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Abstract: Desertification poses a significant threat to dry and semi-arid regions worldwide, including
Northeast Iran. This study investigates the impact of future climate and land-use changes on
desertification in this region. Six remote sensing indices were selected to model desertification using
four machine learning algorithms: Random Forest (RF), Support Vector Machine (SVM), Gradient
Boosting Machine (GBM), and Generalized Linear Models (GLM). To enhance the model’s reliability,
an ensemble model was employed. Future climate and land-use scenarios were projected using the
CNRM-CM6 model and Markov chain analysis, respectively. Results indicate that the RF and SVM
models performed best in mapping current desertification patterns. The ensemble model highlights a
2% increase in decertified areas by 2040, primarily in the northwestern regions. The study underscores
the importance of land-use change and climate change in driving desertification and emphasizes the
need for sustainable land management practices and climate change adaptation strategies to mitigate
future impacts.
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1. Introduction

Desertification, a complex environmental issue, is accelerating globally, particularly in
arid and semi-arid regions. This phenomenon, a process leading to land degradation and
reduced productivity, poses a significant environmental challenge in arid and semi-arid
regions worldwide [1]. Climate change and unsustainable land-use practices are major
drivers of this phenomenon, leading to significant ecological, economic, and social con-
sequences. Although various factors contribute to desertification, climate change and
subsequent land-use changes are the primary drivers [2]. Climate change, characterized by
long-term shifts in temperature, precipitation, wind patterns, and other climatic variables,
is a major contributor to desertification [3]. This phenomenon has led to an expansion of
desert areas, affecting over 250 million people directly and billions more indirectly [4]. De-
sertification can occur in all climates, accompanied by a decline in ecological and biological
capacity [5]. Rising temperatures and altered precipitation patterns reduce agricultural
and rangeland productivity, often prompting land-use changes such as the conversion of
agricultural land to urban or industrial areas [6]. This interplay between climate change
and land-use change creates a negative feedback loop, exacerbating desertification [7].

Land-use change, such as the conversion of forests and grasslands to agricultural or
urban areas, exacerbates these effects by reducing vegetation cover, increasing soil erosion,
and decreasing soil infiltration. These changes disrupt the local and regional water and
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energy balance, amplifying the impacts of climate change and accelerating desertification.
For example, the reduction in vegetation cover caused by land-use change leads to increased
surface temperatures and decreased soil moisture, further altering precipitation patterns
and intensifying droughts. In essence, desertification, land-use change, and climate change
are interconnected and mutually reinforcing processes. Addressing desertification requires
a comprehensive and integrated approach that simultaneously addresses climate change
mitigation, sustainable land management, and restoration of degraded ecosystems.

The Middle East, including Iran, is highly susceptible to desertification due to its
naturally arid and semi-arid climate, rendering its ecosystems fragile and vulnerable to
degradation [8]. Northeast Iran, with its particularly harsh climatic conditions, is especially
vulnerable to this environmental threat. Human activities, such as unsustainable land
use, have further intensified these pressures, accelerating the desertification process. In
Iran, desertification is a pressing environmental issue with profound implications for the
environment, economy, and society [9]. Therefore, assessing and predicting desertification
in Iran is essential for developing effective mitigation and adaptation strategies to promote
sustainable development in arid regions.

Numerous studies have been conducted globally to assess and map desertification,
leading to the development of various models. However, desertification assessment models
require extensive spatial and temporal data, and given that this phenomenon occurs in arid
regions, extracting large-scale and long-term information is challenging [10]. Therefore,
establishing a data extraction process based on remote sensing techniques for desertification
assessment is essential [11]. Nonetheless, due to the complex nature of desertification,
researchers believe that its assessment can be satisfactory only when reliable remote sensing
indices are considered for this purpose [12]. To date, it has not been possible to determine
such indices that can be used at various global, regional, national, and local scales. In most
studies, three to five remote sensing indices have been used to assess the desertification
hazard. However, given the multifaceted nature of this phenomenon, the obtained results
may not be sufficiently accurate [8]. For instance, in many studies, the NDVI threshold is
used to classify the degree of desertification [13,14]. Consequently, as this method considers
only vegetation cover, the accuracy of classification results will decrease [15].

In this study, machine learning techniques were employed to model and project deser-
tification. These methods are multi-index approaches that utilize remote sensing data to
analyze changes in land cover, soil moisture, temperature, and other indicators that influ-
ence desertification. By applying advanced machine learning algorithms such as random
forests, neural networks, and support vector machines, complex patterns of desertification
can be identified, and highly accurate models can be developed to predict future trends [16].
The use of a single method may not yield satisfactory results. When models are correctly
combined, they can produce more accurate results. Ensemble models, which combine
multiple machine learning algorithms, have a significant advantage over individual mod-
els. These models can improve prediction accuracy by combining the results of different
models. In the context of desertification assessment, the use of ensemble models can lead
to more accurate predictions and better decision-making in natural resource management
and mitigating the effects of desertification. In this study, an ensemble machine learning
model in the SDM package in R software (R-4.4.1) was used to achieve a more accurate
classification. Predicting future desertification is also of paramount importance as this
phenomenon not only leads to a reduction in arable land and increased pressure on natural
resources but also jeopardizes the food, economic, and social security of communities [17].
With climate change and increased human activities such as land-use change and unsus-
tainable agriculture, the rate of desertification has accelerated [18]. Therefore, predicting
desertification based on climate and land-use change scenarios is crucial as this approach
allows for a more accurate analysis and evaluation of the interactions between these two
key factors on desertification trends. Scenario modeling of these two factors can help
identify high-hazard areas and develop effective management strategies to mitigate the
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impacts of desertification, as well as provide guidance for decision-makers in developing
sustainable policies.

Golestan Province in northeastern Iran has faced land degradation, water and wind
erosion, land-use change, and groundwater depletion over the past decade. Therefore, this
study aimed to model and predict the risk of desertification based on climate and land-use
changes in northeastern Iran. This research introduced the use of a combined model based
on remote sensing indices as a suitable method for accurately assessing desertification.
Additionally, producing future desertification maps for the study area based on climate and
land-use change scenarios can contribute to better planning and management of natural
resources, developing environmental protection policies, and adopting effective strategies
to mitigate the negative impacts of desertification, thereby preventing environmental and
human crises.

This study advances the field of desertification research by integrating advanced
machine learning techniques with remote sensing data to accurately assess and predict
future trends. By employing an ensemble modeling approach, we aim to improve the
robustness and reliability of the results. Furthermore, the incorporation of climate and
land-use change scenarios enables a comprehensive assessment of the potential impacts
of these factors on desertification, facilitating the development of informed strategies for
mitigation and adaptation. This research contributes to the existing body of knowledge by
providing a comprehensive assessment of desertification in Northeast Iran and offering
valuable insights into the potential impacts of future climate and land-use changes. The
findings of this research can inform policymakers and decision-makers in developing
effective strategies to mitigate the adverse effects of desertification and promote sustainable
land management practices.

2. Materials and Methods
2.1. Study Area

The study area, spanning 20,367 square kilometers, is geographically located between
36◦25′ and 38◦08′ North latitude and 53◦50′ and 56◦18′ East longitude. This region is
bordered by the Turkmen desert to the north, the Caspian Sea coastal plain to the west, and
the Alborz mountain range to the south (Figure 1). The highest and lowest elevations in the
region are approximately 3813 m above sea level (Shahkoh Mountain) and −32 m below
sea level (Gomishoan Lagoon), respectively. The average annual precipitation, average
evaporation, and average temperature of the region over a 30-year period (1993–2023) were
estimated to be 530 mm, 1338 mm, and 17.3 ◦C, respectively. The De Martonne (1926) and
Ivanov (1941) methods classified the region’s climate as arid and steppe, respectively.
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2.2. Data Collection

In July 2021, 42 soil samples were collected from the study area to measure salinity
and texture indices. To assess vegetation cover, one-meter square plots were systematically
established along 100-m transects (3 transects per land use and 10 plots per transect) in
the region. The percentage of vegetation cover in each plot was determined by expert
opinion and extrapolated to the entire land use. Ten meteorological stations with a 30-year
statistical period (1993–2023) were used to analyze climatic parameters such as temperature
and precipitation. To evaluate groundwater depth, data from 75 wells (obtained from
the Golestan Province Water Resources Organization) were used over a 30-year period
(1993–2023). To investigate the impact of human factors on desertification, a land-use map
was prepared. During field visits, training points were established in each land usage to
prepare the land-use map.

This study employs two types of atmospheric data: observed and simulated. Observed
data is sourced from Stations data, while simulated data was derived from the CNRM-
CM6 global climate model. Developed by the Met Office Hadley Centre, this model was
utilized for the CMIP6 climate simulations and is noteworthy for its integrated Earth
system components. The research focuses on three future scenarios (SSP1-2.6, SSP2-4.5, and
SSP5-8.5) simulated by CNRM-CM6 for the period of 2031–2050.

2.3. Remote Sensing Indices for Desertification Modeling

In this study, Google Earth Engine was utilized to generate remote sensing indices
for modeling desertification in 2023. For this purpose, surface reflectance band 1 Landsat
images were selected, which have undergone atmospheric and geometric corrections, as
well as cross-calibration between different sensors to ensure the accuracy and consistency of
the data used in the analysis. To develop the model, the most significant indices influencing
desertification needed to be identified. Therefore, by taking inspiration from MEDALUS
model indicators and reviewing comprehensive sources, the most important influencing
indicators in the region’s desertification were identified. In the next step, several remote
sensing indicators were considered for each selected indicator. Subsequently, the index that
exhibited the highest correlation with ground-truth data was selected for desertification
modeling. The root mean square error (RMSE) and coefficient of determination (R2) were
used as criteria for selecting the best indices.

2.4. Desertification Modeling Using Machine Learning Algorithms

Selecting an Appropriate Number of Training Samples is the first step in implement-
ing machine learning algorithms. Various approaches have been proposed for selecting
the number of training samples, with no single method universally accepted. Therefore,
to reduce spatial autocorrelation, 100 samples were randomly selected using visual in-
terpretation of Google Earth images and field visits for implementing machine learning
algorithms. Fifty samples were taken from areas where desertification had occurred, and
50 samples were taken from areas where desertification had not occurred. Ultimately, 70%
of these samples were randomly selected as the training group, and the remaining 30%
were selected as the testing group for modeling.

Four machine learning algorithms were employed to model desertification using
the SDM package in R: Support Vector Machine (SVM) [1,2], Gradient Boosting Machine
(GBM) [3,4], Generalized Linear Model (GLM) [5], and Random Forest (RF) [6,7]. Each
algorithm was run randomly three times to ensure that the classification was not influenced
by the sampling point distribution. To evaluate the accuracy of the machine learning models,
three indices were used: Kappa coefficient, Receiver Operating Characteristic (ROC) curve,
and True Skill Statistic (TSS). The Kappa coefficient is a measure of model accuracy, ranging
from −1 (lowest accuracy) to 1 (highest accuracy) [8]. The ROC curve, plotted as the
true positive rate against the false positive rate, is a graphical tool for evaluating model
performance, and its area under the curve (AUC) is a measure of model accuracy, ranging
from 0.5 (random) to 1 (perfect). Previous studies have categorized AUC values into
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several performance levels, including excellent (0.9–1), very good (0.8–0.9), good (0.7–0.8),
moderate (0.6–0.7), and poor (0.5–0.6) [9,10]. The TSS also evaluates model accuracy by
considering sensitivity and specificity at a specific threshold, ranging from 0 to 1, with
higher values indicating better model accuracy. These indices, by providing complementary
information, allow for a more comprehensive evaluation of the performance of machine
learning models [11].

2.5. Ensemble Modeling for Desertification Prediction

Ensemble models, which combine the strengths of multiple base models, offer im-
proved accuracy and reliability in predictions [12]. By aggregating results from various
models and mitigating noise and biases, ensemble models enhance predictive accuracy
and reduce error probabilities [13]. Moreover, ensemble methods provide greater flexibility
in handling complex datasets, leading to more informed decision-making and effective
management strategies in desertification and other environmental studies [14]. In this study,
after evaluating the performance of four machine learning models, a weighted ensemble
model was implemented using the SDM package in R to develop an optimal model for
desertification modeling. Subsequently, to predict desertification in 2044 under static condi-
tions, two scenarios were considered: land-use change and precipitation. Future land-use
change was predicted using a Markov chain model, while precipitation was estimated
using a LARS model.

2.6. CA–Markov Model

The CA–Markov model integrates cellular automata, Markov chains, and multi-
objective land allocation (MOLA) to forecast future land-use changes [15]. Initially, a
Markov chain model is employed to compute the probability of land-use class transitions,
represented as a transition probability matrix, based on changes observed between time
T0 and T1. While the Markov chain model provides temporal probabilities, it lacks spatial
information regarding the geographic location of land uses. To address this limitation,
a CA–Markov model is utilized, which incorporates spatial adjacency and user-defined
spatial distribution of transition probabilities into the Markov chain framework [16]. In
this study, land-use maps from 2004 to 2023 were used to predict the 2042 map. To as-
sess the accuracy of the CA–Markov model, a 2023 map was predicted using the 2004
and 2014 maps, and the results were compared with a reference map created through
supervised classification.

2.7. Statistical Downscaling

This study investigated the influence of climate change on desertification in the
Golestan province. Three climate change scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5)
from the CNRM-CM6 model were used to predict scenarios for the period of 2031–2050. To
apply these large-scale climate projections to the local watershed, the LARS-WG8 statistical
model was employed for downscaling. A primary challenge in regional climate change
impact studies is the mismatch between the large scale of climate models and the smaller
scale of actual impact areas. This discrepancy, arising from variations in topography and
climatic conditions, limits the direct application of model results to specific locations. To
bridge this gap, downscaling techniques were employed [17]. This research utilized the
statistical downscaling method, specifically the LARS-WG8 model, to generate regional
climate scenarios.

3. Results
3.1. The Selection of Remote Sensing Indicators

For desertification modeling, six indicators based on remote sensing were selected
(Table 1). The literature review revealed that the TGSI is the most appropriate index for
evaluating soil surface texture. An increase in soil surface grain size is a clear indicator
of land degradation [18,19]. When surface soil particles become coarser, this change is
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considered a warning sign of the onset or progression of destructive processes such as
erosion and desertification. This indicates that the TGSI index can be an effective tool for
monitoring and predicting soil degradation in desert and semi-desert areas. The NDSI,
VSSI, and SI indices were used to assess soil salinity. The NDSI index, with a low root
mean square error (RMSE = 5.21) and a suitable coefficient of determination (R2 = 0.71),
was selected for modeling. By analyzing data from the Chrips, PERSIANN, GPM, and
TRMM satellites, it was determined that Chrips satellite data had the highest correlation
with the synoptic station data in the region and, thus, was chosen for modeling (Table 1).
Five indices NDVI, DVI, EVI, and SAVI were considered for evaluating vegetation cover.
The NDVI index, with a root mean square error (RMSE = 2.41) and a suitable coefficient
of determination (R2 = 0.83), had the highest correlation with ground data (percentage of
vegetation cover in plots). The land-use change map was used as a remote sensing indicator
to examine the role of human factors in desertification. The accuracy of the land-use change
map was validated using ground truth data collected during field visits and Google Earth
imagery (Table 1). The WEHI model has three indicators; wind speed, soil moisture, and
bare soil. The high correlation coefficients between the WEHI model, which is capable of
remote sensing, and the ground evidence map show the high capability of this model in
estimating wind erosion (Table 1 and Figure 2).

Table 1. Indicators based on the degree of correlation with ground surface data.

Numbers Indicators Remote Sensing
Indicators Ground Surface Data

Correlation Rate Between
Satellite Indicators and
Ground Surface Data Reference

R2 RMSE

1 Soil texture TGSI Soil surface profile 0.82 0.87
[18,19]2 EC NDSI 0.71 5.21

3 Rainfall Chrips synoptic stations 0.65 141.33 [20]

4 Groundwater
depth - The water depth of

the wells 0.79 4.01 [21]

5 Vegetation
percent NDVI Vegetation percentage

in plots 0.83 2.41 [22]

6 Wind erosion
WEHI model =

/NDMI) wind speed
* MBI(

Map of ground evidence 0.86 0.89 [23]

7 Land use Land-use changes Map of ground evidence 0.71 0.64 [24]

3.2. Desertification Modeling

After selecting the remote sensing indices, desertification modeling was conducted
in 2023 using four machine learning models (Figure 3). The results of all four models
indicated severe land degradation in the northern regions of the study area, with scattered
patches of high degradation intensity also observed in the southern and northeastern areas.
To evaluate the modeling results, statistical parameters including the Kappa coefficient,
Receiver Operating Characteristic (ROC) curve, and True Skill Statistic (TSS) were used
(Table 2). Based on the results, the RF and SVM models outperformed the GLM and GBM
models. Overall, the RF model was identified as the best performer with AUC = 0.91,
TSS = 0.88, and Kappa = 0.90, while the GLM model was the weakest with AUC = 0.79,
TSS = 0.77, and Kappa = 0.65.
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sented in the article demonstrate the impact of the key variables that were influential 
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and (d) are models GBM, GLM, RF, and SVM in 2023, respectively.

Table 2. Performance evaluation of models based on various indicators.

Methods AUC TSS KAPPA

GLM 0.79 0.77 0.65
GBM 0.85 0.80 0.72

RF 0.91 0.88 0.90
SVM 0.89 0.86 0.88

The varying performance of the models indicates the presence of uncertainty in their
results. Therefore, it is necessary to use ensemble models that leverage the strengths of
multiple models. In this study, a weighted average of the four models RF, SVM, GBM, and
GLM was used, with the RF model receiving the highest weight and the GLM model the
lowest in the ensemble model (Figure 4). The results of the ensemble model also indicate
severe desertification in the northern regions of the study area, though the intensity of
desertification is shown to be lower compared to the individual models.
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3.3. Importance of Variables in Modeling

Identifying the factors influencing desertification is crucial for managing and pre-
venting this phenomenon. A thorough analysis of these factors allows researchers and
environmental managers to model desertification-prone areas more accurately. This, in turn,
supports the development of effective strategies to combat desertification. Accordingly,
the significance of the indicators used in desertification assessment was determined based
on the ensemble model. The process of combining the models was based on the weighted
averaging method, where the weight of each model was determined according to its pre-
diction accuracy. Then, the importance of variables was calculated through the weighted
combination of the base model results. This approach allowed us to more accurately iden-
tify the variables influencing desertification. The variable importance plots presented in the
article demonstrate the impact of the key variables that were influential across all models.
The results showed that, in order of importance, land-use change, groundwater depth,
precipitation, WEHI, NDVI, NDSI, and TGSI are the most influential factors in the region’s
desertification (Figure 5). Based on these findings, utilizing scenarios such as land-use
change and precipitation can be effective in identifying areas prone to desertification and
formulating strategies for its control and prevention
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3.4. Prediction of Future Desertification

To predict desertification in 2040, assuming other parameters remain constant, the av-
erage changes in precipitation during the period of 2031–2051 and land use were simulated.
Results from the CNRM-CM6 model indicate an increase in precipitation across Golestan
Province in the future period. The findings showed that under the SSP1-2.6, SSP2-4.5, and
SSP5-8.5 scenarios, annual precipitation at the synoptic station in Gorgan is expected to
increase by 78.5, 58.11, and 109.78 mm, respectively, during the 2031–2050 period. At the
Gonbad station, precipitation is predicted to increase by 59.99, 56.20, and 78.12 mm under
these scenarios. Similarly, at the Kalaleh and Maraveh Tappeh stations, precipitation is
expected to rise, with increases of 55.26, 50.55, and 57.99 mm at Kalaleh, and 33.55, 28.42,
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and 41.30 mm at Maraveh Tappeh, assuming the realization of the climate change scenarios
(Figures 6 and 7).
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Figure 7. Monthly precipitation prediction using different scenarios for the period of 2031–2050 in
(a) Gorgan station, (b) Gonbad station, (c) Kalaleh station and (d) Maraveh Tappeh station.

The land-use prediction in 2040, using the Markov Chain model and comparing it with
current land use (2023), indicates a reduction in forest areas by 7093 hectares (0.35 percent),
rangeland areas by 109,182 hectares (5.38 percent), and wetland areas by 840 hectares
(0.04 percent), along with an increase in agricultural land by 4800 hectares (0.24 percent),
barren land by 104,998 hectares (5.18 percent), water bodies by 1000 hectares (0.05 percent),
and residential areas by 6317 hectares (0.31 percent) (Table 3 and Figure 8). Assuming
constant indices for soil surface texture, soil salinity, groundwater depth, and vegetation
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cover density, and also considering the projected average precipitation for the 2031–2050
period and land use in 2040, desertification was projected using an ensemble model for
2040 (Figure 8). The 2040 desertification map indicates an expansion of this phenomenon
in the northern regions of the area. The results showed that desertification in 2040 is
expected to increase by approximately 2% (40,562 hectares), with the advance occurring in
the Northwest regions adjacent to the Gorgan wetland and the Sangi Tappeh desert (Table 4
and Figure 9).

Table 3. Investigating the trend of land-use class changes.

Class Land Use 2023
(Hectares)

2040
(Hectares) Percent Changes

1 Forest 338,308 331,215 −0.35
2 Pasture 708,316 599,134 −5.38
3 Agricultural 804,025 808,825 0.24
4 Barren lands 124,644 229,642 5.18
5 Water 8201 9201 0.05
6 Wetland 8718 7878 −0.04
7 Residential 35,901 42,218 0.31

Total 2,028,113 2,028,113
Land 2024, 13, 1802 12 of 16 
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Table 4. The trend of desertification class changes.

Class Desertification 2023
(Hectares)

2040
(Hectares) Percent Changes

1 Low 1,345,809 1,204,281 −6.97
2 Moderate 321,785.44 402,430.4 +3.97
3 Severe 165,359.77 185,680.8 +1
4 Very Severe 195,158.80 235,720.8 +2

Total 2,028,113 2,028,113
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4. Discussion

The novel combination of six distance-based indices with the SDM package in R
provides a unique perspective on desertification modeling. This approach enables accurate
projections of future desertification trends. Results indicate that the Random Forest (RF)
and Support Vector Machine (SVM) models outperformed the Gradient Boosting Machine
(GBM) and Generalized Linear Model (GLM) in terms of predictive accuracy. The superior
performance of the RF model can be attributed to its ensemble nature, which involves
combining multiple decision trees trained on different data samples to enhance diversity
and mitigate overfitting.

Random Forest (RF) and Support Vector Machine (SVM) were employed in this study
due to their proven effectiveness in handling complex classification problems. RF, with
its ensemble nature, reduces variance and improves predictive accuracy by combining
multiple decision trees. SVM, on the other hand, excels in high-dimensional space and
can effectively separate data classes. While both models offer advantages, they also have
limitations. RF can be computationally expensive for large datasets, and SVM can be
sensitive to hyper-parameter tuning. To mitigate these limitations and enhance the overall
robustness of the model, an ensemble approach was adopted, combining the strengths of
both models [25–28].

The Random Forest model outperformed other models in the analyses conducted in
this study for several reasons. By combining a large number of decision trees and random
sampling, this model reduces data fluctuations and prevents overfitting. Consequently,
this method utilizes uncertainty metrics for each tree and ultimately selects the prediction
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based on majority voting, resulting in higher prediction accuracy. Other studies have also
demonstrated the effectiveness of this model. For example, recent research has shown that
the Random Forest model, due to its noise-resistant structure, performs exceptionally well,
particularly in complex problems and noisy datasets. The findings of this study align with
these previous studies, demonstrating that, compared to models such as GLM and BRT,
which are more sensitive to data fluctuations, the RF model exhibits greater stability in
accuracy [14,29,30].

The ensemble approach, which combines the strengths of Random Forest and Sup-
port Vector Machine, proved to be particularly effective in modeling desertification. By
mitigating the limitations of individual models, such as overfitting in RF or sensitivity
to hyper parameters in SVM, the ensemble model provided a more robust and reliable
prediction. The reduced uncertainty in the ensemble predictions allowed for more confident
projections of future desertification trends. The results of this study underscore the benefits
of ensemble modeling in complex environmental modeling tasks. By combining multiple
diverse models, the ensemble approach not only improves predictive accuracy but also
enhances the interpretability of results. The ensemble model’s ability to identify the most
influential factors contributing to desertification (e.g., climate change, land use) provides
valuable insights for developing targeted mitigation strategies. Furthermore, the ensemble
framework can be adapted to other environmental problems, making it a versatile tool for
addressing complex challenges [13,14].

The ensemble model results indicate a higher intensity of desertification in the northern
regions of the study area. The analysis reveals that changes in desertification in Golestan
Province are influenced by a complex interplay of environmental and anthropogenic
factors. Key drivers include land-use change, alterations in groundwater depth, and
precipitation patterns. Land-use change, particularly the conversion of agricultural land
and pastures to rainfed and fallow lands, significantly accelerates desertification. These
changes often result in the loss of natural vegetation, which acts as a barrier against soil
erosion. Reduced vegetation cover also leads to increased evaporation and decreased
infiltration, disrupting soil moisture balance. Another critical factor is the decline in
groundwater levels. Excessive groundwater extraction and climate change can induce soil
dryness and reduced agricultural productivity. Additionally, changes in precipitation, a
significant climatic factor, play a crucial role. Decreased precipitation in the arid and semi-
arid regions of Golestan reduces soil moisture and hampers the regeneration of natural
vegetation, exacerbating desertification. Conversely, sudden and intense rainfall events
can cause soil erosion and degrade soil structure and biota. Overall, our findings indicate
that desertification in Golestan Province is a result of complex interactions between human
and natural factors, necessitating appropriate environmental policies and comprehensive
conservation measures for effective management and control.

Climate and land-use change simulations reveal complex trends in the study area,
with potentially significant environmental consequences. Climate modeling results indicate
a general increase in precipitation in the Golestan province. This increase is observed
across all synoptic stations but varies spatially, with higher increases observed from east to
west. These variations may be attributed to factors such as station location, topography,
and changes in large-scale atmospheric circulation patterns. While increased precipitation
could have positive impacts like enhanced soil moisture, improved vegetation cover, and
reduced drought risk, the increased intensity and frequency of extreme rainfall events may
lead to flooding, soil erosion, and land degradation.

Land-use projections from 2023 to 2040 indicate substantial changes that directly
influence desertification processes. The significant expansion of barren lands and the
decline in pastureland can have detrimental effects on the region, including increased barren
lands, resulting from reduced vegetation cover, soil erosion, decreased soil infiltration, and
ultimately intensified desertification. Changes in precipitation and land use interact to
influence desertification processes. While increased precipitation can improve vegetation
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cover and reduce soil erosion, it can also lead to flooding and soil degradation if not coupled
with proper water and soil management.

The 2040 desertification map indicates an eastward expansion of desert areas from the
northeastern regions. The findings suggest that without effective desertification control
measures, a 2% increase (40,562 hectares) in desertified areas could occur by 2040. Un-
sustainable agricultural practices, coupled with land-use changes, are likely to exacerbate
desertification in the future. To mitigate these impacts, strategies such as protecting environ-
mentally sensitive areas, conserving natural resources, promoting sustainable agriculture,
and optimizing land use are recommended.

While this study provides valuable insights into the spatial and temporal patterns
of desertification in Northeast Iran, it is important to acknowledge certain limitations.
The accuracy of the results is dependent on the quality and resolution of the input data,
particularly remote sensing data. Additionally, the complexity of desertification processes
and the influence of various socio-economic factors may not be fully captured by the models
employed in this study. Future research could explore more advanced modeling techniques,
such as machine learning algorithms that incorporate deep learning, to further improve
the accuracy and robustness of the predictions. Furthermore, integrating socio-economic
factors into the analysis can provide a more comprehensive understanding of the drivers of
desertification and inform targeted interventions.

5. Conclusions

This study highlights the significant role of land-use change and climate variability
in driving desertification in Northeast Iran. By integrating advanced machine learning
techniques, such as Random Forest and Support Vector Machine, with remote sensing
data, this research has enabled accurate mapping and prediction of future desertification
trends. The ensemble modeling approach further enhances the robustness and reliability of
the results.

The findings indicate that the northern regions of the study area are particularly
vulnerable to desertification. The projected increase in desertification by 2040, driven by
climate change and land-use change, underscores the urgent need for effective mitigation
and adaptation strategies. To address this pressing issue, it is imperative to implement
sustainable land management practices, such as afforestation, agroforestry, and soil conser-
vation measures. Additionally, climate change mitigation strategies, including reducing
greenhouse gas emissions and promoting renewable energy sources, are crucial to limit the
adverse impacts of climate change on desertification.

While this study provides valuable insights, it is important to acknowledge the limita-
tions inherent in the research, such as the reliance on data quality and model assumptions.
Future research could explore more advanced modeling techniques, incorporate addi-
tional socio-economic factors, and refine the evaluation metrics to further enhance the
understanding of desertification dynamics. By addressing the challenges posed by desertifi-
cation, it is possible to protect ecosystems, safeguard livelihoods, and ensure the long-term
sustainability of the region.
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