Assessing Climate and Land-Use Change Scenarios on Future Desertification in Northeast Iran: A Data Mining and Google Earth Engine-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Remote Sensing Indices for Desertification Modeling
2.4. Desertification Modeling Using Machine Learning Algorithms
2.5. Ensemble Modeling for Desertification Prediction
2.6. CA–Markov Model
2.7. Statistical Downscaling
3. Results
3.1. The Selection of Remote Sensing Indicators
3.2. Desertification Modeling
3.3. Importance of Variables in Modeling
3.4. Prediction of Future Desertification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joshi, P.P.; Wynne, R.H.; Thomas, V.A. Cloud Detection Algorithm Using SVM with SWIR2 and Tasseled Cap Applied to Landsat 8. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101898. [Google Scholar] [CrossRef]
- Li, J.; Ma, X.; Zhang, C. Predicting the Spatiotemporal Variation in Soil Wind Erosion across Central Asia in Response to Climate Change in the 21st Century. Sci. Total Environ. 2020, 709, 136060. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Jang, E.; Rhee, J. Drought Assessment and Monitoring through Blending of Multi-Sensor Indices Using Machine Learning Approaches for Different Climate Regions. Agric. For. Meteorol. 2016, 216, 157–169. [Google Scholar] [CrossRef]
- Cha, G.W.; Moon, H.J.; Kim, Y.-C. Comparison of Random Forest and Gradient Boosting Machine Models for Predicting Demolition Waste Based on Small Datasets and Categorical Variables. Int. J. Environ. Res. Public Health 2021, 18, 8530. [Google Scholar] [CrossRef]
- Chan, H.L.; Pan, M. Fishing Trip Cost Modeling Using Generalized Linear Model and Machine Learning Methods—A Case Study with Longline Fisheries in the Pacific and an Application in Regulatory Impact Analysis. PLoS ONE 2021, 16, e0257027. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Chan, J.C.W.; Paelinckx, D. Evaluation of Random Forest and Adaboost Tree-Based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Bofana, J.; Zhang, M.; Nabil, M.; Wu, B.; Tian, F.; Liu, W.; Zeng, H.; Zhang, N.; Nangombe, S.S.; Cipriano, S.A.; et al. Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sens. 2020, 12, 2096. [Google Scholar] [CrossRef]
- Yesilnacar, E.; Topal, T. Landslide Susceptibility Mapping: A Comparison of Logistic Regression and Neural Networks Methods in a Medium Scale Study, Hendek Region (Turkey). Eng. Geol. 2005, 79, 251–266. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide Susceptibility Mapping Using Certainty Factor, Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling-Narayanghat Road Section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Naimi, B.; Araújo, M.B. Sdm: A Reproducible and Extensible R Platform for Species Distribution Modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Araújo, M.B.; Naimi, B. Flood Susceptibility Mapping to Improve Models of Species Distributions. Ecol. Indic. 2023, 157, 111250. [Google Scholar] [CrossRef]
- Boali, A.; Asgari, H.R.; Behbahani, A.M.; Salmanmahiny, A.; Naimi, B. Remotely Sensed Desertification Modeling Using Ensemble of Machine Learning Algorithms. Remote Sens. Appl. Soc. Environ. 2024, 34, 101149. [Google Scholar] [CrossRef]
- Soleimani-Sardo, M.; Silakhori, E. Land-Use Change Detection in 2040 with CA-Markov Chain Model, Case Study: Jiroft Basin. Watershed Eng. Manag. 2022, 14, 299–311. [Google Scholar] [CrossRef]
- Silakhori, E.; Maleki, S.; Pourghasemi, H.R. Spatiotemporal Variations in Land Use of Mahvelat Plain in Iran Using Google Earth Engine from 2011 to 2030. In Advanced Tools for Studying Soil Erosion Processes; Elsevier: Amsterdam, The Netherlands, 2024; pp. 413–433. [Google Scholar]
- Silakhori, E.; Dahmardeh Ghaleno, M.R.; Meshram, S.G.; Alvandi, E. To Assess the Impacts of Climate Change on Runoff in Golestan Province, Iran. Nat. Hazards 2022, 112, 281–300. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of Topsoil Grain Size Index for Monitoring Desertification in Arid Land Using Remote Sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring Desertification in Mongolia Based on Landsat Images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Asfaw, E.; Suryabhagavan, K.V.; Argaw, M. Soil Salinity Modeling and Mapping Using Remote Sensing and GIS: The Case of Wonji Sugar Cane Irrigation Farm, Ethiopia. J. Saudi Soc. Agric. Sci. 2018, 17, 250–258. [Google Scholar] [CrossRef]
- Paredes, M.; Bertoldo, S.; Carosso, L.; Lucianaz, C.; Marchetta, E.; Allegretti, M.; Savi, P. Propagation Measurements for a LoRa Network in an Urban Environment. J. Electromagn. Waves Appl. 2019, 33, 2022–2036. [Google Scholar] [CrossRef]
- Moiwo, J.P.; Lu, W.; Tao, F. GRACE, GLDAS and Measured Groundwater Data Products Show Water Storage Loss in Western Jilin, China. Water Sci. Technol. 2012, 65, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Leys, J. Mapping Wind Erosion Hazard in Australia Using MODIS-Derived Ground Cover, Soil Moisture and Climate Data. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012275. [Google Scholar]
- Jiang, M.; Lin, Y. Desertification in the South Junggar Basin, 2000–2009: Part I. Spatial Analysis and Indicator Retrieval. Adv. Space Res. 2018, 62, 1–15. [Google Scholar] [CrossRef]
- Wijitkosum, S. The Impact of Land Use and Spatial Changes on Desertification Risk in Degraded Areas in Thailand Sustainable Environment Research The Impact of Land Use and Spatial Changes on Deserti Fi Cation Risk in Degraded Areas in Thailand. Sustain. Environ. Res. 2016, 26, 84–92. [Google Scholar] [CrossRef]
- Zhang, Z.; Hörmann, G.; Huang, J.; Fohrer, N. A Random Forest-Based CA-Markov Model to Examine the Dynamics of Land Use/Cover Change Aided with Remote Sensing and GIS. Remote Sens. 2023, 15, 2028. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Beale, C.M.; Lennon, J.J. Incorporating Uncertainty in Predictive Species Distribution Modelling. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 247–258. [Google Scholar]
- Araújo, M.B.; New, M. Ensemble Forecasting of Species Distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Wahla, S.S.; Kazmi, J.H.; Sharifi, A.; Shirazi, S.A.; Tariq, A.; Joyell Smith, H. Assessing spatio-temporal mapping and monitoring of climatic variability using SPEI and RF machine learning models. Geocarto Int. 2022, 37, 14963–14982. [Google Scholar] [CrossRef]
Numbers | Indicators | Remote Sensing Indicators | Ground Surface Data | Correlation Rate Between Satellite Indicators and Ground Surface Data | Reference | |
---|---|---|---|---|---|---|
R2 | RMSE | |||||
1 | Soil texture | TGSI | Soil surface profile | 0.82 | 0.87 | [18,19] |
2 | EC | NDSI | 0.71 | 5.21 | ||
3 | Rainfall | Chrips | synoptic stations | 0.65 | 141.33 | [20] |
4 | Groundwater depth | - | The water depth of the wells | 0.79 | 4.01 | [21] |
5 | Vegetation percent | NDVI | Vegetation percentage in plots | 0.83 | 2.41 | [22] |
6 | Wind erosion | WEHI model = /NDMI) wind speed * MBI( | Map of ground evidence | 0.86 | 0.89 | [23] |
7 | Land use | Land-use changes | Map of ground evidence | 0.71 | 0.64 | [24] |
Methods | AUC | TSS | KAPPA |
---|---|---|---|
GLM | 0.79 | 0.77 | 0.65 |
GBM | 0.85 | 0.80 | 0.72 |
RF | 0.91 | 0.88 | 0.90 |
SVM | 0.89 | 0.86 | 0.88 |
Class | Land Use | 2023 (Hectares) | 2040 (Hectares) | Percent Changes |
---|---|---|---|---|
1 | Forest | 338,308 | 331,215 | −0.35 |
2 | Pasture | 708,316 | 599,134 | −5.38 |
3 | Agricultural | 804,025 | 808,825 | 0.24 |
4 | Barren lands | 124,644 | 229,642 | 5.18 |
5 | Water | 8201 | 9201 | 0.05 |
6 | Wetland | 8718 | 7878 | −0.04 |
7 | Residential | 35,901 | 42,218 | 0.31 |
Total | 2,028,113 | 2,028,113 |
Class | Desertification | 2023 (Hectares) | 2040 (Hectares) | Percent Changes |
---|---|---|---|---|
1 | Low | 1,345,809 | 1,204,281 | −6.97 |
2 | Moderate | 321,785.44 | 402,430.4 | +3.97 |
3 | Severe | 165,359.77 | 185,680.8 | +1 |
4 | Very Severe | 195,158.80 | 235,720.8 | +2 |
Total | 2,028,113 | 2,028,113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, W.; Hu, Q.; Liu, J.; He, P.; Zhu, D.; Boali, A. Assessing Climate and Land-Use Change Scenarios on Future Desertification in Northeast Iran: A Data Mining and Google Earth Engine-Based Approach. Land 2024, 13, 1802. https://doi.org/10.3390/land13111802
Yin W, Hu Q, Liu J, He P, Zhu D, Boali A. Assessing Climate and Land-Use Change Scenarios on Future Desertification in Northeast Iran: A Data Mining and Google Earth Engine-Based Approach. Land. 2024; 13(11):1802. https://doi.org/10.3390/land13111802
Chicago/Turabian StyleYin, Weibo, Qingfeng Hu, Jinping Liu, Peipei He, Dantong Zhu, and Abdolhossein Boali. 2024. "Assessing Climate and Land-Use Change Scenarios on Future Desertification in Northeast Iran: A Data Mining and Google Earth Engine-Based Approach" Land 13, no. 11: 1802. https://doi.org/10.3390/land13111802
APA StyleYin, W., Hu, Q., Liu, J., He, P., Zhu, D., & Boali, A. (2024). Assessing Climate and Land-Use Change Scenarios on Future Desertification in Northeast Iran: A Data Mining and Google Earth Engine-Based Approach. Land, 13(11), 1802. https://doi.org/10.3390/land13111802