The Assessment of Land Suitability for Urban Expansion and Renewal for Coastal Urban Agglomerations: A Pilot Study of the Guangdong-Hong Kong-Macao Greater Bay Area
Abstract
:1. Introduction
2. Study Area and Data
3. Method
- (1)
- Source selections
- (2)
- Resistance plane and coefficient
- (1)
- Slope: It affects risk management and resilience to coastal processes, potentially undermining the economic feasibility of the project.
- (2)
- Geological conditions: The geological composition of coastal areas influences how they will respond to sea-level rise. Areas with stable geological formations are more resistant to erosion and land loss, while low-lying areas composed of soft sediments are more vulnerable to flooding and permanent inundation.
- (3)
- DEM: It helps assess terrain, slope, flood risk, and elevation changes. Excessive elevation can hinder accessibility and increase flood risks in lower-lying areas.
- (4)
- NDVI: It measures vegetation health, helps identify green spaces, and supports ecological preservation. Higher NDVI values indicate denser, healthier vegetation, supporting ecological preservation.
- (5)
- Land use: Land use shapes existing development patterns, resource distribution, and environmental impact. It plays a key role in guiding sustainable planning by balancing ecological preservation and economic activities, especially in densely populated coastal regions.
- (6)
- Proximity to water: The presence of water is essential for the lifecycle in the coastal urban agglomeration.
- (7)
- Ecological reserve: It protects biodiversity, preserves critical habitats, and mitigates environmental degradation, which is crucial for future land planning.
- (8)
- Coastal protection area: It safeguards shorelines from erosion, mitigates storm impacts, preserves marine ecosystems, and ensures sustainable development by protecting vulnerable coastal environments from degradation and climate-related risks.
- (9)
- Proximity to urban areas: It influences access to infrastructure and services, promotes efficient land development, and reduces transportation costs.
- (10)
- Proximity to roads: It enhances accessibility, supports efficient transportation, and facilitates connectivity between urban areas.
- (11)
- Population density: It influences infrastructure demand, resource allocation, and environmental pressure in coastal areas.
- (12)
- Port importance: It facilitates international trade and promotes economic growth. Seaport importance is an index of the economic radiation intensity of ports across different cities.
4. Results
4.1. Spatial Characteristics of Suitable Areas for Urban Expansion and Ecological Protection
4.2. LSA Heterogeneity Analysis
4.3. Sensitivity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, B.; Jin, X.; Zhao, Q.; Chen, H. Spatiotemporal Patterns and Mechanisms of Land-Use Conflicts Affecting High-Quality Development in China. Appl. Geogr. 2023, 155, 102972. [Google Scholar] [CrossRef]
- Sengupta, D.; Chen, R.; Meadows, M.E. Building beyond Land: An Overview of Coastal Land Reclamation in 16 Global Megacities. Appl. Geogr. 2018, 90, 229–238. [Google Scholar] [CrossRef]
- Ran, Z.; Gao, S.; Zhang, B.; Guo, C.; Ouyang, X.; Gao, J. Non-Linear Effects of Multi-Dimensional Urbanization on Ecosystem Services in Mega-Urban Agglomerations and Its Threshold Identification. Ecol. Indic. 2023, 154, 110846. [Google Scholar] [CrossRef]
- Asabere, S.B.; Acheampong, R.A.; Ashiagbor, G.; Beckers, S.C.; Keck, M.; Erasmi, S.; Schanze, J.; Sauer, D. Urbanization, Land Use Transformation and Spatio-Environmental Impacts: Analyses of Trends and Implications in Major Metropolitan Regions of Ghana. Land Use Policy 2020, 96, 104707. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land Use Change, Urbanization, and Change in Landscape Pattern in a Metropolitan Area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Shen, W.; Zhang, Z. How Does Urbanisation Affect the Evolution of Territorial Space Composite Function? Appl. Geogr. 2023, 155, 102976. [Google Scholar] [CrossRef]
- Akbari, M.; Neamatollahi, E.; Neamatollahi, P. Evaluating Land Suitability for Spatial Planning in Arid Regions of Eastern Iran Using Fuzzy Logic and Multi-Criteria Analysis. Ecol. Indic. 2019, 98, 587–598. [Google Scholar] [CrossRef]
- Franco, L.; Magalhães, M.R. Assessing the Ecological Suitability of Land-Use Change. Lessons Learned from a Rural Marginal Area in Southeast Portugal. Land Use Policy 2022, 122, 106381. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R.; Peng, S. Land-Use Suitability Assessment for Urban Development Using a GIS-Based Soft Computing Approach: A Case Study of Ili Valley, China. Ecol. Indic. 2021, 123, 107333. [Google Scholar] [CrossRef]
- Michael Griffel, L.; Toba, A.-L.; Paudel, R.; Lin, Y.; Hartley, D.S.; Langholtz, M. A Multi-Criteria Land Suitability Assessment of Field Allocation Decisions for Switchgrass. Ecol. Indic. 2022, 136, 108617. [Google Scholar] [CrossRef]
- Wei, B.; Li, Y.; Suo, A.; Zhang, Z.; Xu, Y.; Chen, Y. Spatial Suitability Evaluation of Coastal Zone, and Zoning Optimisation in Ningbo, China. Ocean. Coast. Manag. 2021, 204, 105507. [Google Scholar] [CrossRef]
- Ramadan, M.S.; Effat, H.A. Geospatial Modeling for a Sustainable Urban Development Zoning Map Using AHP in Ismailia Governorate, Egypt. Egypt. J. Remote Sens. Space Sci. 2021, 24, 191–202. [Google Scholar] [CrossRef]
- Bamrungkhul, S.; Tanaka, T. The Assessment of Land Suitability for Urban Development in the Anticipated Rapid Urbanization Area from the Belt and Road Initiative: A Case Study of Nong Khai City, Thailand. Sustain. Cities Soc. 2022, 83, 103988. [Google Scholar] [CrossRef]
- Huang, H.; Li, Q.; Zhang, Y. Urban Residential Land Suitability Analysis Combining Remote Sensing and Social Sensing Data: A Case Study in Beijing, China. Sustainability 2019, 11, 2255. [Google Scholar] [CrossRef]
- Huang, R.; Nie, Y.; Duo, L.; Zhang, X.; Wu, Z.; Xiong, J. Construction Land Suitability Assessment in Rapid Urbanizing Cities for Promoting the Implementation of United Nations Sustainable Development Goals: A Case Study of Nanchang, China. Environ. Sci. Pollut. Res. 2021, 28, 25650–25663. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Ma, C.; Wang, Q.; Zhou, A. Sustainable Use Zoning of Land Resources Considering Ecological and Geological Problems in Pearl River Delta Economic Zone, China. Sci. Rep. 2019, 9, 16052. [Google Scholar] [CrossRef]
- Zong, S.; Hu, Y.; Bai, Y.; Guo, Z.; Wang, J. Analysis of the Distribution Characteristics and Driving Factors of Land Use Conflict Potentials in the Bohai Rim Coastal Zone. Ocean. Coast. Manag. 2022, 226, 106260. [Google Scholar] [CrossRef]
- Xu, K.; Kong, C.; Li, J.; Zhang, L.; Wu, C. Suitability Evaluation of Urban Construction Land Based on Geo-Environmental Factors of Hangzhou, China. Comput. Geosci. 2011, 37, 992–1002. [Google Scholar] [CrossRef]
- Mokarram, M.; Mirsoleimani, A. Using Fuzzy-AHP and Order Weight Average (OWA) Methods for Land Suitability Determination for Citrus Cultivation in ArcGIS (Case Study: Fars Province, Iran). Phys. A Stat. Mech. Its Appl. 2018, 508, 506–518. [Google Scholar] [CrossRef]
- Pilevar, A.R.; Matinfar, H.R.; Sohrabi, A.; Sarmadian, F. Integrated Fuzzy, AHP and GIS Techniques for Land Suitability Assessment in Semi-Arid Regions for Wheat and Maize Farming. Ecol. Indic. 2020, 110, 105887. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Zhang, Y.-Z.; Jiang, Z.-Y.; Guo, C.-X.; Zhao, M.-Y.; Yang, Z.-G.; Guo, M.-Y.; Wu, B.-Y.; Chen, Q.-L. Integrating Morphological Spatial Pattern Analysis and the Minimal Cumulative Resistance Model to Optimize Urban Ecological Networks: A Case Study in Shenzhen City, China. Ecol. Process. 2021, 10, 63. [Google Scholar] [CrossRef]
- Wang, H.; Peng, P.; Kong, X.; Zhang, T.; Yi, G. Evaluating the Suitability of Urban Expansion Based on the Logic Minimum Cumulative Resistance Model: A Case Study from Leshan, China. IJGI 2019, 8, 291. [Google Scholar] [CrossRef]
- Zhang, W.; Li, B. Research on an Analytical Framework for Urban Spatial Structural and Functional Optimisation: A Case Study of Beijing City, China. Land 2021, 10, 86. [Google Scholar] [CrossRef]
- Adriaensen, F.; Chardon, J.P.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The Application of ‘Least-Cost’ Modelling as a Functional Landscape Model. Landsc. Urban Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating Habitat Isolation in Landscape Planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Y.; Zheng, Z.; Wu, Z. Spatiotemporal Coupling Analysis between Human Footprint and Ecosystem Service Value in the Highly Urbanized Pearl River Delta Urban Agglomeration, China. Ecol. Indic. 2023, 148, 110033. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, L. Aggregate Risk of Reactive Nitrogen under Anthropogenic Disturbance in the Pearl River Delta Urban Agglomeration. J. Clean. Prod. 2019, 211, 490–502. [Google Scholar] [CrossRef]
- Meng, G.; Guo, Z.; Li, J. The Dynamic Linkage among Urbanisation, Industrialisation and Carbon Emissions in China: Insights from Spatiotemporal Effect. Sci. Total Environ. 2021, 760, 144042. [Google Scholar] [CrossRef]
- Chen, X.; Duan, J. What They Talk about When They Talk about Urban Regeneration: Understanding the Concept ‘Urban Regeneration’ in PRD, China. Cities 2022, 130, 103880. [Google Scholar] [CrossRef]
- Liu, X.; Shu, J.; Zhang, L. Research on Applying Minimal Cumulative Resistance Model in Urban Land Ecological Suitability Assessment: As an Example of Xiamen City. Shengtai Xuebao/Acta Ecol. Sin. 2010, 30, 421–428. [Google Scholar] [CrossRef]
- Xu, L.; Huang, Q.; Ding, D.; Mei, M.; Qin, H. Modelling Urban Expansion Guided by Land Ecological Suitability: A Case Study of Changzhou City, China. Habitat Int. 2018, 75, 12–24. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, F.; Wang, H.; Qin, F. Suitability Evaluation and Layout Optimization of the Spatial Distribution of Rural Residential Areas. Sustainability 2020, 12, 2409. [Google Scholar] [CrossRef]
- Li, F.; Ye, Y.; Song, B.; Wang, R. Evaluation of Urban Suitable Ecological Land Based on the Minimum Cumulative Resistance Model: A Case Study from Changzhou, China. Ecol. Model. 2015, 318, 194–203. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, Y.; Yan, F.; Su, F. Collaborative Optimal Allocation of Urban Land Guide by Land Ecological Suitability: A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area. Land 2023, 12, 754. [Google Scholar] [CrossRef]
- Bagheri, M.; Zaiton Ibrahim, Z.; Mansor, S.; Manaf, L.A.; Akhir, M.F.; Talaat, W.I.A.W.; Beiranvand Pour, A. Land-Use Suitability Assessment Using Delphi and Analytical Hierarchy Process (D-AHP) Hybrid Model for Coastal City Management: Kuala Terengganu, Peninsular Malaysia. IJGI 2021, 10, 621. [Google Scholar] [CrossRef]
- Ke, L.; Zhao, Y.; Wang, Q.; Yin, S.; Liu, W. Construction of Coastal Zone Ecological Network Based on the Perspective of Land-Sea Integration: A Case Study of Jinzhou City, China. Ocean. Coast. Manag. 2024, 254, 107204. [Google Scholar] [CrossRef]
- Saaty, T.L. Making and Validating Complex Decisions with the AHP/ANP. J. Syst. Sci. Syst. Eng. 2005, 14, 1–36. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Zaniboni, A.; Tassinari, P.; Torreggiani, D. GIS-Based Land Suitability Analysis for the Optimal Location of Integrated Multi-Trophic Aquaponic Systems. Sci. Total Environ. 2024, 913, 169790. [Google Scholar] [CrossRef]
- Foroozesh, F.; Monavari, S.M.; Salmanmahiny, A.; Robati, M.; Rahimi, R. Assessment of Sustainable Urban Development Based on a Hybrid Decision-Making Approach: Group Fuzzy BWM, AHP, and TOPSIS–GIS. Sustain. Cities Soc. 2022, 76, 103402. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. Spatial Sensitivity Analysis of Multi-Criteria Weights in GIS-Based Land Suitability Evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, J.; Cheng, X. Electric Vehicle Solar Charging Station Siting Study Based on GIS and Multi-Criteria Decision-Making: A Case Study of China. Sustainability 2023, 15, 10967. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based Multicriteria Decision Analysis: A Survey of the Literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Pan, T.; Su, F.; Yan, F.; Lyne, V.; Wang, Z.; Xu, L. Optimization of Multi-Objective Multi-Functional Landuse Zoning Using a Vector-Based Genetic Algorithm. Cities 2023, 137, 104256. [Google Scholar] [CrossRef]
- Cao, K.; Deng, Y. The Impact and Interactive Effects of Multi-Level Spatial Policies on Urban Renewal: A Case Study of Shenzhen, China. Habitat Int. 2023, 142, 102952. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, Y.; Zhu, C.; Shi, C. Route Selection for Scenic Byways in Karst Areas Based on the Minimum Cumulative Resistance Model: A Case Study of the Nanpan–Beipan River Basin, China. Ecol. Indic. 2024, 163, 112093. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Su, Y.; Zhang, C.; Wu, X.; Wen, X.; Huang, G.; Deng, Y.; Lafortezza, R.; Chen, X. Estimating Ecological Sustainability in the Guangdong-Hong Kong-Macao Greater Bay Area, China: Retrospective Analysis and Prospective Trajectories. J. Environ. Manag. 2022, 303, 114167. [Google Scholar] [CrossRef]
Name | Data Source |
---|---|
Ecological Control Area | Ministry of Natural Resources of the People’s Republic of China (http://g.mnr.gov.cn/, accessed on 1 May 2023) |
Road Network | OpenStreetMap (https://www.openstreetmap.org/, accessed on 1 June 2024) |
Boundary of GBA | Resource and Environmental Science Data Platform (https://www.resdc.cn/, accessed on 12 June 2023) |
Land-use | |
NDVI | |
Terrain | |
DEM | Shuttle Radar Topography Mission (SRTM, https://earthexplorer.usgs.gov, accessed on 1 May 2023) |
Population Density | WorldPop (https://www.worldpop.org, accessed on 1 May 2023) |
GDP | Statistical yearbook of various cities in the GBA |
Ranking | Weight for Construction Land | Weight for Ecological Land | ||||||
---|---|---|---|---|---|---|---|---|
Resistance Plane of Construction Land | V | IV | III | II | I | |||
Resistance Plane of Ecological Land | I | II | III | IV | V | |||
Topography and geology | Slope | >25 | 10–25 | 5–10 | 2–5 | <2 | 0.102 | 0.146 |
Geological condition | Mountains, Depressions, Floodplains, Lakes | Hills, Terraces | / | / | Plain | 0.051 | 0.073 | |
DEM | >160 | 120–160 | 80–120 | 40–80 | 1–40 | 0.073 | 0.105 | |
Ecological protection | NDVI | >0.8 | 0.6–0.8 | 0.4–0.6 | 0.2–0.4 | <0.2 | 0.053 | 0.074 |
Land use | Water, Other forest, Aquaculture | Grassland | Economic forest | Cropland | Transportation, Industrial, Residential, Public | 0.066 | 0.092 | |
Proximity to water (km) | <1 | 1–2 | 2–3 | 3–4 | >4 | 0.094 | 0.131 | |
Ecological reserve | Ecological control land | - | - | - | Other area | 0.053 | 0.074 | |
Coastal protection area | Guanghai Bay, Daya Bay | Coastal zone areas, Islands | Coastal zone forests | - | others | 0.057 | 0.080 | |
Human disturbances | Proximity to urban areas (km) | <0 | 0–0.5 | 0.5–1 | 1–1.5 | >1.5 | 0.158 | 0.079 |
Proximity to roads (km) | >4 | 3–4 | 2–3 | 1–2 | 0–1 | 0.123 | 0.062 | |
Population density | 0–200 | 200–400 | 400–700 | 700–1000 | >1000 | 0.093 | 0.046 | |
Port importance | 0 | 1–2 | 2–5 | 5–8 | >8 | 0.076 | 0.038 |
Indicators for Weight Assignment | Consistency Ratio (CR) |
---|---|
Primary indicators of construction land | 0.033 |
Primary indicators of ecological land | 0.033 |
Sub-indicators of Topography and geology | 0.033 |
Sub-indicators of Ecological protection | 0.002 |
Sub-indicators of Human disturbances | 0.004 |
Landscape Type | Land Suitability Zoning | Threshold Range |
---|---|---|
Ecological land | ECZ: Ecological Control Zone | −67,927.9 to −23,161.5 |
EBZ: Ecological Buffer Zone | −23,161.4 to 0 | |
Construction land | SCZ: Suitable Construction Zone | 0 to 6356.7 |
PCZ: Prior Construction Zone | 6356.8 to 23,395.4 |
Weight Increment (%) | ECZ (km2) | EBZ (km2) | SCZ (km2) | PCZ (km2) |
---|---|---|---|---|
2% | 2199 | 38,762 | 12,947 | 1481 |
4% | 2184 | 38,769 | 12,970 | 1467 |
6% | 2161 | 38,780 | 12,997 | 1453 |
8% | 2208 | 38,721 | 12,989 | 1472 |
10% | 2183 | 38,733 | 13,017 | 1457 |
12% | 2158 | 38,746 | 13,044 | 1441 |
14% | 2132 | 38,759 | 13,152 | 1346 |
16% | 2105 | 38,773 | 13,102 | 1410 |
18% | 2077 | 38,787 | 13,131 | 1394 |
20% | 2092 | 38,761 | 13,173 | 1365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Yan, F.; Su, F.; Xu, L. The Assessment of Land Suitability for Urban Expansion and Renewal for Coastal Urban Agglomerations: A Pilot Study of the Guangdong-Hong Kong-Macao Greater Bay Area. Land 2024, 13, 1729. https://doi.org/10.3390/land13111729
Pan T, Yan F, Su F, Xu L. The Assessment of Land Suitability for Urban Expansion and Renewal for Coastal Urban Agglomerations: A Pilot Study of the Guangdong-Hong Kong-Macao Greater Bay Area. Land. 2024; 13(11):1729. https://doi.org/10.3390/land13111729
Chicago/Turabian StylePan, Tingting, Fengqin Yan, Fenzhen Su, and Liang Xu. 2024. "The Assessment of Land Suitability for Urban Expansion and Renewal for Coastal Urban Agglomerations: A Pilot Study of the Guangdong-Hong Kong-Macao Greater Bay Area" Land 13, no. 11: 1729. https://doi.org/10.3390/land13111729
APA StylePan, T., Yan, F., Su, F., & Xu, L. (2024). The Assessment of Land Suitability for Urban Expansion and Renewal for Coastal Urban Agglomerations: A Pilot Study of the Guangdong-Hong Kong-Macao Greater Bay Area. Land, 13(11), 1729. https://doi.org/10.3390/land13111729