How to Achieve the Ecological Sustainability Goal of Ecologically Fragile Areas on the Qinghai-Tibet Plateau: A Multi-Scenario Simulation of Lanzhou-Xining Urban Agglomerations
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources and Processing
3. Methods
3.1. Future Urban Expansion Simulation
3.2. Carbon Storage
3.3. Habitat Quality
3.4. Water Yield
4. Results
4.1. Land Use Change in the LXUA from 2001 to 2021: Conflicts and Compromises Between Industrial Development, Ecological Protection, and Cropland Preservation
4.2. Analysis of 2031 Land Use Simulation Results
4.3. Carbon Storage Analysis
4.4. Habitat Quality Analysis
4.5. Water Yield Analysis
5. Discussion and Conclusions
5.1. Discussion
5.1.1. How Will the LXUA Expand by 2031?
5.1.2. How Will Multiple Scenarios Affect Ecosystem Services in the LXUA?
5.1.3. Policy Implications
- (1)
- Allowing “Breathing” Space for Land Expansion in the LXUA
- (2)
- Creating a Cross-Provincial “Ecological Network” for Future Ecological Red Line Delineation in the LXUA
- (3)
- Reassessing the Timeline for Well-Facilitated Cropland Construction in the LXUA from an Ecosystem Services Perspective
5.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.X.; Li, Y.; Wang, X.G.; Zhu, L.; Li, H.Z.; Liu, Y.; Tang, N.B.; Xu, Y.; Hu, Q.Y. Investigating River Health and Potential Risks Using a Novel Hybrid Decision-Making Framework with Multi-Source Data Fusion in the Qinghai-Tibet Plateau. Environ. Impact Assess. Rev. 2022, 96, 106849. [Google Scholar] [CrossRef]
- China Keywords. Available online: http://keywords.china.org.cn/m/2022-07/11/content_78317142.html (accessed on 30 June 2024). (In Chinese).
- Kong, Y.; He, W.J.; Qin, Z.H.; Tan, J.T. Net Effect Evaluation on China’s Western Development Policy. Stat. Decis. 2018, 34, 91–95. (In Chinese) [Google Scholar]
- Lu, F.; Hu, H.F.; Sun, W.J.; Zhu, J.J.; Liu, G.B.; Zhou, W.M.; Zhang, Q.F.; Shi, P.L.; Liu, X.P.; Wu, X.; et al. Effects of National Ecological Restoration Projects on Carbon Sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef]
- Xiao, L.L.; Yang, X.H.; Cai, H.Y.; Zhang, D.X. Cultivated Land Changes and Agricultural Potential Productivity in Mainland China. Sustainability 2015, 7, 11893–11908. [Google Scholar] [CrossRef]
- Bennett, M.T. China’s Sloping Land Conversion Program: Institutional Innovation or Business as Usual? Ecol. Econ. 2008, 65, 699–711. [Google Scholar] [CrossRef]
- Research Group of National Bureau of Statistics. The Impact of “cropland Re-turning into Forest” upon Grain Production, Supply and Demand in West China. J. Manag. World 2004, 20, 97–100+108. (In Chinese) [Google Scholar]
- Wu, Y.Z.; Shan, L.P.; Guo, Z.; Peng, Y. Cultivated Land Protection Policies in China Facing 2030: Dynamic Balance System versus Basic cropland Zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Qiu, H.H.; Hu, B.Q.; Zhang, Z. Study on Ecosystem Service Value of Guangxi in the Past 20 Years Based on Land Use Change. J. Environ. Eng. Technol. 2022, 12, 1455–1465. (In Chinese) [Google Scholar]
- Fu, B.J.; Zhang, L.W. Land-use Change and Ecosystem Services: Concepts, Methods and Progress. Prog. Geogr. 2014, 33, 441–446. (In Chinese) [Google Scholar]
- Maimaiti, B.; Chen, S.S.; Kasimu, A.; Mamat, A.; Aierken, N.; Chen, Q.L. Coupling and Coordination Relationships between Urban Expansion and Ecosystem Service Value in Kashgar City. Remote Sens. 2022, 14, 2557. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, S.; Su, C.H.; Forsius, M. Linking Ecosystem Processes and Ecosystem Services. Curr. Opin. Environ. Sustain. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Troy, A.; Wilson, M.A. Mapping Ecosystem Services: Practical Challenges and Opportunities in Linking GIS and Value Transfer. Ecol. Econ. 2006, 60, 435–449. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, J.; Chen, W.X. Impact of Urban Expansion on Carbon Storage under Multi-Scenario Simulations in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 45507–45526. [Google Scholar]
- Li, Y.H.; Yao, S.; Jiang, H.Z.; Wang, H.R.; Ran, Q.C.; Gao, X.Y.; Ding, X.Y.; Ge, D.D. Spatial- Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China. Land 2022, 11, 2213. [Google Scholar] [CrossRef]
- Anjinho, P.D.S.; Barbosa, M.A.G.A.; Mauad, F.F. Evaluation of InVEST’s Water Ecosystem Service Models in a Brazilian Subtropical Basin. Water 2022, 14, 1559. [Google Scholar] [CrossRef]
- Louis, V.; Page, S.E.; Tansey, K.J.; Jones, L.; Bika, K.; Balzter, H. Tiger Habitat Quality Modelling in Malaysia with Sentinel-2 and InVEST. Remote Sens. 2024, 16, 284. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of Logistic Regression, Markov Chain and Cellular Automata Models to Simulate Urban Expansion. Int. J. Appl. Earth Observ. Geoinform. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Abdullah, A.Y.M.; Dewan, A.; Hall, J.W. The Effects of Changing Land Use and Flood Hazard on Poverty in Coastal Bangladesh. Land Use Policy 2020, 99, 104868. [Google Scholar]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land Use/Land Cover Change Detection and Prediction in the North-Western Coastal Desert of Egypt Using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Ren, J.; Ma, R.R.; Huang, Y.H.; Wang, Q.X.; Guo, J.; Li, C.Y.; Zhou, W. Identifying the Trade-Offs and Synergies of Land Use Functions and Their Influencing Factors of Lanzhou-Xining Urban Agglomeration in the Upper Reaches of Yellow River Basin, China. Ecol. Indic. 2024, 158, 111279. [Google Scholar]
- Liang, X.; Liu, X.P.; Li, D.; Zhao, H.; Chen, G.Z. Urban Growth Simulation by Incorporating Planning Policies into a CA-Based Future Land-Use Simulation Model. Int. J. Geogr. Inform. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar]
- Shi, X.; Wu, L.; Zheng, Y.Q.; Zhang, X.; Wang, Y.J.; Chen, Q.; Sun, Z.Y.; Nie, T.Z. Dynamic Estimation of Mangrove Carbon Storage in Hainan Island Based on the InVEST-PLUS Model. Forests 2024, 15, 750. [Google Scholar]
- Chen, Y.M.; Li, X.; Liu, X.P.; Ai, B. Modeling Urban Land-Use Dynamics in a Fast Developing City Using the Modified Logistic Cellular Automaton with a Patch-Based Simulation Strategy. Int. J. Geogr. Inf. Sci. 2014, 28, 234–255. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, X.Y.; Sun, D.Q. A Coupled InVEST-PLUS Model for the Spatiotemporal Evolution of Ecosystem Carbon Storage and Multi-Scenario Prediction Analysis. Land 2024, 13, 509. [Google Scholar]
- Wu, Q.; Wang, L.; Wang, T.Y.; Ruan, Z.Y.; Du, P. Spatial–Temporal Evolution Analysis of Multi-Scenario Land Use and Carbon Storage Based on PLUS-InVEST Model: A Case Study in Dalian, China. Ecol. Indic. 2024, 166, 112448. [Google Scholar] [CrossRef]
- Wei, Y.D.; Li, H.; Yue, W.Z. Urban Land Expansion and Regional Inequality in Transitional China. Landsc. Urban Plan. 2017, 163, 17–31. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Ouyang, H.; Xu, X.L.; Song, M.H.; Zhou, C.P. Distribution Characteristics of Soil Organic Carbon Storage and Density on the Qinghai-Tibet Plateau. Acta Pedol. Sin. 2008, 45, 933–942. (In Chinese) [Google Scholar]
- Cheng, T.R. Research on the Forest Biomass and Carbon Storage in Xiaolong Mountains, Gansu Province. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 1 April 2007. [Google Scholar]
- Jia, G.M.; Liu, B.R.; Wang, G.; Zhang, B.L. The Microbial Biomass and Activity in Soil with Shrub (Caragana korshinskii K.) Plantation in the Semi-Arid Loess Plateau in China. Eur. J. Soil Biol. 2010, 46, 6–10. [Google Scholar] [CrossRef]
- Lei, L.; Liu, X.D.; Wang, S.L.; Li, Y.; Zhang, X.L. Assignment Rule of Alpine Shrubs Biomass and Its Relationships to Environmental Factors in Qilian Mountains. Ecol. Environ. Sci. 2011, 20, 1602–1607. [Google Scholar]
- Wang, C.T. Relationship between Productivity and Species Diversity of Plant Community in Alpine Meadow. Ph.D. Thesis, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China, 2006. (In Chinese). [Google Scholar]
- Wang, X.X.; Dong, S.K.; Yang, B.; Li, Y.Y.; Su, X.K. The Effects of Grassland Degradation on Plant Diversity, Primary Productivity, and Soil Fertility in the Alpine Region of Asia’s Headwaters. Environ. Monit. Assess. 2014, 186, 6903–6917. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Wang, Y.H.; Yang, K.; Wang, S.P.; Zeng, H.; Baumann, F.; Kuehn, P.; Scholten, T.; He, J.S. Soil Respiration in Tibetan Alpine Grasslands: Belowground Biomass and Soil Moisture, but Not Soil Temperature, Best Explain the Large-Scale Patterns. PLoS ONE 2012, 7, e34968. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Dong, S.K.; Wen, L.; Wang, X.X.; Wu, Y. The Effects of Fencing on Carbon Stocks in the Degraded Alpine Grasslands of the Qinghai-Tibetan Plateau. J. Environ. Manag. 2013, 128, 393–399. [Google Scholar] [CrossRef]
- Yang, Y.H.; Fang, J.Y.; Ma, W.H.; Smith, P.; Mohammat, A.; Wang, S.P.; Wang, W. Soil Carbon Stock and Its Changes in Northern China’s Grasslands from 1980s to 2000s. Glob. Chang. Biol. 2010, 16, 3036–3047. [Google Scholar] [CrossRef]
- Ma, Y.J.; Zhong, J.T.; Mi, W.B.; Shi, J.L.; Jiang, X. Assessment and Vulnerability Analysis on Carbon Storage Based on Multi-Scenarios Simulation and Prediction of Land Use in Qinghai Lake Basin. J. Arid Land Resour. Environ. 2023, 37, 46–55. (In Chinese) [Google Scholar]
- Hirota, M.; Kawada, K.; Hu, Q.W.; Kato, T.; Tang, Y.H.; Mo, W.H.; Cao, G.M.; Mariko, S. Net Primary Productivity and Spatial Distribution of Vegetation in an Alpine Wetland, Qinghai-Tibetan Plateau. Limnology 2007, 8, 161–170. [Google Scholar] [CrossRef]
- Wu, Y.X.; Liu, F.N.; Chen, B.T. Spatial and Temporal Evolution and Drivers of Habitat Quality of Urban Agglomeration in Lower Yellow River Basin. Bull. Soil Water Conserv. 2023, 43, 396–404. (In Chinese) [Google Scholar]
- Li, S.F.; Hong, Z.L.; Xue, X.P.; Zheng, X.F.; Du, S.S.; Liu, X.F. Evolution Characteristics and Multi-Scenario Prediction of Habitat Quality in Yulin City Based on PLUS and InVEST Models. Sci. Rep. 2024, 14, 11852. [Google Scholar]
- Hou, Y.J.; Wu, J.M. Land-Use and Habitat Quality Prediction in the Fen River Basin Based on PLUS and InVEST Models. Front. Environ. Sci. 2024, 12, 1386549. [Google Scholar]
- Liu, M.Z.; Zhang, H.J.; Wang, Y.F.; Pei, H.W. Characteristics of Habitat Quality in the Agro-pastoral Ecotone of Northern China Based on Land Uses. Res. Soil Water Conserv. 2021, 28, 156–162. (In Chinese) [Google Scholar]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Wu, L.; Luo, Y.K.; Pang, S.J.; Wang, G.S.; Ma, X.Y. Factor Analysis of Hydrologic Services in Water-Controlled Grassland Ecosystems by InVEST Model and Geodetector. Environ. Sci. Pollut. Res. 2024, 31, 20409–20433. [Google Scholar] [CrossRef] [PubMed]
- Dri, G.F.; Fontana, C.S.; Dambros, C.S. Estimating the Impacts of Habitat Loss Induced by Urbanization on Bird Local Extinctions. Biol. Conserv. 2021, 256, 109064. [Google Scholar] [CrossRef]
- Li, G. “Red Line of Ecological Protection”: Lifeline to Ensure National Ecological Security. Qiushi 2014, 2, 44–46. (In Chinese) [Google Scholar]
- GB/T 30600-2022; Well-Facilitated Farmland Construction—General Rule. Standardization Administration of China: Beijing, China, 2022.
- General rules for high-standard cropland construction. Agric. Compr. Dev. China 2022, 6, 4–10. (In Chinese)
Category | Data | Spatial Resolution | Data Source |
---|---|---|---|
CLCD | CLCD in 2001, 2011 and 2021 | 30 m | https://doi.org/10.5281/znodo.5816591 (Accessed: 22 January 2024) |
Environmental driver | DEM | 250 m | Resources and Environment Data Center, Chinese Academy of Sciences https://www.resdc.cn/data.aspx?DATAID=123 (Accessed: 22 January 2024) |
Soil type | 1 km | Resources and Environment Data Center, Chinese Academy of Sciences https://www.resdc.cn/data.aspx?DATAID=145 (Accessed: 24 January 2024) | |
Socioeconomic driver | GDP | 1 km | Resources and Environment Data Center, Chinese Academy of Sciences https://www.resdc.cn/DOI/DOI.aspx?DOIID=33 (Accessed: 24 January 2024) |
Population | 1 km | Resources and Environment Data Center, Chinese Academy of Sciences https://www.resdc.cn/DOI/DOI.aspx?DOIID=32 (Accessed: 24 January 2024) | |
Nighttime lighting big data | 500 m | https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YGIVCD (Accessed: 24 January 2024) | |
Distance to highway entrance and exit | 30 m | Gaode OPEN API https://lbs.amap.com/ (Accessed: 28 January 2024) | |
Distance to National Highway Distance to Provincial Highway Distance to railway Distance to primary roads | 30 m | OpenStreetMap https://download.geofabrik.de/ (Accessed: 24 January 2024) | |
Climate driver | Annual mean temperature Annual mean precipitation | 30 s | WorldClim https://www.worldclim.org/data/worldclim21.html (Accessed: 24 January 2024) |
Water production service data | China’s 1 km resolution monthly precipitation dataset (1901–2022) China’s 1 km Monthly Potential Evapotranspiration Dataset (1901–2022) | 1 km | National Earth System Science Data Center https://www.geodata.cn/main/ (Accessed: 16 May 2024) |
Chinese Soil Dataset Based on World Soil Database (HWSD) (v1.1) | 1 km | National Glacier Frozen Soil Desert Science Data Center http://www.ncdc.ac.cn/portal/metadata/a948627d-4b71-4f68-b1b6-fe02e302af09 (Accessed: 16 May 2024) |
Scenarios | Cropland | Forest | Shrub | Grassland | Water | Ice/Snow | Barren | Impervious | Wetland |
---|---|---|---|---|---|---|---|---|---|
2031 BS | 15,183,787 | 4,019,626 | 1,085,004 | 81,248,948 | 4,507,132 | 1161 | 4,407,226 | 371,732 | 3237 |
2031 CP | 16,829,985 | 4,012,748 | 1,085,013 | 79,641,506 | 4,499,563 | 1126 | 4,396,469 | 358,339 | 3100 |
2031 EP | 15,187,162 | 4,145,506 | 1,086,840 | 81,135,045 | 4,507,244 | 1125 | 4,406,223 | 355,447 | 3263 |
Code | CLCD | Above | Below | Soil | Dead | Reference |
---|---|---|---|---|---|---|
1 | Cropland | 6.19 | 1.11 | 47.81 | 0 | [31] |
2 | Forest | 22.6 | 20.49 | 116.73 | 0 | [32] |
3 | Shrub | 1.9 | 6.2 | 94.6 | 0 | [33,34] |
4 | Grassland | 1 | 8.5 | 85.6 | 0 | [35,36,37,38,39] |
5 | Water | 0 | 0 | 39.8 | 0 | [40] |
6 | Ice/Snow | 0 | 0 | 0 | 0 | [40] |
7 | Barren | 0 | 2.1 | 13.44 | 0 | [40] |
8 | Impervious | 0 | 0 | 24.15 | 0 | [40] |
9 | Wetland | 1.5 | 15 | 44 | 0 | [41,42] |
Threat | Max Distance/m | Weight | Decay |
---|---|---|---|
Cropland | 4 | 0.6 | Linear |
Impervious | 8 | 0.8 | Exponential |
Barren | 6 | 0.5 | Linear |
CLCD | Habitat Suitability | Cropland | Impervious | Barren |
---|---|---|---|---|
Cropland | 0.5 | 0.0 | 0.6 | 0.4 |
Forest | 0.9 | 0.6 | 0.8 | 0.2 |
Shrub | 0.9 | 0.7 | 0.9 | 0.2 |
Grassland | 0.75 | 0.7 | 0.7 | 0.7 |
Water | 1.0 | 0.7 | 0.85 | 0.3 |
Ice/Snow | 0.3 | 0.0 | 0.0 | 0.2 |
Barren | 0.3 | 0.5 | 0.5 | 0.0 |
Impervious | 0.1 | 0.1 | 0.0 | 0.1 |
Wetland | 0.8 | 0.7 | 0.8 | 0.0 |
Land Use Code | Land Use Type | Maximum Root Depth (mm) | Kc |
---|---|---|---|
1 | Cropland | 2000 | 0.7 |
2 | Forest | 5200 | 1.0 |
3 | Shrub | 5200 | 0.95 |
4 | Grassland | 2600 | 0.85 |
5 | Water | 100 | 1.0 |
6 | Ice/Snow | 100 | 0.5 |
7 | Barren | 300 | 0.2 |
8 | Impervious | 100 | 0.3 |
9 | Wetland | 300 | 1.0 |
Land Type | Area (km2) | Change Rate | ||||
---|---|---|---|---|---|---|
2001 | 2011 | 2021 | 2001–2011 | 2011–2021 | 2001–2021 | |
Cropland | 14,707.74 | 12,825.86 | 13,331.92 | −12.8% | 3.95% | −9.37% |
Forest | 2965.48 | 3151.95 | 3397.99 | 6.29% | 7.81% | 14.57% |
Shrub | 1105.56 | 1040.47 | 998.92 | −5.89% | −4.06% | −9.63% |
Grassland | 73,985.41 | 75,754.85 | 74,285.44 | 2.39% | −1.94% | 0.41% |
Water | 3454.65 | 3634.35 | 3838.85 | 5.20% | 5.63% | 11.11% |
Ice/Snow | 1.93 | 13.46 | 1.24 | 598.61% | −90.80% | −35.74% |
Barren | 3340.31 | 3072.12 | 3590.21 | −8.03% | 16.85% | 7.49% |
Impervious | 183.40 | 251.23 | 294.27 | 37.00% | 17.14% | 60.48% |
Wetland | 0.57 | 0.78 | 2.09 | 36.94% | 167.29% | 266.06% |
Land Type | Trend | Policy Causes |
---|---|---|
Cropland | Cropland area significantly decreased from 14,707.74 km2 in 2001 to 12,825.85 km2 in 2011, then increased to 13,319.24 km2 in 2021 | Early urban expansion led to a large amount of rural land being converted to urban construction land. Later, the implementation of government cropland preservation policies and cropland reclamation projects led to an increase in cropland. |
Forest | Forest area continuously increased over 20 years, from 2965.48 km2 in 2001 to 3397.99 km2 in 2021 | Large-scale afforestation and ecological restoration projects implemented by the Chinese government, with forests given absolute priority in such projects. |
Grassland | Grassland area first increased and then decreased, from 73,985.41 km2 in 2001 to 75,754.85 km2 in 2011, and then decreased to 74,285.44 km2 in 2021 | Early ecological protection projects like returning cropland to grassland increased grassland area, while later strict cropland protection policies led to grassland becoming a primary source for urban and rural construction land, causing a gradual decrease in area. |
Impervious Land | Mainly urban construction land, its area continuously increased from 183.40 km2 in 2001 to 294.27 km2 in 2021 | Direct reflection of urbanization. Support policies under the Western Development Strategy promoted urban construction and industrialization, leading to rapid urban expansion. |
Year | Cropland | Forest | Shrub | Grassland | Water | Ice/Snow | Barren | Impervious | Wetland |
---|---|---|---|---|---|---|---|---|---|
2001 | 14.707.7442 | 2965.484 | 1105.5636 | 73.985.41 | 3454.655 | 1.926 | 3340.311 | 183.402 | 0.5697 |
2011 | 12.825.8568 | 3151.95 | 1040.4738 | 75.754.85 | 3634.348 | 13.4559 | 3072.125 | 251.2251 | 0.7803 |
2021 | 13.331.9241 | 3397.995 | 998.9217 | 74.285.44 | 3838.848 | 1.2375 | 3590.213 | 294.2739 | 2.0853 |
2031BS | 13.665.4083 | 3617.663 | 976.5036 | 73.124.05 | 4056.419 | 1.0449 | 3966.503 | 334.5588 | 2.9133 |
2031CP | 15.146.91301 | 3611.473 | 976.512145 | 71.677.36 | 4049.607 | 1.013446 | 3956.822 | 322.5058 | 2.790625 |
2031EP | 13.668.44579 | 3730.955 | 978.155666 | 73.021.54 | 4056.519 | 1.013327 | 3965.6 | 319.9021 | 2.936272 |
Year | Average Habitat Quality |
---|---|
2001 | 0.7098 |
2011 | 0.7161 |
2021 | 0.7130 |
2031BS | 0.7110 |
2031CP | 0.7072 |
2031EP | 0.7112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Z.; Liu, W.; Guo, J.; Su, Y.; Gao, Y.; Bu, W.; Ren, J.; Li, C. How to Achieve the Ecological Sustainability Goal of Ecologically Fragile Areas on the Qinghai-Tibet Plateau: A Multi-Scenario Simulation of Lanzhou-Xining Urban Agglomerations. Land 2024, 13, 1730. https://doi.org/10.3390/land13111730
Gong Z, Liu W, Guo J, Su Y, Gao Y, Bu W, Ren J, Li C. How to Achieve the Ecological Sustainability Goal of Ecologically Fragile Areas on the Qinghai-Tibet Plateau: A Multi-Scenario Simulation of Lanzhou-Xining Urban Agglomerations. Land. 2024; 13(11):1730. https://doi.org/10.3390/land13111730
Chicago/Turabian StyleGong, Zeyuan, Wei Liu, Jing Guo, Yi Su, Yapei Gao, Wanru Bu, Jun Ren, and Chengying Li. 2024. "How to Achieve the Ecological Sustainability Goal of Ecologically Fragile Areas on the Qinghai-Tibet Plateau: A Multi-Scenario Simulation of Lanzhou-Xining Urban Agglomerations" Land 13, no. 11: 1730. https://doi.org/10.3390/land13111730
APA StyleGong, Z., Liu, W., Guo, J., Su, Y., Gao, Y., Bu, W., Ren, J., & Li, C. (2024). How to Achieve the Ecological Sustainability Goal of Ecologically Fragile Areas on the Qinghai-Tibet Plateau: A Multi-Scenario Simulation of Lanzhou-Xining Urban Agglomerations. Land, 13(11), 1730. https://doi.org/10.3390/land13111730