1.06 1.80 6.38
WSA in 200 m buffer zone (km2) 0.74 0.20 0.36 1.25
GSR in 200 m buffer zone (%) 0.43 0.08 0.28 0.62
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Figure 5. Energy consumption intensity of the sample residential buildings at different time periods.
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2.4. Regression Models

To ensure the appropriateness and robustness of the model, multiple linear regression
(MLR), spatial lag models (SLMs), and spatial error models (SEMs) were selected to quantify
the impact of urban morphology on BEC. These are the most favored regression algorithms
in related research [25,39,67].

Spatial autocorrelation refers to the potential interdependence among observed data
within the same distribution area [68,69]. Using statistical models that do not account for the
effects of spatial autocorrelation may lead to biased results and erroneous inferences [70],
which has been a limitation in previous energy research [71]. Hence, considering the
possible presence of spatial autocorrelation in EUI, we calculated the Moran’s I statistic for
the dependent variable, as expressed in Equation (1):

Moran′s I =
∑n

i=1 ∑m
j=1 wij(xi − x)

(
xj − x

)
S2∑n

i=1 ∑m
j=1 Wij

(1)

where xi and xj represent the observed values of a specific attribute within spatial units i
and j, respectively, S2 is the variance, and Wij is the spatial weighting values, which form
the W matrix (n*n).

This study employs Geoda and SPSS to execute our model, following these key
steps. First, we select appropriate variables. Next, we execute multiple linear regression
(MLR) and scrutinize model collinearity using Pearson correlation analysis and variance
inflation factor (VIF) assessment. We then determine statistical significance regarding
spatial autocorrelation based on Moran’s I value. Following this, we assess the need for a
spatial regression model based on the results of the Breusch–Pagan and Koenker–Bassett
tests, if non-significant. After that, we evaluate the performance of the Spatial Lag Model
(SLM) and Spatial Error Model (SEM) via LM comparison. Finally, we select the optimal-
performing model for further analysis. Detailed descriptions of the three regression models
are presented as follows.

The formula for the MLR can be expressed as Equation (2):

EUI = β0 + β1x1 + β2x2 + . . . + βpxp + ε (2)

where EUI is the energy use intensity for summer, winter, and all year round, β0 is the
general model intercept, βi is the regression coefficient (i = 1, 2, . . ., p), xi is the input
variables, and ε is the error term.

If there exists significant spatial autocorrelation in the dependent variable, it becomes
imperative to engage in spatial regression analysis. The SLM is represented as Equation (3):

EUI = ρWEUI + βX + ε, ε ∼
(

0, δ2 In

)
(3)

where ρ is the spatial lag coefficient, WEUI is the spatial weights matrix, X is the matrix of
independent variables, β is the vector of coefficients for the independent variables, and ε is
the stochastic error.

The SEM is depicted as Equation (4):

EUI = βX + λWµ + ε, ε ∼
(

0, δ2 In

)
(4)

where λ is the spatial error factor, and Wµ is the spatial weight matrix.
To facilitate comparative analysis, the regression models for various urban scales (50 m,

100 m, 150 m, and 200 m buffers) are labeled as Model 1, Model 2, Model 3, and Model 4,
respectively. By contrasting these models with the base model, which does not account for
spatial morphology, we can objectively evaluate the spatio-temporal heterogeneity effects
of urban morphology on BEC.
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3. Results and Discussion
3.1. Results of Multicollinearity Analysis

This study employs Pearson correlation analysis to initially identify linear relationships
between pairs of variables (Figure 6). Pearson correlation coefficient r quantifies the degree
of association, with r greater than 0 indicating a positive relationship and r less than 0
indicating a negative relationship. Overall, for Model 1, Model 2, Model 3, and Model
4, the absolute range of Pearson’s r values falls between 0 and 0.6, with proportions of
92.8%, 94.5%, 92.8%, and 92.8%, respectively. This suggests that only a small subset of
pairwise variables exhibits strong localized correlations. However, it is essential to note
that the correlation between two independent variables does not comprehensively address
multicollinearity. Therefore, a more comprehensive assessment of multicollinearity is
conducted using the VIF. Table 3 presents the results of the multicollinearity tests for each
model, revealing that all variables across the four model categories have VIF values well
below the threshold of 10. Combining the outcomes from both analyses, it is concluded
that there is no significant multicollinearity among pairwise variables in the variable pool.
Consequently, no variables need to be removed at this stage of our investigation.
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Table 3. Collinearity test results.

Variables
Model 1 (50 m Buffer

Zone)
Model 2 (100 m Buffer

Zone)
Model 3 (150 m Buffer

Zone)
Model 4 (200 m Buffer

Zone)

TOL VIF TOL VIF TOL VIF TOL VIF

YB 0.362 2.760 0.348 2.871 0.356 2.811 0.316 3.166
NF 0.167 5.984 0.178 5.606 0.172 5.820 0.176 5.685
CT 0.896 1.116 0.868 1.153 0.860 1.162 0.867 1.154
OA 0.876 1.142 0.847 1.181 0.774 1.292 0.581 1.722
FA 0.193 5.193 0.194 5.144 0.200 4.995 0.189 5.277

BSC 0.435 2.301 0.447 2.239 0.418 2.394 0.392 2.548
TDU 0.118 8.445 0.119 8.429 0.118 8.474 0.117 8.542
OSR 0.348 2.878 0.419 2.389 0.331 3.023 0.286 3.497
FAR 0.143 7.003 0.156 6.425 0.133 7.531 0.084 7.822
WSA 0.201 4.975 0.245 4.076 0.182 5.488 0.150 6.673
GSR 0.539 1.857 0.569 1.757 0.892 1.121 0.430 2.326

Note: TOL means tolerance. VIF means variance inflation factor.

3.2. Regression Model Performance Comparison and Selection

According to Figure 7a–c, global Moran’s I calculation results corresponding to EUIA,
EUIS, and EUIW are 0.458, 0.371, and 0.494, respectively. Following the Breusch–Pagan test
and Koenker–Bassett test, it is observed that all model p-values exceed 0.05. This signifies a
significant spatial autocorrelation for EUIA, EUIS, and EUIW, implying a potential risk of
error when employing MLR models for regression analysis. Therefore, the SLM and SEM
are utilized to address this issue [61].
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To select models with superior explanatory power and fit, this paper conducted a
statistical evaluation of all cross-regression results for SLM and SEM. Table 4 summarizes
statistically significant indicators for spatial regression performance comparison. Notably,
the LM test emphasizes that all 12 regression results of SLM exhibit significant performance.
Conversely, for EUIA, SEM’s Model 2 and Model 3 regression results lack significance.
Furthermore, the overall significance of SEM is notably lower than that of SLM for EUIS. In
addition, SLM, as a whole, boasts higher LM values compared to SEM, signifying superior
model fitting and explanatory capabilities. Finally, when comparing the models using the
Akaike Information Criterion (AIC) and Schwarz Criterion (SC), lower AIC and SC values
suggest a model’s ability to more accurately represent reality [72]. Consequently, SLMs
with smaller AIC values demonstrate higher precision in comparison to SEMs. Overall,
SLM was selected to investigate the influence of urban morphological variables on EUI.
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Table 4. Comparison of regression results between SLM and SEM.

Energy Consumption Model Type
LM Value SC AIC

SLM SEM SLM SEM SLM SEM

EUIA

Model 1 (50 m buffer zone) 20.69 ** 5.17 * 916.99 921.20 879.12 886.25
Model 2 (100 m buffer zone) 17.40 ** 3.59 914.08 917.61 876.21 882.66
Model 3 (150 m buffer zone) 17.93 ** 3.33 910.22 914.62 872.35 879.67
Model 4 (200 m buffer zone) 21.31 ** 7.07 ** 913.77 915.70 875.90 880.75

EUIW

Model 1 (50 m buffer zone) 28.80 ** 11.80 ** 601.76 603.60 563.89 568.65
Model 2 (100 m buffer zone) 20.99 ** 7.55 ** 597.53 599.97 559.67 565.01
Model 3 (150 m buffer zone) 25.80 ** 9.85 ** 594.40 599.02 556.53 564.07
Model 4 (200 m buffer zone) 35.13 ** 15.71 ** 600.10 601.06 562.24 566.11

EUIS

Model 1 (50 m buffer zone) 12.71 ** 3.97 * 672.39 672.51 634.53 637.56
Model 2 (100 m buffer zone) 14.58 ** 5.32 * 673.48 673.12 635.62 638.17
Model 3 (150 m buffer zone) 14.38 ** 5.72 * 667.07 667.91 629.20 632.96
Model 4 (200 m buffer zone) 18.88 ** 14.05 ** 669.58 669.23 631.71 634.29

Note: (1) LM means Lagrange multiplier. SC means Schwarz criterion. AIC means Akaike info criterion.
(2) * p < 0.05, ** p < 0.01. (3) The darker the color the better the performance of the model.

3.3. Regression Results

After including spatial lag variables within the control variables, Tables 5–7 display
the regression results for EUIA, EUIS, and EUIW. Each set of regressions includes five SLMs
that examine the relationships between various scales of urban morphology and BEC. In
each set of regression results, the base model includes only basic building variables. Models
1, 2, 3, and 4 then add urban morphological indicators within 50 m, 100 m, 150 m, and
200 m buffer zones as explanatory variables. Overall, the inclusion of urban morphological
indicators leads to improved model fit for EUIA, EUIS, and EUIW.

Table 5. Comparison of regression results from spatial lag models of EUIA.

Variable
Base Model Model 1

(50 m Buffer Zone)
Model 2

(100 m Buffer Zone)
Model 3

(150 m Buffer Zone)
Model 4

(200 m Buffer Zone)

Coefficient z-Value Coefficient z-Value Coefficient z-Value Coefficient z-Value Coefficient z-Value

Spatial lag 0.419 ** 4.843 0.366 ** 4.069 0.338 ** 3.661 0.306 ** 3.219 0.306 ** 3.109
Constant −73.811 −0.540 −4.455 −0.031 27.860 0.191 6.592 0.045 57.308 0.709
YB 0.053 0.764 0.019 0.260 0.021 0.281 0.036 0.504 0.003 0.042
NF −0.716 ** −2.983 −0.707 ** −2.755 −0.575 * −2.338 −0.736 ** −2.970 −0.685 ** −2.766
CT 1.621 * 2.153 1.853 * 2.441 1.699 * 2.213 1.684 * 2.232 1.615 * 2.118
OA 0.042 1.655 0.061 * 2.357 0.058 * 2.279 0.014 0.526 0.040 1.301
FA −0.020 ** −4.182 −0.023 ** −4.772 −0.022 ** −4.618 −0.021 ** −4.606 −0.022 ** −4.463
BSC 28.209 ** 3.194 33.472 ** 3.621 31.790 ** 3.539 32.210 ** 3.527 32.506 ** 3.409
TDU 0.107 ** 2.756 0.122 ** 3.132 0.111 ** 2.908 0.118 ** 3.097 0.118 ** 3.060
OSR −2.376 −0.216 −26.265 −1.624 −46.585 * −2.146 −40.176 −1.479
FAR 0.550 0.958 0.636 0.719 3.542 ** 3.366 2.252 1.423
WSA −62.660 −1.092 8.590 0.577 26.066 ** 3.063 7.464 1.227
GSR −6.492 −1.779 −9.361 * −2.020 −8.724 * −1.988 −11.919 −1.356
R-squared 0.433 0.450 0.458 0.472 0.457
LL −429.441 −426.561 −425.106 −423.176 −424.951

Note: (1) LL means log likelihood; (2) * p < 0.05, ** p < 0.01.

Table 6. Comparison of regression results from spatial lag models of EUIS.

Variable
Base Model Model 1

(50 m Buffer Zone)
Model 2

(100 m Buffer Zone)
Model 3

(150 m Buffer Zone)
Model 4

(200 m Buffer Zone)

Coefficient z-Value Coefficient z-Value Coefficient z-Value Coefficient z-Value Coefficient z-Value

Spatial lag 0.385 ** 4.261 0.330 ** 3.522 0.337 ** 3.570 0.330 ** 3.486 0.325 ** 3.355
Constant 21.271 0.381 40.742 0.688 71.482 1.178 53.102 0.895 75.503 1.213
YB −0.006 −0.200 −0.016 −0.545 −0.030 −0.985 −0.118 0.604 −0.033 −1.056
NF −0.275 ** −2.818 −0.288 ** −2.752 −0.237 * −2.335 −0.284 ** −2.801 −0.276 ** −2.737
CT 0.826 ** 2.690 0.946 ** 3.049 0.846 ** 2.685 0.971 ** 3.146 0.841 ** 2.700
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Table 6. Cont.

Variable
Base Model Model 1

(50 m Buffer Zone)
Model 2

(100 m Buffer Zone)
Model 3

(150 m Buffer Zone)
Model 4

(200 m Buffer Zone)

Coefficient z-Value Coefficient z-Value Coefficient z-Value Coefficient z-Value Coefficient z-Value

OA 0.019 1.856 0.026 * 2.505 0.024 * 2.276 0.011 1.023 0.025 * 1.966
FA −0.007 ** −3.796 −0.009 ** −4.362 −0.008 ** −4.097 −0.008 ** −4.250 −0.009 ** −4.361
BSC 8.456 * 2.362 10.935 ** 2.915 9.393 ** 2.534 9.503 ** 2.555 10.549 ** 2.727
TDU 0.048 ** 3.021 0.054 ** 3.395 0.051 ** 3.205 0.052 ** 3.322 0.056 ** 3.579
OSR 2.121 0.475 −3.632 −0.551 −5.264 −0.617 0.046 0.004
FAR 0.259 1.107 0.070 0.192 0.919 * 2.227 0.351 0.555
WSA −21.772 −0.929 −1.802 −0.295 6.439 * 1.898 0.576 0.236
GSR 2.392 1.618 2.776 1.479 −4.695 ** −2.560 5.168 1.450
R-squared 0.377 0.395 0.390 0.418 0.406
LL −306.87 −306.452 −304.808 −301.600 −302.857

Note: (1) LL means log likelihood; (2) * p < 0.05, ** p < 0.01.

Table 7. Comparison of regression results from spatial lag models of EUIW.

Variable
Base Model Model 1 (50 m Buffer

Zone)
Model 2 (100 m Buffer

Zone)
Model 3 (150 m Buffer

Zone)
Model 4 (200 m Buffer

Zone)

Coefficient z-Value Coefficient z-Value Coefficient z-Value Coefficient z-Value Coefficient z-Value

Spatial lag 0.527 ** 6.622 0.454 ** 5.255 0.394 ** 4.285 0.387 ** 4.210 0.403 ** 4.307
Constant −60.536 −1.425 −30.816 −0.685 −18.328 −0.402 −43.028 −0.953 −32.874 −0.687
YB 0.034 1.575 0.020 −0.685 0.016 0.697 0.034 1.536 0.025 1.051
NF −0.141 * −1.900 −0.121 −1.522 −0.095 −1.257 −0.145 −1.881 −0.131 −1.689
CT 0.210 0.902 0.271 1.157 0.151 0.641 0.160 0.683 0.195 0.820
OA 0.004 0.530 0.011 1.333 0.008 0.989 −0.006 −0.743 0.002 0.199
FA −0.003 * −2.512 −0.005 ** −3.223 −0.004 ** −2.796 −0.007 ** −2.796 −0.004 ** −2.664
BSC 5.526 * 1.94 7.001 * 2.474 6.620 * 2.394 6.251 * 2.223 6.441 * 2.179
TDU 0.017 1.396 0.022 1.832 0.018 1.514 0.020 1.663 0.019 1.553

OSR −2.550 −0.746 −9.249 −1.837 −19.288
** −2.814 −13.746 −1.635

FAR 0.106 0.596 0.287 1.041 1.256 ** 3.733 0.699 1.426
WSA −17.379 −0.974 5.447 1.169 9.377 ** 3.486 2.806 1.482
GSR 2.547 * 2.213 3.454 * 2.347 −2.021 −1.448 3.872 1.394
R-squared 0.413 0.432 0.442 0.454 0.432
LL −272.672 −268.946 −266.83 −265.266 −268.119

Note: (1) LL means log likelihood; (2) * p < 0.05, ** p < 0.01.

3.3.1. Annual and Seasonal Regression Results for the Base Model

The winter electricity consumption model outperforms the summer model in terms of
R-squares. Interestingly, this observation contrasts with previous research findings in hot
summer/cold winter zones [24]. The limitations of the latter study were primarily due to its
reliance on MLR without accounting for spatial autocorrelation. As presented in Figure 7c,
the global Moran’s I of EUIW is the highest among three periods, registering at 0.494. Un-
doubtedly, this significantly inflates the correlation coefficients of the spatial lag variables,
thereby influencing the model fit to some extent. According to Tables 5–7, it becomes
evident that the spatial lag variables for EUIA, EUIS, and EUIW exhibit highly significant
impacts on the dependent variable (p < 0.01). Notably, during winter, the spatial lag variable
demonstrates the highest correlation coefficient at 0.527, whereas for annual and summer
models, it is 0.419 and 0.385, respectively. This not only explains the observed differences
but also emphasizes the strength of this study. Specifically, SLR effectively mitigates spatial
autocorrelation issues, resulting in more plausible and reasonable regression results.

Building upon this analysis, the base models are further assessed from a significance
perspective. It is observed that, aside from spatial lag variables, only three variables
exhibit significance in the winter base model, whereas the summer base model includes
five significant variables. In hot summer/cold winter zones, cooling energy consumption
remains the dominant energy demand, making it more susceptible to the influence of
basic building data (control variables). Specifically, variables like NF, CT, FA, BSC, and
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TDU emerge as the key factors affecting residential electricity consumption, aligning with
established theories [24,25,73–75].

In this study, both YB and OA do not exhibit significant impacts on residential electric-
ity consumption. This finding aligns with the results of Ref. [24], which primarily focused
on newer buildings. By contrast, our study primarily investigates older buildings, with 95%
of the samples constructed before 2000. During this period, differences in insulation and
heat retention among buildings were relatively limited, as shown in Figure 5. Furthermore,
our analysis indicates that roughly 70% of OA values were less than 30◦, signifying that
the majority of buildings primarily faced south. The limited variability among the samples
contributes to the lack of statistical significance in the regression results for these variables.

3.3.2. Spatial Heterogeneity in the Impact of Urban Morphology on Energy Consumption

In this subsection, we investigate the heterogeneous characteristics of the impact of
spatial morphology at different buffer scales on BEC during the same timeframe.

Figure 8 provides a statistical overview, with the line portion representing urban
morphology variables and the bar section representing control variables in all models.
Comparing control variables across the base models within the same group reveals mini-
mal differences in these significance indicators, mostly staying within one indicator. This
similarity, in alignment with the results of Ref. [25], illustrates the dependability of these
comparative models. Overall, the count of statistically significant urban morphology vari-
ables exhibits significant spatial variation, even within the same timeframe. Consequently,
the indiscriminate use of a single range for all indicators in spatial morphology regression
analysis could lead to inaccurate results and potentially flawed conclusions.
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Figure 8. The number variation trend in building energy consumption impacting variables under
different buffers.

As shown in Tables 5–7, the best model fit for EUIA, EUIS, and EUIW is achieved
with the 150 m buffer zone. A higher log likelihood (LL) value, indicating a larger log
likelihood function, reflects greater model regression accuracy. During the entire year,
all urban morphology variables in Model 3 exhibit significant correlations with BEC, as
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depicted in Figure 9. Simultaneously, during seasonal periods, three out of the four urban
morphology variables demonstrate significant correlations with BEC. However, when the
buffer zone spatial scale reaches 200 m, none of the urban morphology variables for any
time period exhibit statistical significance. Thus, it is evident that the effective influence of
urban morphology on BEC in this study primarily occurs within a 150 m scale range.
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Figure 9. Comparison of the significance of urban morphology variables under different buffers.

Nevertheless, determining an appropriate spatial scale for building energy regression
modeling remains challenging. Ref. [25] found that urban morphology significantly influ-
ences residential energy consumption within 50 m and 100 m radii in their study of Seattle.
Furthermore, research from colder regions indicated that a 100 m neighborhood range had
the most significant impact on BEC [34]. A more interesting result comes from Singapore,
where Ref. [33] discovered that increasing the buffer zone size did not exhibit clear trends
among variables, suggesting that spatial distance may not affect the model fit significantly.
Indeed, regional disparities in climate, spatial morphology, energy consumption character-
istics, and user behavior lead to significant variations in research findings. This underscores
the context-specific nature of spatial morphology’s influence on BEC across different urban
areas. Blindly applying research results from one region to another for BEC modeling or
policy development is not scientifically sound.

Incorporating insights from prior research, urban morphology indicators within a
150 m buffer zone can be employed to conduct spatial visualization modeling of BEC in
old residential buildings on a local university campus. While this approach undeniably
enhances the accuracy of BEC prediction models to some extent, it remains insufficient, as it
might overlook significant indicators. In this study, for instance, GSR exhibited significance
within 50~100 m range during the winter season, rather than within a 150 m radius.
Additionally, over the course of the year, GSR displayed notable correlations with BEC
within a 100 m buffer zone, and its z-value surpasses that of Model 3 (150 m), indicating
increased significance. These variables fall outside the scope of a 150 m buffer zone. Lastly,
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in terms of EUIS, OSR failed to exhibit statistical significance within all buffer zone ranges.
Prior research has emphasized that the inclusion of non-significant variables can impact
model regression performance [23].

In summary, prior research has typically utilized a single buffer zone for regression
analysis, which is inherently flawed. On one hand, while previous studies have demon-
strated the optimal buffer zone size for fitting models to some extent, the heterogeneity in
the impact of urban morphology across different regions implies that such findings cannot
be universally applied. On the other hand, the significance of each urban morphological
variable does indeed vary across different buffer zones, indicating that their spatial in-
fluence on BEC differs. This factor should be taken into account in the process of UBEC
regression modeling.

3.3.3. Temporal Heterogeneity in the Impact of Urban Morphology on Energy Consumption

In this subsection, we explore the diverse impacts of urban morphology indicators
within a consistent-scale buffer zone on BEC across different time periods.

Firstly, significant disparities are evident among urban morphology indicators (Figure 8).
Within a 150 m buffer zone, the number of significant variables varies impacting EUIA, EUIS,
and EUIW. Even when the significant variables are consistent between summer and winter,
their constituent variable types remain distinct. OSR lacks significance during summer but
exhibits an opposite pattern during winter. Conversely, GSR lacks significance during winter
but shows the opposite trend during summer. Furthermore, WSA and FAR significantly
impact EUIA, EUIS, and EUIW positively, while OSR consistently demonstrates a negative
correlation. This suggests that higher OSR and lower FAR and WSA lead to reduced BEC.
These indicators are closely associated with urban built environment intensity. As seen in
Figure 6, Pearson correlation analysis reveals that cities with higher spatial intensity tend to
have looser OSR, denser FAR, and larger WSA. Our findings support the idea that greater built
environment intensity is positively correlated with BEC, in line with existing theories [24,76].
Chongqing, a high-density mountainous city, experiences exacerbated regional heat island
effects [77], resulting in increased indoor cooling energy use during the summer. Notably,
we also observe a significant negative impact of high-intensity built environments on EUIW,
consistent with findings from Ref. [19] in a similar climate zone. Nevertheless, previous
research has also suggested that higher-density communities are linked to reduced winter
heat loss [78]. Differences may arise from variations in construction intensity near the samples.
Unlike U.S.-based studies primarily focusing on single-family residences, our samples consist
of slab and tower apartments in densely populated mountainous urban communities. During
the winter, more compact and densely built spaces, influenced by topography, may increase
mutual shading, substantially reducing the solar heating effect of buildings.

Furthermore, even the same indicators may simultaneously manifest entirely distinct
positive and negative effects. Specifically, GSR within a 100 m buffer zone demonstrates a
significant negative correlation with EUIA, yet it manifests a significant positive correlation
with EUIW. This interesting phenomenon underscores the dual impact of vegetation on
BEC [25]. During summer, trees provide shading, reducing direct sunlight exposure on
building surfaces [79]. Moreover, the evaporative cooling effect lowers ambient tempera-
tures near buildings [80], significantly decreasing BEC in hot summer/cold winter zones.
However, during winter, the tree canopy may obstruct the penetration of warm sunlight
to building exteriors. This implies that the building’s walls and roof cannot benefit from
the heating effect of sunlight, increasing the workload of the heating system. From an
annual perspective, a study from a hot summer/cold winter zone aligns with our find-
ings [24], as, in these areas, EUIS dominates. Additionally, a case study in Harbin, China,
supports this perspective [23], confirming that areas with less greenery tend to experience
warmer winters.

In summary, spatial morphology indeed exerts heterogeneous effects on BEC across
distinct temporal segments. This heterogeneity can be categorized into three facets. First,
despite identical spatial scales, the number of significant urban morphology indicators



Land 2024, 13, 1683 18 of 24

varies across different time periods. Second, even when the quantity of significant indicators
remains constant, their types differ between various time periods. Third, the direction and
pathway of their effects vary across different time periods, consistent with the number and
types of significant indicators.

3.4. Proposition and Application of a Three-Tiered Framework for Planning Processes

Section 3.3 provides a detailed demonstration of how urban morphology indeed exerts
spatio-temporal heterogeneity effects on BEC. This phenomenon poses challenges to urban
building energy model construction, as users must make inferences about unknown model
parameters. This challenge is compounded by the diversity in building project categories
and the inherent complexity and uncertainty in urban morphology parameters [1]. In larger
urban contexts, this uncertainty can be amplified [81]. The spatio-temporal heterogeneity
in the influence of urban morphology on BEC constitutes a significant source of complexity
in data-intensive processes. Therefore, it is vital to identify the most influential attributes to
provide effective environmental and cost feedback and simplify urban building decision
making. This paper proposes a context-specific, region-level urban energy consumption
modeling integration framework, aiming to establish a parameter repository connecting
morphological indicators, spatial boundaries, and energy consumption periods across
diverse regions. It facilitates precise modeling and visual comparative analysis of UBEC,
enabling urban planners to coordinate and manage key initiatives.

Figure 10 illustrates this framework, comprising three components: macro-level urban
project decomposition, the construction of a key urban morphology indicator database, and
spatial BEC comparisons within a specific context.
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Firstly, due to the multitude of factors affecting UBEC, macro-level project decom-
position is necessary. This ensures consistency in background variables while setting
a specific scenario. After constructing a modeling integration platform for each region,
classification is based on local building characteristics, forming a crucial foundation for
precise modeling. Figure 10 shows three standard criteria for specialized classification
modeling: functional types (residential, commercial, office, industrial), historical character-
istics (old neighborhoods, high-tech zones), and user characteristics (teachers, students).
This paper primarily focuses on specialized analysis of old residential buildings within
campus settings, with teaching staff as users. As research on UBEC advances, specialized
energy consumption analysis within specific scenarios gains traction. Similarly, in the
context of campus buildings, Ref. [28] places heightened emphasis on the impact of urban
morphology on dormitory energy consumption characteristics, with students as users.
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Therefore, if target projects in a region reach a certain scale and have statistical significance,
these classification criteria can be flexibly configured and combined. As information on
specialized energy consumption models of various types continues to expand, the regional
integration platform will progressively improve, prioritizing the coverage of buildings
with similar attributes.

Secondly, from the perspectives of spatial boundaries, energy consumption periods,
and morphological indicators, the construction of a database of key urban morphology
indicators for different projects is initiated. By eliminating spatial autocorrelation and
conducting multi-model comparative experiments, key urban morphology indicators in
different periods and their primary impact boundaries can be identified. The creation of
the 3D spectrum enables precise observation of how urban morphology impacts specific
objects, facilitating the balancing of energy consumption characteristics in different periods
and targeted optimization of project boundaries within urban renewal plans.

Finally, a model for predicting regional BEC is constructed to enable spatial visual
comparisons of specialized energy consumption. Following the identification of key pa-
rameters influencing BEC in the second step, along with their corresponding significant
periods and spatial scales, methods such as typology, multivariate regression, and machine
learning can be employed for UBEC prediction [51,82,83]. This assists energy managers
in accurately understanding specialized electricity demands and enables the integration
of BEC data with different attribute characteristics, enhancing the information quality of
the database and regional comparability. Urban stakeholders can use the regionalized
BEC integration platform to clearly delineate differences in BEC spatial distribution on
a regional basis, facilitating transparent management and energy policy formulation for
areas with weak specialized energy consumption. Based on the regional BEC integration
platform, long-term dynamic monitoring of key indicators can be implemented for projects
with excessively high energy consumption, allowing for real-time and flexible updates of
specialized energy plans and enhancing overall energy efficiency.

3.5. Limitations and Prospects

This study acquired comprehensive basic information on old residential buildings
within a campus, along with their energy consumption data. However, the limited sample
size currently hinders our ability to construct a predictive urban energy consumption model.
Additionally, the distinct differences observed in spatial lag variables across various time
periods within the SLM prevent a straightforward assessment of BEC contributions through
coefficient comparisons. Notwithstanding these limitations, this endeavor nonetheless
furnishes a detailed demonstration of the heterogeneity in the impact of urban morphology
on BEC. The inclusion of these significant spatial indicators can substantially enhance the
accuracy of BEC modeling across different timeframes. As noted by Ref. [84], urban design
and planning methodologies must adapt to the evolving urban and suburban. In fact,
the work reported here represents an inaugural step in a cohesive research initiative. In
accordance with the framework established in Section 3.4, this paper intends to collect
residential building information from other campuses in the future, aiming to create a
“Campus Residential Building Energy Data Platform” for mountainous cities.

The findings in Section 3.3 support the argument that employing only a single buffer
zone for regression analysis is inherently imprecise and may inadvertently omit crucial
indicators. Nevertheless, this approach is commonly adopted in existing research stud-
ies [23,29]. Therefore, this study recommends that future reports consider expanding
beyond the examination of urban morphology within the 50~200 m range and explore
larger urban scales as needed. Furthermore, it is essential to incorporate significant factors
between different buffer zones into a unified model. In theory, this would significantly
enhance the accuracy of model regression and render it more rational. This approach under-
scores the significance of constructing a database of key indicators within the framework
proposed in this paper.
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Lastly, this study has explored four urban morphology indicators and has yet to
investigate other urban indicators such as waterbody ratios, land use, and road density.
Given the inherent complexity of actual urban morphology, future research can include a
more extensive array of indicators to reflect real urban morphology characteristics. This
will facilitate a more comprehensive exploration of the spatio-temporal heterogeneity in
BEC impacts, thereby improving the precision of regression models.

4. Conclusions

Adjusting urban morphology at the neighborhood level to formulate energy-saving
plans and renewable energy strategies is a widely recognized approach. However, in the
process of formulating specialized energy-saving planning strategies, we still struggle to
determine the appropriate actions to reduce the BEC of target buildings [1]. This challenge
largely stems from the seasonal characteristics of BEC and spatial scale diversity. This
study, using old campus residential buildings as an example and considering spatial auto-
correlation, meticulously examines the influence of four different urban morphology scales
(50~200 m) on BEC during three time periods: the entire year, summer, and winter. The
research results provide compelling evidence that urban morphology exhibits pronounced
spatio-temporal heterogeneity in BEC within the neighborhood. The following conclusions
are drawn:

• Annual and seasonal SLMs perform best within a 150 m buffer zone. However, not all
significant indicators are within this spatial range. Blindly employing a single range
for all indicators in urban morphology regression analyses may result in inaccuracies
and even erroneous inferences.

• During the annual, summer, and winter periods, GSR demonstrates significant correla-
tions with BEC within buffer zone ranges of 150 m, 50~100 m, and 100 m, respectively.

• When the spatial scale remains the same but the energy consumption period dif-
fers, significant urban morphology indicators exhibit differences in terms of quantity,
category, and polarity.

• GSR has a pronounced dual impact on BEC, showing a significant negative correlation
with EUIA but a significant positive correlation with EUIW.

• Neighborhoods with larger OSR, smaller FAR, and lower WSA experience a reduction
in EUIA of old residential buildings.

Generally, this strong heterogeneity is widespread and inherent. The diversity in
building project categories and urban spatial categories may further contribute to the
spatio-temporal heterogeneity of urban morphology’s impact on BEC. Importantly, key
urban morphology indicators affecting BEC are often difficult to predict. Therefore, a frame-
work is proposed for constructing an indicator database that links form indicators, spatial
boundaries, and energy consumption periods. By establishing specialized 3D spectrums,
this framework facilitates the observation of urban morphology impact pathways in specific
scenarios, allowing for the optimization of urban morphology boundaries across different
time periods. It can also be used to construct regional UBEC prediction models. To sum up,
this study provides a vital reference for understanding the spatio-temporal heterogeneity
of urban morphology’s impact on BEC and offers a comprehensive framework to address
this issue, enabling the implementation of efficient and effective energy measures.
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Nomenclature

BEC Building energy consumption MLR Multiple linear regression
UBEC Urban building energy consumption SLM Spatial lag model
YB Year built SEM Spatial error model
NF Number of floors OSR Open space ratio
CT Contiguity type FAR Floor area ratio
OA Orientation angle WSA Total wall surface area
FA Floor area GSR Green space ratio
BSC Building shape coefficient EUIA Annual energy use intensity
TDU Total number of dwelling units EUIS Summer energy use intensity
EUI Energy usage intensity EUIW Winter energy use intensity
AIC Akaike information criterion SC Schwarz criterion
LL Log likelihood LM Lagrange multiplier

Notes
1 Over the past 50 years, in China’s hot summer/cold winter zones, the standards for residential energy-efficient design have

evolved, including “GB 50176-1986 Code for Thermal Design of Civil Building”, “GB 50176-1993 Code for Thermal Design of Civil
Building”, “ JGJ 134-2001 Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Cold Winter Areas”, and
“JGJ 134-2010 Design Standard for Energy Efficiency of Residential Buildings in Hot Summer and Cold Winter Areas” [15,48–50]. It is
important to note that when new regulations are introduced, previous standards of the same type are rendered obsolete and are
no longer in effect, following the guidelines of the Ministry of Housing and Urban-Rural Development of the People’s Republic
of China.
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