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Abstract: The need for controlling salinity in arid zones is essential for sustainable agricultural
production and irrigation water use. A case study performed for two years in Hetao, Inner Mongolia,
China, is used herein to rethink the contradictory issues of arid lands represented by water saving
and controlling soil and water salinity. Two sets of static lysimeters, where water table depths (WTDs)
were fixed at 1.25, 150, 2.00, and 2.25 m, were continuously monitored, and soil water and solute
data were used to calibrate and validate two models: the soil water balance model SIMDualKc
and the deterministic soil water and salt dynamics model HYDRUS-1D. Once accurately calibrated,
the models were used to simulate maize water use, percolation, and capillary rise, along with the
observed variables for the actual WTD and the autumn irrigation applied. Simulation scenarios also
considered agricultural system degradation and dynamic water table behavior. Results have shown
that large leaching efficiencies (Lefs) were obtained for large irrigation depths in cases of shallow
water tables, but higher Lefs corresponded to high application depths when the water table was
deeper. Agricultural system degradation, particularly increased groundwater salinity, lowered Lef,
regardless of WTD. Conversely, water savings were minimal and only achievable when considering
the dynamic nature of groundwater. These results indicate that there is a need to define different
WTDs based on soil characteristics that influence fluxes and root zone storage, as well as the impacts
of newly installed drainage systems aimed at salt extraction.

Keywords: arid lands; salts leaching; saline water-table; autumn irrigation; modeling

1. Introduction

The Hetao Plain in Inner Mongolia, Northern China, is one of the three major irri-
gation districts in the country and the largest irrigated area in the upper Yellow River
Basin, covering 570,000 ha of irrigated land out of a total of 1.12 million ha. The region
faces widespread soil salinization due to both excessive irrigation water application and
challenging hydrogeological conditions. This issue affects crop productivity and raises
groundwater levels, which in turn may impact the Yellow River’s flow regime as irrigation
water is sourced from the river and drainage water is returned to it. Additionally, shallow
saline water tables, which vary spatially from less than 1.0 m to more than 2.5 m deep
during the crop season [1], promote capillary rise and consequent salinity buildup in the
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root zone [2–4]. As a result, salt accumulation in the upper layers of farmland soil is
nowadays observed across over half of the irrigated farmland area [5–8], underscoring the
need for continuous efforts to improve agricultural management in the region, particularly
regarding crop water use and canal conveyance and distribution [9–12].

Although several water-saving measures have been implemented in the region to re-
duce river water withdrawals, decrease irrigation water use, and improve canal conveyance
and distribution [10–13], these efforts have proven insufficient to effectively mitigate soil
salinity issues, as demonstrated by numerous monitoring studies [7,14,15]. In fact, control-
ling soil salinity often contradicts the general objective of reducing irrigation water use,
as it requires adding a leaching fraction to flush salts from irrigation water out of the root
zone [16,17]. The presence of shallow saline groundwater tables adds further complexity to
the problem as it is crucial to consider the dynamics of the water table, including ground-
water contributions and drainage fluxes in and out of the root zone, as well as their effects
on soil water availability, crop root distribution and growth, root water uptake, and soil
salinity [18]. Finding a balanced solution requires identifying an optimal water table depth
(WTD) that effectively controls salinity while supporting crop growth and yield [3,9,19].

While mathematical models are widely regarded as the most effective and commonly
used tools for improving agricultural water management [20–22], a review by Liu et al. [23]
noted that the application of modeling tools has been limited in studies examining the
intrinsic relationships between WTD and soil salinity, as well as the effectiveness and
optimization of existing salinity control measures in Hetao. Accurately computing soil
water fluxes, particularly capillary rise, remains a significant challenge in agroecosystems
with shallow water tables [14,24–26]. The appropriate WTD continues to be a topic of
intense discussion [3,9,27,28]. Additionally, the effectiveness of the primary salinity control
measure, autumn leaching irrigation, and determining the optimal application depth based
on WTD have not yet been fully established [29–32]. As noted in Liu et al.’s [23] review,
the literature has been overly focused on developing and implementing water-saving
measures in the region, often overlooking the critical role of soil conservation in ensuring
the sustainability of local agricultural systems.

Therefore, the main aim of this study is to provide an overview of the key findings
from two different modeling studies that were recently conducted in Hetao, which aimed
to assess soil salinization risks and evaluate appropriate salinity control measures in
the region using data from static water table lysimeters [23,33]. The companion papers
focused primarily on evaluating the performance of two modeling tools. This new paper
integrates insights from both models while incorporating perspectives on water and soil
conservation. Building on previous research, this follow-up study goes deeper into the
complex relationship between autumn irrigation and water table depth (WTD), with the
goal of advancing new approaches for salt control in the Hetao region. Ultimately, it aims
to promote the sustainable use of soil and water resources in this arid area.

2. Materials and Methods
2.1. Site Description

This study was conducted at the Shuguang Experimental Station in the Hetao Plain,
Inner Mongolia, China (40◦46′ N, 107◦24′ E, 1039.6 m a.s.l.), from 2017 to 2018. The region
has an arid continental climate, with a mean annual precipitation of 137 mm, mostly
occurring in the summer. The average monthly temperature ranges from −10 ◦C in January
to 25 ◦C in July, and the number of frost-free days ranges from 135 to 150. Figure 1 shows
the main weather variables during the study period, obtained from a nearby automatic
weather station. The soil is silty loam. The groundwater table is saline, with electrical
conductivity (ECgw) ranging from 1.75 to 1.85 dS m−1. Surface basin or border irrigation
is the primary irrigation method. Further (and more detailed) data were analyzed by Liu
et al. [23,34]. Leaching irrigation is practiced in the autumn after crop harvesting and
before the soil water freezes. In addition to controlling soil salinity, this autumn irrigation
is crucial for improving the structure of the soil root zone given the multiple occurrences of
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soil freezing and thawing, particularly in silty soils. It also helps create a soil water reserve
usable after winter and before the first irrigation [2,35–37]. However, irrigation depths are
often cited in the literature as being excessive [10].
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2.2. Lysimeter Data

The static lysimeters (3.3 m long × 2.0 m wide × 2.6 m deep) used in this study had
water table levels at fixed depths of 1.25, 1.5, 2.0, and 2.25 m throughout both seasons.
These depths reflect the range of conditions observed in the region [1]. Liu et al. [23] pro-
vided detailed information on the lysimeters, including their field positioning, surrounding
conditions (to ensure equilibrium in the surface boundary layer and one-dimensionality of
measurements), the equipment used, their operations, and soil surface conditions. Addition-
ally, an automatic rain shelter was used to prevent rainfall from affecting the measurements,
enabling a more accurate assessment of the upward fluxes from the different WTDs and
their related impacts.

The study crop was maize (Xi-meng 3358) with a planting density of 83,333 plants ha−1.
Sowing occurred in early May, and the harvest took place in late September. A 0.2 mm
thick transparent polyethylene film mulch was applied along the plant rows, covering
75% of the lysimeter surface (4.95 m2), to reduce soil evaporation and increase soil tempera-
ture. The remaining soil surface was left bare to facilitate the application of irrigation water,
fertilizers, and herbicides, with management practices following local recommendations.
Four irrigation events were carried out during each maize growing season (Figure 1), based
on the surface irrigation practices commonly used by local farmers. Irrigation depths
ranged from 72 to 100 mm per event. Additionally, the lysimeters were irrigated in autumn
with 200 mm of water, primarily to leach salts from the root zone. Groundwater was used
for irrigation purposes.

Soil water content (SWC) was measured every hour using FDR soil moisture sensors
(WiTu Agricultural Technology, Shenyang, China). The calibration procedures for these
sensors are detailed by Liu et al. [34]. The FDR sensors were installed in all lysimeters at
depths of 0.1 m, 0.2 m, 0.4 m, and then at every 0.2 m down to the targeted WTD. Soil
salinity was measured at the same depth as the SWC measurement, determined by the
electrical conductivity of the 1:5 soil water extract (EC1:5, dS m−1), and then converted to
the electrical conductivity of the soil saturation paste extract (ECe) following the method
described by Liu et al. [34]. Measurements were taken approximately every 10 days during
both growing seasons.
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2.3. Modeling Approaches

Two conceptually distinct modeling approaches were considered for computing the
soil water and salt balances using static water table lysimeter data and for evaluating the
effectiveness of autumn irrigation as a salinity control measure. Liu et al. [23] applied
the SIMDualKc model [38] to compute the soil water balance and assess the impact of
soil salinity on actual crop evapotranspiration rates. The SIMDualKc model used the
dual crop coefficient approach [21,39,40] to estimate crop evapotranspiration (ETc) by sep-
arately computing its components crop transpiration (Tc) and soil evaporation (Es). In
this approach, a basal crop coefficient (Kcb), which describes the transpiration characteris-
tics that distinguish a specific crop from the reference grass crop, is used to calculate Tc
(Tc = Kcb ETo). The impacts of water and/or salinity stress on Tc (Tc act) are then accounted
for by incorporating a dimensionless stress coefficient (Ks) into the calculation of Tc val-
ues (Tc = Ks Kcb ETo), following the methods of Pereira et al. [9] and Rosa et al. [41]. Es
is determined using an evaporation coefficient (Ke) that reflects the difference between
the actual soil cover fraction and the full cover provided by the grass reference crop
(Es = Ke ETo). This difference is influenced by the fraction of ground shaded by the crop
(fc), the fraction of soil covered by mulch (fr mulch), and the fraction of soil wetted by rain
or irrigation (fw). The remaining components of the soil water balance equation, namely
capillary rise (CR) and percolation (DP), are calculated using the empirical relationships
presented by Liu et al. [42]. Runoff is assumed to be negligible in static lysimeters. A
detailed description of the equations, data used to run the SIMDualKc model, as well as
the calibration and validation procedures are described by Liu et al. [23].

Ramos et al. [33] applied the HYDRUS-1D software package (version 4.17) [20] to
numerically simulate one-dimensional water flow and solute transport in variably satu-
rated porous media by solving the Richards equation for water flow and the Fickian-based
convection–dispersion equation for solute transport. The unsaturated soil hydraulic prop-
erties were described using the van Genuchten–Mualem functional relationships [43,44],
while the sink term incorporated the macroscopic approach proposed by Feddes et al. [45].
The Feddes et al. [45] model was chosen to describe the water stress response function, while
the effect of salinity stress on root water uptake was modeled using the Maas [46] salinity
threshold and slope function. This mechanistic approach also considered the compensated
root water uptake mechanism introduced by Šimůnek and Hopmans [47], which accounts
for maize’s ability to compensate for reduced root water uptake in water/salinity-stressed
parts of the root zone by increasing uptake in less stressed soil regions. The solute transport
equation considered the electrical conductivity of the irrigation water (ECiw = ECgw) and
the soil solution (ECsw) as nonreactive tracers, meaning no adsorption in the solid phase
was possible [48]. A detailed description of the equations, model implementation, and
data used, as well as the calibration and validation procedures, can be found in the work
by Ramos et al. [33].

Both models were calibrated using soil water content data, with HYDRUS-1D using
measurements from different depths and SIMDualKc integrating the data as soil water
storage in the root zone. Capillary rise and actual ETc act daily fluxes were also used in
the calibration of both models, while HYDRUS-1D additionally incorporated ECe data
measured at various depths. In line with their conceptual approaches, SIMDualKc cali-
bration focused on parameters affecting ET (and Kcb, Ke, and Ks), CR, and DP fluxes. In
contrast, HYDRUS-1D calibration involved parametrization of soil hydraulic parameters
and solute dispersivity within the soil domain, as well as the root adaptability factor for
compensated root water uptake. The models were calibrated during the 2018 growing
season and validated using independent data from the 2017 season. Several standard
goodness-of-fit indicators were used to assess model performance. In this study, only the
coefficient of determination (R²), the normalized root mean square error (NRMSE), and the
Nash–Sutcliffe efficiency (NSE) will be reported.
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3. Results and Discussion
3.1. Models Performance

The full assessment of SIMDualKc and HYDRUS-1D performance results can be found
in the work by Liu et al. [23] and Ramos et al. [33]. Despite their conceptual differences,
both models were able to accurately reproduce measured SWC, ETc act, and CR data during
the study period, demonstrating the reliability of their estimates for the various components
of the soil water balance [23,33,34]. In both models, soil water content simulations achieved
R² values between 0.69 and 0.97, NRMSE values between 1.4% and 10.8%, and NSE val-
ues ranging from 0.57 to 0.97. Simulations of ETc act fluxes produced R² values between
0.79 and 0.89, NRMSE values between 26.5% and 30.4%, and NSE values from 0.62 to 0.82.
CR daily fluxes were the most challenging to reproduce in both models, with R² values
ranging from 0.48 to 0.94, NRMSE values between 28.8% and 111.9%, and NSE values
from 0.16 to 0.93. The HYDRUS-1D model also satisfactorily simulated soil salinity in the
rootzone of different lysimeters, with R2 values ranging from 0.33 to 0.64, NRMSE from
19.7 to 29%, and NSE from 12.7 to 37.8%. The statistical indicators were deemed satisfactory
for the subsequent analysis.

3.2. The Soil Water Balance

The calibrated Kcb values for the initial (Kcb ini), mid-season (Kcb mid), and end-season
(Kcb end) crop stages, estimated using the SIMDualKc model, were 0.15, 1.15, and 0.2–0.3,
respectively, with the latter values depending on grain dryness. The derived Kcb data are
consistent with the literature [34,39,49], and served as inputs for defining the atmospheric
boundary conditions in HYDRUS-1D simulations [33]. The actual Kcb (Kcb act) values, either
estimated with SIMDualKc or HYDRUS-1D were consistently lower than the potential Kcb
values due to the combined effects of water and salinity stresses. Crop stress was more
pronounced in lysimeters with shallower water tables, where salinity levels were higher.
Crop stress was also slightly more pronounced in the estimates provided by HYDRUS-1D
compared to SIMDualKc. Consequently, the Tc act values in SIMDualKc ranged from 398 to
445 mm in 2017 and 442 to 478 mm in 2018, while the corresponding HYDRUS-1D estimates
were 396 to 401 mm and 413 to 424 mm, respectively. On the other hand, the Ke values
remained relatively low (Ke < 0.40) throughout the study, initially due to the plastic mulch,
which minimized soil surface exposure to solar radiation during the early crop stages, and
later due to increased canopy coverage as the crop developed. Consequently, Es values
were relatively small throughout the crop season (Es ≤ 26 mm), with similar estimates
produced by both models. During the non-growing season, the values were relatively
higher, although they did not exceed 80 mm between the harvest (end of September) and
the end of the year (December).

The contribution of groundwater fluxes to actual crop evapotranspiration (GWC) was
highly significant in lysimeters with shallower WTDs during the 2017 and 2018 growing
seasons, with both models producing similar estimates. According to SIMDualKc, seasonal
GWC accounted for 22–39% of ETc act, while HYDRUS-1D estimated it at 37–38%. In
lysimeters with the deepest WTDs, seasonal GWC represented 8–15% of ETc act as estimated
by SIMDualKc, and 14% by HYDRUS. These estimates align with existing modeling studies
assessing groundwater contributions to maize water demand under saline conditions
in Hetao [14,24,26].

Lastly, percolation values decreased with increasing WTD, primarily due to the larger,
drier root zone under such conditions. However, the estimated values were also influenced
by the less efficient irrigation scheduling adopted in the experiment, which involved less
timely water applications, reflecting the traditional practices of local farmers and the canal
system delivery schedule. Despite the lower efficiency, this approach is beneficial for salt
leaching and can be considered desirable. The non-growing period was characterized by
high percolation due to the application of 200 mm of water for autumn irrigation, intended
to leach the salts accumulated during the previous crop season.
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3.3. The Salt Balance and Autumn Leaching

The salt balance was calculated for both growing and non-growing periods using
HYDRUS-1D, focusing on the 0.0–1.25 m soil layer to facilitate comparison between
lysimeters. Salts were primarily added to the soil through irrigation water, contributing
3.76–3.97 tons ha−1 during the crop season and 2.24–2.37 tons ha−1 during the autumn
irrigation. Additionally, salts were transported via capillary rise from saline groundwater,
with shallower WTDs leading to greater salinity build-up in the root zone. For instance, a
WTD of 1.25 m resulted in a salt load of 3.49–3.57 tons ha−1, while a WTD of 2.25 m showed
a salt load of 1.20 tons ha−1 via capillary rise.

Autumn irrigation played a crucial role in removing salts accumulated in the root
zone during the previous maize growing season. The WTD significantly influenced the
effectiveness of leaching in salt removal. Leaching from autumn irrigation was more ef-
fective in lysimeters with shallower WTDs (≤1.5 m; ≥6.31 tons ha−1) compared to those
with deeper WTDs (≥2.0 m; ≤4.75 tons ha−1). This difference was due to the higher
salt accumulation and greater soil moisture in the deeper root zone layers of lysime-
ters with shallower WTDs. The lysimeter with a WTD of 1.5 m exhibited the highest
leaching efficiency (83.5–87.5%) compared to the other lysimeters, particularly when com-
pared with the lysimeter having a WTD of 2.25 m, which showed the lowest leaching
efficiency (51.3–53.6%).

3.4. Finding an Appropriate Depth for the Water Table

Ramos et al. [33] investigated the effectiveness of autumn irrigation in relation to WTD
using the calibrated HYDRUS-1D model. Their simulation scenarios covered WTDs ranging
from 1.25 m to 2.25 m and autumn irrigation depths (AID) from 50 to 400 mm, based on
values reported in the literature. In the current study, these scenarios were expanded to
assess the impacts of agricultural system degradation and dynamic water table behavior
on the effectiveness of autumn irrigation as a salinity control measure. One scenario, using
the conditions from Ramos et al. [33] (i.e., WTD = 1.25–2.25 m and AID = 50–400 mm),
included an increase in groundwater salinity (ECgw) by 0.5 and 1.0 dS m−1 compared
to present conditions. Another scenario, run for WTD = 1.5 m, which showed the highest
leaching efficiency, compared the effects of a static versus dynamic water table. In the
dynamic case, the WTD varied from 1.1 m to 1.8 m, becoming shallower during irrigation
events and deeper during the non-growing season, while maintaining an average WTD of
1.5 m over the simulation period.

Ramos et al. [33] showed that, for a WTD of 1.25 m, leaching efficiency never exceeded
78%, which was achieved with 200 mm of autumn irrigation (Figure 2). Similarly, the
lysimeter with a WTD of 1.5 m exhibited the highest leaching efficiency (83.5–87.5%) with
an autumn irrigation depth of 200 mm. In both cases, higher irrigation depths were
less effective at salt removal due to increased salt loading in the root zone and poor
drainage conditions. These results are consistent with the findings of Minhas et al. [17],
who discussed the limited effectiveness of leaching in the presence of shallow and saline
water tables unless subsurface drainage is employed. Conversely, for a WTD of 2.0 m,
leaching efficiency improved from 67–68% to 86% as the autumn irrigation depth increased
from 200 to 250 mm. However, further increases in irrigation depth became less effective
for salt leaching. A WTD of 2.25 m showed the most favorable drainage conditions, with a
marked increase in leaching efficiency when small increments above 200 mm were applied.
With 220 mm of irrigation (+20 mm), leaching efficiency increased from 51–54% to 85–91%.
With 250 mm of irrigation (+50 mm), all salts applied during both the growing and non-
growing seasons were removed. However, leaching efficiency decreased again to below
100% with 400 mm of irrigation.

The land degradation scenario (Figure 3) showed the same trends as those described
earlier. Higher groundwater salinity did not significantly affect the relationship between
salt leaching and WTD. However, the increase in groundwater salinity naturally led to more
salts being transported to the root zone through irrigation and capillary rise, contributing to
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salinity buildup. Given that water fluxes remained nearly unchanged, a general decrease in
leaching efficiency across all WTDs was expected. Notably, even in the less severe scenario
(ECgw + 0.5 dS m−1), conditions where leaching efficiency reached 100% were no longer
observed. The highest leaching efficiency (90.3%) occurred with a WTD of 2.25 m and an
AID of 250 mm. In the worst-case scenario (ECgw + 1.0 dS m−1), no condition resulted
in a leaching efficiency higher than 80%, which is obviously of concern considering the
intensification of agriculture in the region.
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Lastly, the scenario involving dynamic water table behavior revealed some contrasting
results (Figure 4). On one hand, the relationship between salt leaching and WTD followed
the same trend as before, with leaching efficiency increasing as WTD rose, while higher
autumn irrigation depths (AID > 250 mm) did not result in greater leaching efficiencies. On
the other hand, compared to static WTD, higher leaching efficiencies were recorded in this
variably WTD scenario, reaching 100% with AID above 200 mm. This suggests a significant
opportunity for water conservation. However, when AID was reduced to 150 mm, leaching
efficiency dropped significantly to 59.4%. To achieve the same leaching efficiency observed
for a static WTD of 1.5 m (ranging from 83.5% to 87.5% under experimental conditions with
AID = 200 mm), water savings could only be achieved with an AID of 185 mm, representing
a mere reduction of 15 mm. While this represents a small decrease, it was realized under
a hypothetical scenario of WTD variation. Therefore, considering WTD variability in
future studies aimed at identifying effective measures for soil salinity control in the region
appears essential.
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The above results align with previous studies [29,30,32] but contradict several
others [31,50], primarily because the methods used in these latter studies were too simplistic
for such a complex problem. Model calibration and the consistency of modeling approaches
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seem critical for the reliability of solutions. Liu et al. [23], using a semi-empirical approach,
identified a WTD of 2.0 m as optimal for cropping conditions and lower salinity levels. Shal-
lower WTDs tended to lead to greater salt accumulation in the root zone due to increased
upward water fluxes. In contrast, Ramos et al. [33], using a mechanistic approach, deter-
mined that a WTD of 1.5 m was most effective for salt control when applying an autumn
irrigation depth of 200 mm. Although WTDs of 2.0 m and 2.25 m could also be effective for
salt leaching, they would require larger irrigation depths. However, groundwater fluxes,
which are crucial for meeting crop water needs in the region, would significantly decrease.
Therefore, a balanced approach that incorporates the findings of both Liu et al. [23] and
Ramos et al. [33] would be most effective for optimizing crop growth and controlling
salinity in the Hetao region.

These findings underscore the importance of mathematical tools for accurately esti-
mating the water balance and optimizing irrigation water use in the region. Regardless
of the approach adopted, mathematical tools can provide precise estimates of the various
components of the soil water balance, improve irrigation scheduling, and enhance water
use efficiency. However, water conservation cannot be the sole focus of agricultural water
management, as reducing water application in autumn irrigation, as demonstrated earlier,
may lead to increased soil salinity. The new scenarios show that saving water is possible
without losing the perspective of soil conservation. The problem is complex, and it is
crucial that policy measures aimed at promoting water savings in the region also prior-
itize soil conservation to ensure the sustainability of local agricultural systems. In this
context, physically-based models capable of simulating solute transport are indispensable
for assessing soil salinity and complementing irrigation scheduling tools.

In addition to incorporating the dynamic nature of the groundwater table, future
studies should also integrate the winter freeze–thaw period into model simulations. This
process significantly influences soil water dynamics and solute transport within the soil,
thereby impacting the effectiveness of autumn irrigation for salinity control as recently
demonstrated by Guo et al. [51].

4. Conclusions

This study highlights the benefits and consistency of using two different modeling
approaches to analyze the full complexity of Hetao’s agroecosystems. Both soil water
balance and mechanistic models used in this study may play a crucial role in assisting
farmers and stakeholders in mitigating the impacts of water scarcity, particularly soil salin-
ization, on crop growth and yields. Adopting these models can help develop more efficient
irrigation schedules and determine the optimal water table depth, thereby improving the
effectiveness of salt leaching in the Hetao region. They are also valuable for helping in
the transition from surface irrigation to drip irrigation and for finding the most effective
strategies for salt leaching in areas where subsurface drainage systems have been installed.
In addition, it is required to find WTD and autumn irrigation depths that better match
drainage issues, currently in application.
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