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Abstract: Cities are significantly warmer than their surrounding rural environments. Known as the
‘urban heat island effect’, it can affect the health of urban residents and lead to increased energy use,
public health impacts, and damage to infrastructure. Although this effect is extensively researched,
less is known about how landscape characteristics within cities affect local temperature variation. This
study examined how tree canopy cover, canopy volume, and impervious surface cover affect daytime
near-surface air temperature, and how these effects vary between different scales of analysis (10, 30,
60, 90 m radii), ranging from approximate street corridor to city block size. Temperature data were
obtained from a car-mounted sensor, with traverse data points recorded during morning, afternoon,
and evening times, plotted throughout the city of Portland, OR. The variability in near-surface air
temperature was over 10◦ F during each traverse period. The results indicate that near-surface
air temperature increased linearly with impervious surface cover and decreased linearly with tree
canopy cover, with canopy volume reducing the temperature by 1◦ F for every 500 cubic feet of
canopy volume for evening temperatures. The magnitude of the effect of tree canopy increased
with spatial scale, with 60 and 90 m scales having the greatest measurable effect. Canopy volume
had a positive relationship on presumed nighttime and early-morning temperatures at 60 and 90 m
scales, potentially due to the impacts of wind fluctuation and air roughness. Canopy cover still
contributed the largest overall decrease in street-scale temperatures. Increasing tree canopy cover
and volume effectively explained the lower daytime and evening temperatures, while reducing
impervious surface cover remains critical for reducing morning and presumed nighttime urban heat.
The results may inform strategies for urban foresters and planners in managing urban land cover and
tree planting patterns to build increased resiliency towards moderating urban temperature under
warming climate conditions.

Keywords: urban heat island (UHI); urban tree canopy; impervious surfaces; near-surface air
temperature; ecosystem services; landscape variation

1. Introduction

The urban heat island effect (UHI), a phenomenon in which urban areas experience
higher temperatures compared to surrounding rural environments, affects urban settle-
ments worldwide and presents major sustainability challenges [1–3]. The UHI effect occurs
due to differences in the urban and rural energy balance, as modified land surfaces, such
as impervious surfaces, affect the storage and transfer of radiant and turbulent heat and
are one of the most influential and recognized local climate modifications of urbaniza-
tion [1,4,5]. As urban populations continue to grow, elevated city temperatures increase the
vulnerability of urban residents to extreme heat events and a warming climate, with record
high temperatures and numbers of heat-related deaths occurring in urban areas across the
United States in recent years while also increasing urban energy demands and costs [6–10].
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Strategies to improving cities’ resiliency to future climates and extreme heat events by
mitigating the UHI effect are critical to goals of many municipalities [11,12]. It is widely
known that an increase in urban vegetation is one of the most effective and sustainable
ways to mitigate the UHI effect through shading and evapotranspiration [13]. Urban trees
provide such benefits while also creating permeable surfaces and natural landcover, all of
which help reduce surface and ambient air temperatures.

Although the relationship between UHI and urban tree canopy has been extensively
researched on a broad-scale spatial extent of urban–rural temperature differences, less is
known about how differences in micro-scale landscape characteristics within cities affect
local temperature variation [9]. With advances in mobile sensors, data can now be provided
at intraurban scales (e.g., household, street corridor, city block, etc.), which has historically
been difficult using fixed or satellite remote sensors, allowing temperature measurement
throughout continuous changing urban land cover gradients [9,14]. Recent studies show
that there can be variations in air temperature within cities as large as that associated with
the UHI urban–rural difference, with urban environments acting as “archipelagos” rather
than “islands” [9,15,16]. Research has also predominately focused on the horizontal struc-
ture of urban tree canopies rather than the three-dimensional characteristics of tree canopies,
with less research attempting to identify the influence of the vertical characteristics of tree
canopies on temperature [17–20].

Using Portland, OR as a study area, this paper aims to address these areas of research
and attempt to build a larger body of knowledge on the effects of urban canopies, including
average canopy volume and impervious surface coverage, on near-surface air temperature
at different intraurban scales (10, 30, 60, 90 m). These scales range from an approximate
single property or street corridor (10 m) to a city block (90 m). Using Light Detection and
Ranging (LiDAR)-derived urban canopies, impervious surfaces, and temperature data, we
aim to answer the following questions:

(1) How does variability in the coverage of urban canopies and impervious surfaces
influence daytime near-surface air temperature?

(2) How do these effects vary throughout different intraurban spatial scales?
(3) What effect does urban canopy volume have on daytime near-surface air temperature?

Due to the diverse ownership and landscape heterogeneity of urban landscapes,
decisions about tree canopy cover largely occur on a site-by-site basis. By addressing these
questions, we aim to understand the role of tree canopy in mediating air temperatures
while providing a means for identifying the types of interventions for mitigating UHI.

2. Materials and Methods
2.1. Study Area

The City of Portland, OR is located in the Pacific Northwest region of the United States.
The city is located approximately 45.5◦ N, 122.6◦ W and is situated at the confluence of
the Willamette and Columbia Rivers at the beginning of the Willamette Valley (Figure 1).
The city boundaries cover approximately 145 square miles, including 133.5 square miles of
land cover and 11.5 square miles of water cover, and it has a total population of 652,503
as of 2020 [21]. Land use in the city is predominately residential zoning, comprised of
low–medium-density single and multifamily residential homes, making up approximately
52% of the city’s total area [22].

The city of Portland has an average tree canopy cover of 29.8% citywide; however,
the distribution of urban canopy coverage is dramatically divided by the Willamette River,
where the east side of the city has on average a canopy cover of 22.3%, while the west side
of the river, excluding Forest Park, has an average canopy cover of 46% [23–25]. While there
has been an overall increase in tree canopy coverage over the past 20 years (27.3% in 2000),
between 2015 and 2020, there was a decline from 30.7% to the current 29.8% coverage [23].
The city of Portland currently has a goal of expanding the urban canopy to cover 33.3% of
the city’s area [23]. The City of Portland is currently engaging in expanding urban canopy
policies and planting strategies, including the ‘Growing a more equitable urban forest:
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Portland’s citywide tree planting strategy’, with key findings and recommendations toward
improving the city’s air quality, public health, and livability by enhancing and maintain the
health of the urban forest. The city of Maywood Park, OR, a separately incorporated town,
is located as an enclave within the Northeast district of Portland and is excluded from this
study due to a lack of available data.
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Figure 1. Study area of Portland, OR.

The city and region are defined as a temperate, Mediterranean climate, where summers
are warm and dry, and winters are mild and wet. Historically, summer temperatures have
been cooler than typical Mediterranean climates; however, summer high temperatures
have been increasing each year since 2010 [26]. In 2018, there were more 90◦ F days than
ever before, with a total of 31 days, beating out the record of 29 days set in 2015 [27].
Portland now experiences about 11 more days above 90◦ F per year, on average, than it did
in 1940 [28].

Overall, Portland’s annual average temperature has warmed about 3◦ F since 1940,
with average summer temperatures warming by 4.6◦ F, with both results being statistically
significant [28]. Portland’s average precipitation totals have decreased by 2 inches, with
Portland’s summer average precipitation totals decreasing by 0.38 inches, since 1940 [28].
This illustrates a shift in the climate of the city, as it now experiences and will continue
to face a warmer and drier climate. From a historical data perspective, and with recent
trends and changes in the microclimate of the city of Portland, the continued study of these
changes will be a key part to building and maintaining equitable resilience towards extreme
weather events and warming urban environments.

2.2. Data

Tree canopy data were developed by Metro using a 2019 LiDAR dataset and normal-
ized difference vegetation index (NDVI) from aerial imagery collected in the summer of
2019 (Table 1). NDVI calculated from multispectral data is a well-known indicator used
to distinguish vegetation and non-vegetation classes [18,29]. Tree canopy was detected
using a combination of feature heights from a normalized digital surface model (nDSM)
derived from LiDAR and NDVI imagery, representing a two-dimensional extent of tree
canopy. To differentiate it from other vegetation, a 10-foot height threshold was set. Geo-
metric post-processing was completed by Metro to reduce errors and noise (electrical lines
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above vegetation, etc.). This raster dataset consists of a 3 × 3 foot raster pixel cell spatial
resolution [30]. Canopy volume was calculated by multiplying the feature height values of
the nDSM by the area of the raster pixel cell spatial resolution, as conducted in previous
studies [18] (Table 1).

Table 1. Data and sources.

Data Time Period Source

Canopy cover 2019 Metro
Canopy volume 2019 Metro

Impervious surfaces 2019 City of Portland, BES
Temperature (◦F) 2023 CAPA_NIHHIS

The impervious surface dataset was provided by the City of Portland, Bureau of
Environmental Services (BES) and maintained by the BES Asset Systems Management
group. This dataset categorizes impervious surfaces into building footprints, streets, and
parking lots (Table 1).

Temperature datasets were provided by CAPA Strategies in partnership with the
National Integrated Heat Health Information System (NIHHIS) (Table 1). Temperature
data, recorded in Fahrenheit, were collected on 22 July 2023 and are provided as traverse
point data, representing near surface air temperature. Defined as a long, hot day in
July, the greater Portland Metro area had a max temperature of 94.6◦ F [16]. The data
used for this study had a maximum temperature of 88.7◦ F within the City of Portland.
Three temperature vehicle traverse routes were conducted including morning (6–7 a.m.),
afternoon (3–4 p.m.), and evening (7–8 p.m.). Detailed methods for how temperature data
were collected are provided in Voelkel and Shandas, 2017, and Heat Watch Portland Metro
Summary Report publications [16,31].

2.3. GIS Analysis

The CAPA_NIHHIS Portland Metro Heat Watch campaign collected over 269,000
temperature point measurements throughout the greater Portland Metro region in total
between the three vehicle traverse routes, which were each conducted for one hour at 6
am, 3 p.m., and 7 p.m. [16]. Through analysis in ArcGIS Pro 3.3, temperature points were
only kept in the Portland city boundary, providing a total of 29,128 morning temperature
points, 25,191 afternoon temperature points, and 28,034 evening temperature points, with
sensors recording temperatures every second. Because of the measurement frequency,
considerable temporal and spatial autocorrelation needed to be accounted for, with every
100th temperature point being selected, equally spacing temperature measurements in time
and providing a spatially diverse sample size [9,31]. Buffer zones, determining the scale of
analysis, were set at 10, 30, 60, and 90 m from the selected temperature points to represent
scales of an approximate single property or street corridor (10 m) to a city block (90 m)
(Figure 2).
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Buffer zones that overlapped or included water bodies were removed for this study.
This resulted in a total of 265 morning temperature points, 234 afternoon temperature
points, and 261 evening temperature points, each with a set of 4 buffer zones associated
with them (Figure 3a–c). The slight variation between the three totals is due to the variation
in traverse routes that were used in the initial temperature collection methods [16].

Land 2024, 13, x FOR PEER REVIEW 5 of 20 
 

 
Figure 2. Scale of analysis, using an example of a low–medium-density residential neighborhood in 
North Portland. 

Buffer zones that overlapped or included water bodies were removed for this study. 
This resulted in a total of 265 morning temperature points, 234 afternoon temperature 
points, and 261 evening temperature points, each with a set of 4 buffer zones associated 
with them (Figure 3a–c). The slight variation between the three totals is due to the varia-
tion in traverse routes that were used in the initial temperature collection methods [16]. 

 

Land 2024, 13, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 3. (a)—Morning traverse temperature point collection locations with canopy volume distri-
bution. (b)—Afternoon traverse temperature points collection locations with canopy volume distri-
bution. (c)—Evening traverse temperature points collection locations with canopy volume distribu-
tion. 

The percent canopy coverage was determined by calculating the presence of canopy 
pixels in relation to the total pixel amount in rasterized buffer zones through raster dataset 

Figure 3. Cont.



Land 2024, 13, 1741 6 of 20

Land 2024, 13, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 3. (a)—Morning traverse temperature point collection locations with canopy volume distri-
bution. (b)—Afternoon traverse temperature points collection locations with canopy volume distri-
bution. (c)—Evening traverse temperature points collection locations with canopy volume distribu-
tion. 

The percent canopy coverage was determined by calculating the presence of canopy 
pixels in relation to the total pixel amount in rasterized buffer zones through raster dataset 
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tribution. (b)—Afternoon traverse temperature points collection locations with canopy volume
distribution. (c)—Evening traverse temperature points collection locations with canopy volume
distribution.

The percent canopy coverage was determined by calculating the presence of canopy
pixels in relation to the total pixel amount in rasterized buffer zones through raster dataset
analysis. Average canopy volume estimates were determined using the Zonal Statistics and
Zonal Statistics as Table tools in ArcGIS Pro 3.3 [32], calculating the total canopy volume
and determining the average volume based on the amount of canopy pixels per rasterized
buffer zone. The Zonal Statistics and Zonal Statistics as Table tools calculate statistics on the
cell values of a raster (a value raster) within the zones defined by another dataset, creating a
raster or table output [33]. Similar methods were used to determine the percent coverage of
impervious surfaces, using summarizing tools to determine the total amount of impervious
surfaces in relation to the total area of buffer zones.

2.4. Statistical Analysis

Statistical analysis was completed in both Excel and R (version 2023.12.1 Build 402).
The data were organized in Excel before being uploaded into R statistical software. Square
root transformation of the response variable was performed to satisfy the assumption of
ordinary least squares regression. Multivariate linear regression models were run in R
using the “stats” package. To test the effects of total canopy cover, impervious surface, and
average canopy volume on near-surface air temperature, each temperature point dataset
(morning, afternoon, evening) was examined at each scale of analysis (10, 30, 60, 90 m)
using the multivariate linear regression model below:

(sqrt)temperature = a + b(% canopy) + c(% impervious surface) + d(avg. canopy volume) + ε

Multicollinearity in each explanatory variable was checked at each scale of analysis by
calculating Variance Inflation Factors (VIFs). VIF values that are less than 5 indicate a low
correlation of that predictor with other predictors, while other literature suggests using
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lower values [34,35]. All VIF values were below 5, with the majority of VIF values below
3 indicating properly specified models (Table 2).

Table 2. Variable Inflation Factors (VIFs) for variables included in models for different datasets and
difference scales of analysis.

Traverse Data % Canopy Avg. Canopy Volume % Impervious Surface

Morning 10 m 2.11 2.07 1.19
Morning 30 m 2.89 2.42 1.58
Morning 60 m 4.30 3.33 1.75
Morning 90 m 4.99 3.65 1.92

Afternoon 10 m 2.08 1.78 1.25
Afternoon 30 m 2.66 2.06 1.54
Afternoon 60 m 3.65 2.68 1.79
Afternoon 90 m 3.76 2.65 1.81
Evening 10 m 2.57 2.20 1.46
Evening 30 m 2.57 2.10 1.41
Evening 60 m 3.38 2.58 1.59
Evening 90 m 3.76 2.73 1.76

3. Results

The temperature data provided a reinforcement of the variance of urban temperatures
and the “archipelago” rather than “island” description. The CAPA_NIHHIS temperature
data showed that across the morning, afternoon, and evening near-surface air tempera-
ture measurements, there was an average 10.36◦ F variation throughout the city (Table 3).
Figure 4 demonstrates the intraurban variation in afternoon raw near-surface air tempera-
ture data with changing land cover throughout the city.

Table 3. Measured temperature range and variation of traverses during different recording times.

Traverse Time Temperature Range (◦ F) Variation (◦ F)

Morning (6–7 a.m.) 54.7–65.1 10.4
Afternoon (3–4 p.m.) 78.4–88.7 10.3
Evening (7–8 p.m.) 75.2–85.6 10.4
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Individually, near-surface air temperature decreased linearly with increasing tree
canopy cover throughout all times and scales of analysis (Appendix A). Near-surface air
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temperature increased linearly with increasing impervious surface cover, with similar
effects on temperature at all scales of analysis (Appendix B). Near-surface air temperature
decreased linearly with increasing average canopy volume throughout all times and scales
of analysis (Appendix C).

When jointly considering tree canopy cover, impervious surface cover, and average
canopy volume, the model explained between 17 and 55% of the temperature variation at
the four different scales of analysis throughout all three temperature data traverse times
(morning, afternoon, evening). The model best represented and predicted temperature
at larger scales of analysis (60, 90 m) throughout all three temperature datasets. The
best model (based on adjusted R2 value) using the explanatory variables was for evening
temperatures at the 60 and 90 m scale of analysis, with an adjusted R2 value of 0.55 (Table 4).

Table 4. Summary of model outputs at each temperature measurement time and scale of analysis.

Time of Day +
Scale of Analysis Adjusted R2 a b (% Canopy) c (% Impervious Surface) d (Avg. Canopy Vol.)

Morning, 10 m 0.17 7.75 −0.02 * 0.02 *** −0.01
Morning, 30 m 0.36 7.82 −0.03 *** 0.04 *** 0.01
Morning, 60 m 0.42 7.82 −0.04 *** 0.04 *** 0.02 *
Morning, 90 m 0.44 7.82 −0.05 *** 0.04 *** 0.02 *

Afternoon, 10 m 0.22 9.25 −0.03 *** 0.02 * −0.01
Afternoon, 30 m 0.30 9.26 −0.03 *** 0.02 ** 0
Afternoon, 60 m 0.31 9.26 −0.05 *** 0.01 0
Afternoon, 90 m 0.35 9.25 −0.04 *** 0.01 −0.01
Evening, 10 m 0.26 9.10 −0.02 ** 0.01 * −0.02 *
Evening, 30 m 0.45 9.09 −0.04 *** 0.01 ** −0.01 *
Evening, 60 m 0.55 9.09 −0.04 *** 0.01 −0.02 **
Evening, 90 m 0.55 9.09 −0.06 *** 0.01 −0.01 *

* Denotes the significance of correlation at the 0.05 level (two-tailed); ** denotes the significance of correlation
at the 0.01 level (two-tailed); *** denotes the significance of correlation at the 0.001 level (two-tailed). a is the
y-intercept (estimated by regression), b is the percent canopy coefficient (estimated by regression), c is the percent
impervious surface coefficient (estimated by regression), and d is average canopy volume coefficient (estimated by
regression).

At smaller scales of analysis (10, 30 m), the model explained less in temperature
variation. Canopy percentage had a negative relationship with temperature at all traverse
times and scales of analysis (Table 4, b parameter). Impervious surface cover had a positive
relationship with temperature at smaller scales (10, 30 m) at all scales of analysis, while
not being a significant predictor of temperature at larger scales (60, 90 m) in afternoon and
evening temperature (Table 4, c parameter). Average canopy volume had a positive rela-
tionship with temperature at larger scales of analysis (60, 90 m) on morning temperatures
while not being significant at smaller scales of analysis (10, 30 m) (Table 4, d parameter).
Average canopy volume had no significant effect on afternoon temperatures, while having
a negative effect on temperature at all scales of analysis on evening temperatures (Table 4,
d parameter).

Tree canopy cover had an approximately equal coefficient effect compared to impervi-
ous surface cover at smaller scales of analysis (10, 30 m) throughout all times of day while
having a significantly larger coefficient effect on near-surface air temperature compared to
impervious surface cover at larger scales of analysis (60, 90 m) (Table 4, b and c parameters).

Derived from the multivariate regression models, the average canopy volume in the
morning at the 60 and 90 m scales of analysis had an approximately 0.8–1◦ F increase effect
on the near-surface air temperature for every 500 cubic feet in canopy volume (Figure 5).
During the evening, the average canopy volume had an approximately 1◦ F decrease effect
on the near-surface air temperature for every 500 cubic feet of canopy volume at all scales
of analysis (10, 30, 60, 90 m) (Figure 6).
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4. Discussion

As expected, canopy coverage always had a negative effect on near-surface air temper-
ature during all times and scales of analysis, with varying results for impervious surfaces
and average canopy volume at different times and scales. Based on the model’s results, the
evening temperature was-best predicted based on canopy coverage, impervious surface
coverage, and average canopy volume, suggesting that these variables best predict late-day
and evening temperatures. Further testing and exploration into additional variables should
be conducted to better explain morning and afternoon temperatures.

While it was expected that larger canopy volume would have a negative effect on
temperature across all times and scales of measurement, the models showed that it was not
significant in predicting the temperature at small scales (10, 30 m) while having a positive
effect on the temperature at larger scales (60, 90 m) during the early morning. It was not a
significant predictor of the temperature during the afternoon, while providing a negative
effect when predicting the temperature in the evening across all scales (10, 30, 60, 90 m).

Recent studies on the effects of trees on urban microclimates show that tree crown
size has significant effects on wind direction fluctuation and air ventilation [36,37]. Large
trees induce significant wind direction fluctuations below tree crowns, with velocities up to
80% lower than those at rooftops [36]. The presence of larger trees, as a study identified as
60–100 years of age with large canopies, significantly reduces air ventilation within urban
street “canyons”, causing an adverse effect on pollutant dispersion and heat removal [37].
In drier conditions, when less moisture is available, the interaction of a non-transpiring
tree with radiation can increase air temperature by up to 1.6–2.1 ◦C at a local scale by in-
hibiting turbulent energy exchange, partially counteracting the evapotranspirative cooling
effect [38]. While this study does not aim to provide causal or mechanistic interpretation of
cooling, it is important to note that these processes have an effect on urban air temperatures.

At larger scales, the patch density size of large-volume urban canopies seems to influ-
ence near-surface air temperature, reducing wind and trapping heat. Because of the City
of Portland being predominately low–medium-density residential zoning, the presence of
urban “canyons” is not as prevalent as in more built-up and denser urban environments.
Therefore, at smaller scales, without significant surrounding built environments or vege-
tation, heat may still be able to escape from below tree canopies. Larger scales, with the
presence of greater canopy coverage and volume, have a greater effect on wind fluctuations
and urban microclimates and are therefore likely affect near-surface air temperature. While
large-volume trees and urban canopy may significantly reduce daytime temperatures
through shading, with a drier and warmer shifting climate in the city of Portland, research
should further investigate these effects and the impacts larger-volume-canopy trees have on
nighttime and early morning temperatures. Because of the timing of the morning traverse
temperature collection (6–7 a.m.) on 22 July 2023 and the sunrise at 5:45 a.m. on that day,
temperature readings can be representative of nighttime temperatures, as temperatures
continue to cool for up to an hour and a half after sunrise [39].

Tree canopy cover and impervious surface cover have similar effects on near-surface
air temperature throughout all times of day at small scales (10, 30 m), with tree canopy
cover having a significantly greater negative effect on near-surface air temperature than
impervious surfaces have on increasing near-surface air temperature at larger scales (60,
90 m). Impervious surfaces become insignificant at such scales in the model, showing
that the increasing effect of temperature from impervious surfaces on near-surface air
temperature is effectively countered by the decreasing effect on the temperature of trees.
This shows that urban trees hold a potentially important role for mitigating the UHI effect
and daytime temperatures [9,40]. However, in reducing nighttime temperatures, lower
cover of impervious surfaces remains critical, as significant amounts of heat are stored and
radiated back during nighttime and can be trapped by large-volume canopy covers [9,41].
Heat reduction at night is important from a public health perspective, with high nighttime
temperatures being a significant factor in heat-related illness and mortalities, as the human
body has no time to recover from daytime heat exposure [7–9].
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Consistent with the results of previous studies, for localized tree planting, this model
shows that the decreasing effect of the temperature of the canopy cover on near-surface
air temperature is weaker at smaller compared to broader scales, as small areas of canopy
cover cannot be isolated from surrounding weather and climate conditions [9]. However,
increasing tree canopy cover at 10 to 30 m scales still produced a measurable explanation of
lower temperatures, and with the influence of canopy volume, targeted planting locations
and strategized species selection for large-volume trees can directly benefit people. Planting
locations such as next to a house, yard, office space, or well-used public walkway or social
space may reduce temperature, improve quality of life, and significantly reduce energy
consumption [42–44].

At larger scales, such as multiple city properties to multiple city blocks, the model
results show that an increase in canopy coverage and canopy volume has significant effects
on reducing temperatures during all times of the day. However, in more nuanced tree
planting strategies, urban foresters need to spread out large-form canopy-mature trees
and nurture existing mature trees to create a large-volume canopy mosaic that maximizes
the effects that explain lower daytime temperatures at larger scales. It is well known that
vegetated parks act as “cool islands”, but dispersed large trees, forming diverse levels
of tree canopy coverage and volume, may maximize lower daytime temperatures and
nighttime heat release [18,45,46].

Being limited to the availability of datasets, LiDAR data, impervious surface data, and
temperature data were only available at the times specified above. Since the datasets were
collected within four years of each other, and with the significant global event of the COVID
pandemic happening for multiple years during that time span, it is unlikely that there
were significant large changes in canopy and impervious surface areas with development
slowing during that time. Because temperature data were collected using car-mounted
sensors and only along roadways, an inherent temperature bias may be present, and the
difference in the temperature on roads and nonroad areas should be investigated. The
temperature values used in this study were relatively mild compared to extreme heat events.
The effects of canopy cover, canopy volume, and impervious surfaces on near-surface air
temperature during extreme heat should be investigated further to see whether similar if
similar results are produced during more extreme temperatures.

5. Conclusions

The uniqueness of this study lies in the three-dimensional component of considering
canopy volume across multiple times of the day while examining canopy and impervious
surface coverage at intraurban scales of analysis and using near-surface air temperature
rather than land surface temperature derived from remote sensing. With urban heat
island literature predominantly focusing on urban–rural differences, using near-surface air
temperature data and localized scales of analysis at intraurban scales allowed this study
to continue to build a body of knowledge showing that the difference in air temperature
within urban environments is as large as the well-known urban–rural difference. A 10.36◦ F
average difference in near-surface air temperature was recorded in the city of Portland, OR
during all times of day.

The model results show that canopy cover, impervious surface cover, and average
canopy volume best predicted temperature at the 60 and 90 m scales at all times of day,
with evening temperature being represented best by these variables. Canopy coverage
effectively countered impervious surface warming effects at smaller scales while signifi-
cantly explaining the reduced temperature at larger scales. Canopy volume significantly
explained the reduced evening temperature while helping to retain heat at larger scales
in nighttime and early morning temperatures. With many cities in the Pacific Northwest
and northern latitudes implementing tree planting strategies to mitigate the UHI effect and
climate change-influenced extreme heat events, these results may help guide such practices
and strategies.
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