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Abstract: Displacement deformation prediction is critical for landslide disaster monitoring, as a good
landslide displacement prediction system helps reduce property losses and casualties. Landslides in
the Three Gorges Reservoir Area (TGRA) are affected by precipitation and fluctuations in reservoir
water level, and displacement deformation shows a step-like curve. Landslide displacement in
TGRA is related to its geology and is affected by external factors. Hence, this study proposes a
novel landslide displacement prediction model based on variational mode decomposition (VMD)
and a Harris Hawk optimized kernel extreme learning machine (HHO-KELM). Specifically, VMD
decomposes the measured displacement into trend, periodic, and random components. Then, the
influencing factors are also decomposed into periodic and random components. The feature data,
with periodic and random data, are input into the training set, and the trend, periodic, and random
term components are predicted by HHO-KELM, respectively. Finally, the total predicted displace-
ment is calculated by summing the predicted values of the three components. The accuracy and
effectiveness of the prediction model are tested on the Shuizhuyuan landslide in the TGRA, with the
results demonstrating that the new model provides satisfactory prediction accuracy without complex
parameter settings. Therefore, under the premise of VMD effectively decomposing displacement data,
combined with the global optimization ability of the HHO heuristic algorithm and the fast-learning
ability of KELM, HHO-KELM can be used for displacement prediction of step-like landslides in
the TGRA.

Keywords: displacement prediction; kernel extreme learning machine; variational mode decomposition;
three gorges reservoir area; influencing factors

1. Introduction

Landslides are one of the most common types of geological disasters in China [1–3]. Re-
cently, the intensification of human engineering activities and increasingly severe weather
landslide disasters have caused significant losses [4,5]. In the Three Gorges Reservoir
Area of China, thousands of landslides are influenced by substantial mass movements
due to the complex geological environment, posing a severe threat to the surrounding
environment. A typical example is the Qianjiangping landslide that occurred in July 2003,
causing serious casualties within a few days after the reservoir reached an elevation of
135 m. Thus, landslide displacement prediction is crucial in landslide disaster research, as
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an accurate displacement prediction model can reduce disaster loss and risk [6–9]. Quater-
nary sediments are widely distributed in the TGRA. The most significant features are loose
compositions, distinct viscoelastic deformation, and high porosity, making them highly
susceptible to water infiltration. Long-term studies have demonstrated that landslide
deformation in the TGRA is caused by slow gravitational downslope processes that occur
before the failure of the slope [10,11]. Reservoir water level and precipitation are considered
the most important triggers for landslides among these factors.

Researchers have employed various mathematical models to predict landslide dis-
placement, with the traditional approaches relying on historical experience and math-
ematical statistics [12]. The solution based on historical experience typically combines
landslide on-site monitoring data or conducts landslide physical model experiments to
predict displacement [13]. Methods based on mathematical statistics apply the gray system
and probability theory to landslide displacement prediction [14,15]. With the continuous
enrichment of means and types for obtaining landslide monitoring data, nonlinear and
machine learning models integrating multi-source sensing information of landslides have
been developed [5,16,17], flourishing the research ideas for landslide displacement predic-
tion [18]. Although researchers have proposed various models for deformation prediction
of landslide displacement, the existing models also have some shortcomings. For instance,
the empirical model uses the actual monitoring data or model test data of a landslide to
test the suitability of the prediction model [19,20]. However, only appropriate application
scenarios can predict the displacement of landslides well. Single-factor or multi-factor
models based on empirical methods often have limited prediction accuracy [21]. To a
certain extent, the statistical model predicts landslide deformations with relatively complex
physical mechanisms, demonstrating appealing monitoring effects for single influencing
factors [15]. Nevertheless, statistical models for multiple influencing factors cannot solve
the problem well. Moreover, nonlinear models, such as neural networks, have better predic-
tion capabilities, but nonlinear models cannot solve the local minimum values due to their
slow convergence speed [13]. Indeed, Long Short-Term Memory (LSTM) and Gated Recur-
rent Unit (GRU) have demonstrated excellent performance in time series prediction [22–24],
but their training efficiency is relatively low due to their excessive parameter cardinality.

Landslide deformation is influenced by internal and external factors presenting char-
acteristics such as complexity, randomness, and uncertainty. The constant deformation of
a landslide is closely related to its geological structure, but the short-term displacement
deformation is strongly correlated with external influencing factors. Researchers have
analyzed landslide monitoring data in the TGRA and found that the step-like change
in displacement may strongly correlate with external precipitation and reservoir water
level [4,25–27]. Therefore, the critical means for displacement prediction is to analyze the
effects of internal and external factors on displacement deformation.

Displacement prediction models have progressed in recent years, but some funda-
mental problems must be further analyzed and solved. Firstly, researchers used various
methods to decompose the original displacements into several sub-components. However,
without clarifying the physical meaning of each sub-component, the correlation between
components of the landslide and the decomposition factor cannot be explored. Secondly,
the nonlinear characteristics of landslide displacement contain multilevel monitoring infor-
mation, and some models do not adequately study the landslide deformation mechanism,
leading to inaccurate prediction results. Thirdly, classical machine learning algorithms have
the problem of selecting model parameters, such as back propagation (BP), Elman, and
KELM. Computational efficiency can be improved by adopting trivial training methods
and facilitating hyperparameter adjustment.

The purpose of this study is to propose a novel landslide displacement prediction
model of VMD-HHO-KELM that considers the external influences on displacement defor-
mation. VMD decomposes the cumulative displacement of landslides into a trend, periodic,
and random terms. Then, the external influencing factors are decomposed into two sub-
sequences characterized by periodicity and stochasticity and fused into the training set as
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input data. Taking a typical landslide of Shuizhuyuan in the TGRA as an example, three
components are predicted separately using the HHO-KELM model, and the predicted
total displacement is the sum of the three components. To validate the practicality and
effectiveness of the HHO-KELM model, performance comparisons are conducted with
methods such as ELM, KELM, and PSO-KELM.

2. Theory and Methodology
2.1. Variational Mode Decomposition

VMD decomposes a non-smooth signal into modal functions with different character-
istics, where each modal function represents the vibration mode of the original signal in a
specific frequency range [26,28]. VMD sets the number of modes according to the charac-
teristics of the measured signal, thus overcoming the problems of maximum and minimum
values in traditional empirical mode decomposition and suppressing the occurrence of
mode mixing [29]. Figure 1 illustrates the VMD architecture.
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2.2. Harris Hawk Optimization

HHO is a new meta-heuristic algorithm with good global search ability and adjustable
parameters [30–32]. It is an intelligent algorithm that optimizes its parameters by simulating
the hunting behavior of Harris hawks. HHO mainly comprises the exploration, exploration
and development conversion, and development stages (Figure 2). The specific process
includes the following five parts:
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➀ Initialize the population. Determine the search space boundary and initialize the
individual positions.

➁ Set the initial fitness. Select the optimal individual position as the current prey location.
➂ Update the location. Determine the conversion during the search and development

phase by calculating the escape energy E and random number J. When |E| ≥ 1 HHO
enters the search phase. The Harris Hawks algorithm uses two strategies to determine the
updated position and search for prey. When |E| < 1 it enters the development stage and
selects four different strategies to hunt prey based on the escape energy E and the random
number r.

➃ For each individual, calculate the fitness and update the population’s optimal
fitness value.

➄ Condition judgment. The optimal value is output if the maximum iteration is
satisfied. Otherwise, steps ➂ and ➃ are repeated.

2.3. Kernel Extreme Learning Machine

ELM is a novel hidden layer feedforward neural network with a sold nonlinear
fitting ability [4,33]. Huang optimized and upgraded the ELM algorithm and developed
KELM [34]. Precisely, in KELM, the kernel function replaced the random feature mapping
of ELM to solve the linear system problem [25,35,36]. KELM uses orthogonal projection and
ridge regression theory to introduce the regularization coefficients of C, with the output
weight expressed as:
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β = HT(HHT + I/C)
−1

P (1)

where β is the output weight, H is the hidden layer matrix, I is the unit matrix, and P is the
predicted target vector.

The kernel matrix of the kernel function introduced in ELM is:{
ΩELM = HHT

Ωi,j = h(xi)·h(xj) = K(xi, xj)
(2)

where xi and xj are the experimental input vector, and K() is the kernel function.

K(xi, xj) = exp
(
−
∥∥xi − xj

∥∥/S2
)

(3)

where S is the parameter of the kernel function. The KELM is expressed as:

φ(x) = [K(x, x1); . . . ; K(x, xN)](I/C + ΩELM)−1P (4)

2.4. Prediction Procedure

The main prediction procedure of the VMD-HHO-KELM model is illustrated in
Figure 3 and involves the following steps:
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➀ Data preprocessing. Select data from periods with distinct features as the research
object and preliminary screen for influencing factors.

➁ Data decomposition. The measured displacement and the influencing factor are
decomposed into several subsequences using VMD, respectively.
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➂ Dataset Integration. Integrate the data into trend, periodic, and random term
datasets, respectively, and set up training and test sets.

➃ Model Training The HHO-KELM predicts the periodic and random training set
data trends.

➄ Model testing and analysis. The test set data of trend, period, and random items are
accumulated and summed to obtain the test set prediction data of total displacement.

2.5. Evaluation Indexes

The prediction performance of the proposed method is evaluated based on the mean
absolute error (MAE), mean absolute percentage error (MAPE), root mean square error
(RMSE), and correlation coefficient (R2). The four indexes are defined as follows:

MAE =
1
M

M

∑
i=1

∣∣∣d̂i − di

∣∣∣ (5)

MAPE =
100%

M

M

∑
i=1

∣∣∣∣∣ d̂i − di
di

∣∣∣∣∣ (6)

RMSE =

√√√√ 1
M

M

∑
i=1

(d̂i − di)
2

(7)

R2 = 1 −

M
∑

i=1

(
d̂i − di

)2

M
∑

i=1

(
di − di

)2
(8)

where M is the number of total displacement samples, di and d̂i are the measured and
predicted value, and di is the average of measured value.

3. Case Study
3.1. Landslide Information

The Shuizhuyuan landslide is located in Wushan County of TGRA, at E 109◦43′27.33′′,
N 31◦00′59.37′′ (Figure 4). The distance to the Wushan New Town and Three Gorges Dam
is 14.82 km and 170 km, respectively. The relative height difference is about 260 m, the
longitudinal length is about 800 m, the transverse width is about 360~1200 m, the area is
62 × 104 m2, and the volume is 1850 × 104 m3.
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The study area has typical characteristics of a subtropical humid monsoon climate.
The surface materials of the Shuizhuyuan landslide are loose gravelly soil with good
permeability. The underlying bedrock mainly consists of mudstone and marlstone. The
sliding surface has a depth of approximately 30 m. The front edge of the landslide is
below the water level of the Yangtze River at 145 m, and the stability of the landslide is
significantly affected by the reservoir water level (Figure 5).
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3.2. Deformation Characteristic Analysis

Through on-site investigation and analysis of monitoring data, the Shuizhuyuan
landslide is a large-scale soil landslide induced mainly by precipitation and reservoirs. The
monitoring curve in Figure 6 highlights that the landslide had a uniform creeping slide
since the deployment of automated monitoring devices in 2016.

The Shuizhuyuan landslide has a step-like deformation trend. From April to Septem-
ber each year, under the dual action of solid precipitation and water level decline, the
landslide soil is gradually saturated with weakened slip resistance, increasing landslide
displacement [25]. During the other months, the landslide deformation is stable or small
due to the support of the rise of the reservoir water level.
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3.3. Data Processing

Considering that the cumulative displacement deformation of monitoring point three
of the Shuizhuyuan landslide is the largest, SZY-03 is selected as the research object. This
study primarily selects the monitoring data from SZY-03 between July 2016 and December
2023 for model construction. Seventy-eight data sets from July 2016 to December 2022 are
chosen as the training set, followed by 12 data sets from January 2023 to December 2023 as
the test set.

3.3.1. Data Decomposition

The number of modes must be set before applying the VMD to the landslide displace-
ment. After several experiments, we concluded that setting K = 3, α = 0.3, and τ = 0.3
avoids the phenomenon of insufficient decomposition or excessive decomposition due to
improper setting of the decomposition number. Figure 7 depicts the decomposition result
of the displacement data.
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3.3.2. Selection of Influencing Factors and Data Decomposition

Internal factors of landslides significantly impact the trend term. Specifically, changes
in the rock and soil structure, internal stress, and geometric shape of landslides over
time will inevitably affect the trend term. Therefore, the displacement data in the past
1, 2, and 3 months is input into the current landslide displacement deformation factor.

The periodic displacement presents small-scale fluctuation, and the influencing factors
are also related to the external environment [37]. The deformation characteristics indicate
that strong precipitation and periodic water level adjustments are the main factors lead-
ing to step-like displacement [38]. Additionally, continuous infiltration of precipitation
weakens the landslide resistance and promotes landslide evolution. Previous studies have
revealed a close relationship between accumulated precipitation in the first two months
and landslide deformation [4]. In addition, Figure 6 highlights that the faster the water
level drops, the greater the landslide displacement deformation [38]. Based on this analysis,
this study mainly considers the influencing factors presented in Figure 8.
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Figure 8. Influencing factors used as inputs for the modeling process.

The influencing factors do not include trend terms. Therefore, K is set to 2. Further-
more, the analysis concluded that components with ample proportions and low frequency
are considered periodic. The part with a small proportion and high frequency is decom-
posed randomly. Figure 9 presents the decomposition results of the influencing factors.
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3.3.3. Correlation Analysis of the Decomposition Components and Influencing Factors

The relevance between displacement and influencing factors is further analyzed to
verify the applicability of the selected influencing factors. Grey correlation degree (GRD) is
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an evaluation method in grey system theory that compares the correlation degree between
different time series. It is applicable to the study of problems involving less data, poor
information, and uncertainty. GRD determines the correlation between two variables by
judging the size of the resolution coefficient. When the correlation coefficient exceeds 0.5, it
can be considered to have a specific correlation coefficient [29,39]. The larger the value, the
stronger the correlation coefficient.

Table 1 reports the correlation degree based on the GRD program written in MATLAB.
The selected eight influencing factors strongly correlate with the periodic and the random
term [9]. Therefore, choosing them as input factors to predict landslide displacement
is feasible.

Table 1. GRD between each influencing factor and fluctuation displacement.

Displacement Fluctuation Displacement Precipitation Reservoir Water Level

Symbol D1 D2 D3 P1 P2 L1 L2 L3

Periodic component 0.7512 0.7512 0.7510 0.7511 0.7511 0.7513 0.7523 0.7526

Random component 0.9966 0.9966 0.9966 0.9957 0.9961 0.6635 0.9963 0.9964

4. Results and Analysis
4.1. Trend Term Prediction

Figure 7 infers that the trend term displacement mainly depends on the change in the
geological condition of the landslide, and its displacement deformation has a relatively
stable and gradually increasing time series. This indicates that the Shuizhuyuan landslide
is generally in a stable deformation stage during the selected monitoring period.

The prediction of the trend-term displacement of the Shuizhuyuan landslide is com-
pleted using the HHO-KELM model. In the prediction model, monthly displacements from
July 2016 to December 2022 are used for training, and monthly displacements from January
2023 to December 2023 are used for testing. The displacement of trend terms from the
past 1, 2, and 3 months is used as input. Through a trial-and-error process, the optimal
parameters of KELM using HHO are C = 24857.246 and S = 223.352. Figure 10 infers that
HHO-KELM demonstrates excellent predictive performance for trend-term displacements.
The RMSE, MAE, MAPE, and R2 are 0.1488, 0.1344, 0.0324%, and 0.9992, respectively.
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4.2. Periodic Term Prediction

The periodic term of the Shuizhuyuan landslide exhibits small-scale periodic changes
caused by precipitation and adjustment in the reservoir water level. In this study, the
precipitation patterns in the first and second months are generally consistent with the
monthly displacement (Figure 11), which can be used as inputs to capture the effect of
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precipitation on displacement [37]. Additionally, the periodic displacement is generally
consistent with the fluctuations of the reservoir water level [40]. The deformation increases
mainly during the water level decline phase (Figure 12). For example, in May 2018, the
landslide deformed by 9.7 mm, and the water level dropped by 10.2 m. In June 2018, the
displacement was 15.33 mm under similar precipitation conditions, and the water level
dropped by 3.3 m (Figure 11). The landslide deformation shows different displacement
changes with the other reservoir elevations, and therefore, water level changes and mean
elevation are valid inputs to represent the effect on reservoir level adjustment (Figure 8).

Land 2024, 13, x FOR PEER REVIEW 11 of 17 
 

 

Figure 10. Predicted and measured values of the trend displacement. 

4.2. Periodic Term Prediction 

The periodic term of the Shuizhuyuan landslide exhibits small-scale periodic changes 

caused by precipitation and adjustment in the reservoir water level. In this study, the pre-

cipitation patterns in the first and second months are generally consistent with the 

monthly displacement (Figure 11), which can be used as inputs to capture the effect of 

precipitation on displacement [37]. Additionally, the periodic displacement is generally 

consistent with the fluctuations of the reservoir water level [40]. The deformation increases 

mainly during the water level decline phase (Figure 12). For example, in May 2018, the 

landslide deformed by 9.7 mm, and the water level dropped by 10.2 m. In June 2018, the 

displacement was 15.33 mm under similar precipitation conditions, and the water level 

dropped by 3.3 m (Figure 11). The landslide deformation shows different displacement 

changes with the other reservoir elevations, and therefore, water level changes and mean 

elevation are valid inputs to represent the effect on reservoir level adjustment (Figure 8). 

 

Figure 11. Relationship between early precipitation and periodic displacement. Figure 11. Relationship between early precipitation and periodic displacement.

Land 2024, 13, x FOR PEER REVIEW 12 of 17 
 

 

Figure 12. Comparison of monthly change of water level and periodic displacement. 

Based on the deformation analysis of the Shuizhuyuan landslide, this study considers 

the effect of the landslide’s periodic displacement and uses eight factors. Furthermore, 

HHO-KELM is employed to establish a periodic term prediction model. The predictive 

performance of HHO-KELM, PSO-KELM, KELM, and ELM periodic displacement is C = 

3000 and S = 10 for HHO-KELM and C = 343.440 and S = 144.422 for PSO-KELM. Accord-

ing to Figure 13 and Table 2, the predicted values of HHO-KELM and PSO-KELM in the 

four models are consistent with the original values. At the same time, the predictive per-

formance of KELM and ELM is relatively general. The RMSE of the HHO-KELM in pre-

dicting periodic displacement is 0.2734, MAE is 0.2410, MAPE is 0.7565%, and R2 is 0.9952. 

 

Figure 13. Predicted and measured values of the periodic displacement. 

Table 2. Prediction accuracy of the periodic displacement. 

Models MAE MAPE (%) RMSE R2 

HHO-KELM 0.2410 0.7565 0.2734 0.9952 

PSO-KELM 0.2730 0.3087 0.3092 0.9939 

KELM 0.7053 6.3479 0.8239 0.9565 

ELM 0.6278 36.3613 0.8029 0.9587 

Figure 12. Comparison of monthly change of water level and periodic displacement.

Based on the deformation analysis of the Shuizhuyuan landslide, this study considers
the effect of the landslide’s periodic displacement and uses eight factors. Furthermore,
HHO-KELM is employed to establish a periodic term prediction model. The predictive per-
formance of HHO-KELM, PSO-KELM, KELM, and ELM periodic displacement is C = 3000
and S = 10 for HHO-KELM and C = 343.440 and S = 144.422 for PSO-KELM. According to
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Figure 13 and Table 2, the predicted values of HHO-KELM and PSO-KELM in the four mod-
els are consistent with the original values. At the same time, the predictive performance of
KELM and ELM is relatively general. The RMSE of the HHO-KELM in predicting periodic
displacement is 0.2734, MAE is 0.2410, MAPE is 0.7565%, and R2 is 0.9952.
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Figure 13. Predicted and measured values of the periodic displacement.

Table 2. Prediction accuracy of the periodic displacement.

Models MAE MAPE (%) RMSE R2

HHO-KELM 0.2410 0.7565 0.2734 0.9952
PSO-KELM 0.2730 0.3087 0.3092 0.9939

KELM 0.7053 6.3479 0.8239 0.9565
ELM 0.6278 36.3613 0.8029 0.9587

4.3. Random Term Prediction

The random term components of the influencing factors are input into the HHO-KELM
prediction model. Compared with the trend and periodic displacements, the random term
displacement has a certain degree of randomness. Still, the fluctuation of the predicted
results is within a relatively reasonable range of data error (Figure 14). In this case, HHO-
KELM still shows relatively good prediction performance, with RMSE of 0.0233, MAE of
0.0175, MAPE of 0.3109%, and R2 of 0.9989.
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4.4. Total Displacement Prediction

The total predicted displacement is obtained by adding the trend, period, and random
term displacements. The best agreement between the total displacement predicted by
HHO-KELM and the total displacement measured is observed in Figure 15, presenting an
RMSE of 0.3680, MAE of 0.3208, MAPE of 0.0773%, and R2 of 0.9979 (Table 3).
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Table 3. Prediction accuracy of total displacement.

Models MAE MAPE (%) RMSE R2

HHO-KELM 0.3208 0.0773 0.3680 0.9979
PSO-KELM 0.5542 0.1342 0.6324 0.9939

KELM 0.9008 0.2178 1.0338 0.9837
ELM 1.4183 0.3390 1.6995 0.9559

In addition, the HHO-KELM model exhibits good predictive performance during
the step-like deformation process. In June 2017, the Shuizhuyuan landslide was severely
deformed due to intense precipitation and decreased reservoir water level. Nevertheless,
by considering the influencing factors, the HHO-KELM model establishes the relationship
between external factors and deformation.

The four methods achieve better prediction results in most cases, but the prediction
performance of KELM and ELM is not high in the critical step of the deformation period.
Compared with other models, the HHO-KELM highlights that the displacement prediction
considering the influencing factors is more accurate and provides better prediction results.
Especially in predicting the displacement of stepped landslides, the HHO-KELM provides
better prediction accuracy than other models. The main reason is that the KELM is charac-
terized by complete coverage fitting, minor training errors, and relatively small weights.
Compared to traditional gradient-based classical learning algorithms, the KELM tends to
achieve the minimum training error without considering the weight.

5. Discussion

The deformation characteristics of landslides in the TGRA are closely related to various
factors, mainly including their own geological structure, precipitation, and reservoir water
level adjustments [4]. Through an in-depth analysis of displacement characteristics and
deformation mechanisms, it was demonstrated that precipitation during the flood season
and fluctuations in water level are the main influencing factors for the Shuizhuyuan
landslide. Under the dual influence of these factors, the landslide shows a displacement
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deformation curve akin to a step-like pattern. Therefore, the prerequisite for conducting
landslide displacement prediction is accurate decomposition.

Traditional methods such as EMD and EEMD have no regularity in the feature com-
ponents of displacement decomposition. After decomposition, each component requires
observation and analysis, followed by recombination to obtain the desired characteristic
components. Recombination of these components often increases the duration of data
analysis and reduces data processing efficiency. In this study, VMD can adaptively decom-
pose the landslide displacement into characteristic components based on a predetermined
number of modes. For instance, when K = 3, it can effectively extract trend, periodic, and
random displacement components, each with a clear physical meaning. This can effectively
suppress the issues of incomplete data decomposition and irregular decomposition patterns
that are common in traditional methods.

Comparing models helps to validate the accuracy of the proposed method [25]. ELM
is a typical representative machine learning method used for displacement prediction.
Therefore, this study used ELM, KELM, and PSO-KELM models to verify the predictive
performance of HHO-KELM [4,25]. As shown in Figure 15 and Table 3, the RMSE and R2

of ELM are 1.6995 and 0.9559, respectively, indicating that ELM has the worst predictive
ability. After incorporating the kernel function into the ELM, the RMSE and R2 of the
KELM are 1.0338 and 0.9837, which represents a certain improvement in the displacement
prediction capability. To further improve the training efficiency of KELM, optimization
algorithms are introduced to optimize the parameters of KELM. The results indicate that the
RMSE and R2 of the HHO-KELM model are 0.3680 and 0.9979, respectively, providing the
best predictive outcomes among the models tested. This is mainly attributed to the global
search and adaptive parameter adjustment capabilities of the HHO algorithm. Figure 15
highlights that HHO-KELM, which considers external influencing factors, achieves better
landslide displacement prediction and has a very accurate displacement prediction ability,
proving that the step-like displacement is affected by precipitation and reservoir water
level fluctuation.

In addition, the rapid development of deep learning techniques such as multilayer
perceptron (MLP) and transformer provides feasible solutions for long-term series prediction.
In future research, the generalization and computational capabilities of deep learning will
provide more reference options for predicting the displacement of different types of landslides.

6. Conclusions

An apparent step-like curve characterizes the Shuizhuyuan landslide in the TGRA.
Under the combined effect of precipitation and reservoir water level, the deformation accel-
erates from April to September every year, and the landslide displacement and deformation
are relatively stable for the rest of the year. Based on the analysis of the deformation char-
acteristics, the cumulative displacement is decomposed into trend, periodic, and random
term displacement through VMD.

The trend displacement is manifested as stable deformation controlled by its geological
conditions, while the periodic and random displacement are affected by triggering factors
and exhibit fluctuating displacement. The proposed HHO-KELM model synthesizes the
characteristics of the HHO and KELM, in which KELM has high prediction efficiency. HHO
can easily and quickly find suitable KELM parameters with shorter prediction runtime
and better robustness. In the experiments, the HHO-KELM model with different input
influencing factors is used to predict the three terms, and the total predicted displacement is
obtained by adding the three terms. The predictive indicators are RMSE of 0.3680, MAE of
0.3208, MAPE of 0.0773%, and R2 of 0.9979. This indicates that the HHO-KELM model has
achieved excellent displacement prediction performance. Hence, the proposed HHO-KELM
model, taking influencing factors into account, can better show the response relationship
between landslide deformation and external influencing factors than PSO-KELM, KELM,
and other methods. The accurate prediction of periodic displacement is an integral part of
landslide displacement prediction.



Land 2024, 13, 1724 15 of 17

Although the proposed HHO-KELM has achieved better displacement prediction
results than other methods, factors such as extreme rainfall conditions and sudden drops in
reservoir water level have not been fully considered, which can have a significant impact
on displacement prediction performance. Considering the limitations of existing landslide
monitoring data, it is insufficient to only consider the effects of precipitation and water level
on displacement. More monitoring information needs to be incorporated into the model to
enhance predictive capabilities. The displacement deformation of landslides varies over
time, and it is important to continuously update monitoring data within the model to
gradually replace existing monitoring data to enhance the accuracy of model predictions.

Therefore, thoroughly considering the response relationship between influencing
factors and landslides can help improve prediction accuracy, especially in cases of step-
like deformation. Overall, accurate and reliable displacement prediction can be realized
at the stage of slow deformation and step-like landslide deformation by combining the
background of landslide breeding and dynamic evolution theory through machine learning
technology. The proposed method can be popularized and applied in the TGRA and other
landslide-prone areas with step-like displacement.
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