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Abstract: Land use and cover change (LUCC) is a key factor influencing global environmental and
socioeconomic systems. Many long-term geospatial LUCC datasets have been developed at various
scales during the recent decades owing to the availability of long-term satellite data, statistical data
and computational techniques. However, most existing LUCC products cannot accurately reflect the
spatiotemporal change patterns of LUCC at the regional scale in China. Based on these geospatial
LUCC products, normalized difference vegetation index (NDVI), socioeconomic data and statistical
data, we developed multiple procedures to represent both the spatial and temporal changes of the
major LUC types by applying machine-learning, regular decision-tree and hierarchical assignment
methods using northeastern China (NEC) as a case study. In this approach, each individual LUC
type was developed in sequence under different schemes and methods. The accuracy evaluation
using sampling plots indicated that our approach can accurately reflect the actual spatiotemporal
patterns of LUC shares in NEC, with an overall accuracy of 82%, Kappa coefficient of 0.77 and
regression coefficient of 0.82. Further comparisons with existing LUCC datasets and statistical data
also indicated the accuracy of our approach and datasets. Our approach unfolded the mixed-pixel
issue of LUC types and integrated the strengths of existing LUCC products through multiple fusion
processes. The analysis based on our developed dataset indicated that forest, cropland and built-
up land area increased by 17.11 × 104 km2, 15.19 × 104 km2 and 2.85 × 104 km2, respectively,
during 1980–2020, while grassland, wetland, shrubland and bare land decreased by 26.06 × 104 km2,
4.24 × 104 km2, 3.97 × 104 km2 and 0.92 × 104 km2, respectively, in NEC. Our developed approach
accurately reconstructed the shares and spatiotemporal patterns of all LUC types during 1980–2020
in NEC. This approach can be further applied to the entirety of China, and worldwide, and our
products can provide accurate data supports for studying LUCC consequences and making effective
land use policies.

Keywords: fractional land cover share; machine-learning method; northeastern China; land use and
cover change (LUCC); NDVI

1. Introduction

Land use/cover change (LUCC) is closely associated with human production and
living, social and economic development, as well as ecological carrying capacity [1–3]. With
the continuous development and releases of remote sensing images and advancements in
image processing techniques, many LUCC products were developed during recent decades
at regional, national and global scales [4,5], such as the Global Land Cover map (DISCover)
for 1992 [6], Global Land Cover 2000 (GLC2000) [7], the MODIS series products [8], the
30 m global land cover data (Globeland30) [9], the 10 m Finer-Resolution Observation
and Monitoring of Global Land Cover (FROM-GLC) products for 2017 [10], the 30 m fine
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classification system global land cover product (GLC_FCS30) [11], the European Space
Agency Climate Change Initiative (ESA-CCI) land cover product for 1992–2020 (300 m) [12],
and the ESRI annual map of Earth’s land surface for 2017–2023 [13]. Due to the requirements
of higher temporal and spatial data accuracy, many LUCC products were also produced
specifically for China, such as China’s Land-Use/cover Dataset (CLUD) at 30 m resolution
for the 1980s, 1995, 2000, 2005, 2010, 2015 and 2020 [14,15], the annual China Land use/land
cover datasets (CLUD-A) [16] and the China Land Cover Dataset (CLCD) [17]. Although
these datasets have been validated with high accuracy, intercomparisons indicate that there
is a large discrepancy among these datasets, and none of the spatiotemporal patterns of
these datasets match well with China’s statistical or inventory data, at both regional and
national scales [18]. Most datasets showed a slight increase or even decrease in forest
area from the 1980s to the present, and none of the datasets match the temporal change
trends of the national statistical data. For example, Qin et al. [19] compared several LUCC
products and indicated that the forest area of five datasets ranged from 174 × 104 km2

to 227 × 104 km2 in 2010. Yang and Huang [17] reported that forest area in China only
increased by 4.34% during 1980–2019, significantly lower than the national forest inventory
(NFI), which revealed a 77% increase from the period 1984–1988 (12.98% forest coverage) to
the period 2014–2018 (22.96%). In addition, Yu et al. [20] indicated that most of the cropland
data in the existing LUCC products are not consistent with the statistical data by comparing
over 10 existing cropland datasets. Similarly, the wetland area in the CLUD, MODIS,
CLCD and CLUD-A datasets changed less than ±10% during 1980–2020, while reports
have indicated that China’s wetland area has been significantly reduced by 33% [21,22]. In
addition, most of these existing datasets were only targeted at a single LUC type, while
few studies have comprehensively addressed the spatiotemporal patterns for all LUC
types. Many previous studies have applied these existing LUCC products to analyze or
explain the spatiotemporal changes of vegetation cover, growth and ecological impacts.
For example, Song et al. [23] estimated the canopy cover change for various LUC types at
national, continental and global scales. Based on the LUCC products and other assisting
data, Chen et al. [24] and Zhu et al. [25] stated that the Earth is becoming greener, partially
driven by the vegetation recovery in China. In addition, Yu et al. [26], Chang et al. [27]
and Li et al. [28] have either directly or indirectly applied these geospatial LUCC datasets
to extrapolate or model the carbon balance in China. The results of all these previous
studies heavily relied on the quality of the LUCC products and highlighted the importance
of LUCC data quality [26]. Therefore, it is necessary to produce a more accurate and
comprehensive long-term LUCC dataset for China.

Several attempts have been made to match areas based on statistical and field survey
data. For instance, Xia et al. [18] reconstructed a new forest cover dataset (CFCD) from
1980 to 2015 by combining several existing LUCC datasets and NFI data; however, this
approach matched only the temporal change patterns and sacrificed the spatial accuracy. To
match statistical cropland area and change trends, Yu et al. [20] developed a subpixel-level
cropland share dataset; however, this dataset was only targeted at cropland areas and did
not consider other LUC types. There are two major reasons for the misrepresentation of
LUCC at spatiotemporal scales in China. The first reason is that most LUCC products were
developed using pixel-based classification methods [20,29]. In the pixel-based approach,
each pixel is treated as a binary value (either Boolean 0 or 1), i.e., each grid cell is completely
occupied by a single LUC type [20]. This approach is more suitable for high-resolution
images [30]. A small percentage of the pixels could be ignored based on this approach,
resulting in an underestimation for temporal changes. Using forests as example, forest area
in China is defined as tree coverage greater than 20% within a minimum area of 0.5 ha.
Pixels with tree coverage ranging from 20% to 100% are regarded as forest area, which
results in a failure to reflect the change of pixel-level tree coverage in the LUCC products
and an underestimation of forest-area increase caused when the tree coverage increases
from 20% to 100%. To develop a more accurate temporal change pattern of LUCC, it is
necessary to produce a subpixel-level LUCC dataset that can reflect the fractional shares of
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each LUC type within each pixel [20]. The second reason is that most LUCC products did
not simultaneously match the spatiotemporal patterns of all LUC types with statistical data.
For example, Xia et al. [18], Yu et al. [20], Gong et al. [31] and Niu et al. [21] only targeted
matching forest, cropland, urban and wetland areas with inventory data, respectively. None
of current long-term LUCC products in China can comprehensively match all LUC types
with statistical data. It is a challenge to harmonize the area and its temporal changes for all
LUC types within each pixel. Recently, several long-term assisting geospatial datasets, such
as the normalized difference vegetation index (NDVI) and leaf area index (LAI) datasets,
have been developed [32–34]. Based on the existing vegetation indices and LUCC products,
it is possible to invert the real changes in LUC shares within pixels.

Northeastern China (NEC) covers about 15.3% of China’s territory. It is the main
base for cereal and wood production in China and has the largest wetland area compared
with other regions. With rapid transitions of socioeconomic environments, this region
has experienced dramatic and complex changes in various LUC categories during the
recent decades, making this region an ideal case for developing approaches to LUCC
products. Through comparisons with existing LUCC products, we found that no LUCC
product comprehensively catches the actual changes in LUC areas in NEC for 1980–2020;
therefore, it is also necessary to reconstruct a long-term and high-precision proportional
LUCC dataset to accurately reflect the spatiotemporal patterns in major LUC types in NEC.
The objectives of this study are to (1) construct an approach for tracking the changes of
fractional shares of various LUC types by integrating multiple LUCC products and other
geospatial datasets with statistical data using machine-learning and regular decision-tree
methods; (2) evaluate the performance of this approach using NEC as a case study area;
(3) analyze the spatiotemporal patterns of LUCC in NEC.

2. Study Area and Data Descriptions
2.1. Study Area

Northeastern China (NEC) is located between 110◦–135◦ E and between 38◦–54◦ N
and has a total land area of 1.47 × 106 km2 (Figure 1). NEC includes Heilongjiang, Jilin,
and Liaoning provinces, as well as the eastern portion of the Inner Mongolia province. This
region has undergone massive LUCC since the 1980s and is of great importance in ecological
conservation, forest wood production and food security in China [35]. Most of the region is
characterized with a temperate climate, with a small portion with a boreal (cold temperate)
climate. Summer is short, dry and hot, while winter is long and cold. The mean annual
air temperature is about 3.11 ◦C, and mean annual precipitation is about 785 mm. Mean
annual temperatures increased by about 1.36 ◦C during 1980–2020. Precipitation mostly
occurs in summer and decreases from about 1100 mm in the southeast to less than 300 mm
in the southwest. This region has the largest wetland area in China, but it has greatly
shrunk during recent decades [36]; it also has the largest area of natural forest. A large
portion of western NEC belongs to the Three-North Shelterbelt Forest (TNSF) afforestation
project region; thus, large forest areas have been planted since 1978. NEC is also the most
important wood and crop production base in China. With the above conditions, rapid
urbanization, increasing population and economic development, LUC areas and types have
been dramatically changed.

2.2. Data Descriptions
2.2.1. Statistical Data

To develop an accurate LUCC area in NEC, this study collected inventory statistical
data at the provincial level. The land area of each land cover type for 1980–2020 was
collected from the statistical yearbook data from each province. The annual cropland
area and type data for 1980–2020 were retrieved from the provincial statistical yearbook
(e.g., the data for Jilin Province are from http://tjj.jl.gov.cn/tjsj/tjnj/; accessed on 25 July
2024). The forest area data for every 5 years for 1980–2020 were obtained from the National
Forest Inventory (NFI) of China (https://www.stgz.org.cn/ldbggzpt/; accessed on 25 July

http://tjj.jl.gov.cn/tjsj/tjnj/
https://www.stgz.org.cn/ldbggzpt/
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2024). The 5-year NFI data were further linearly interpolated to annual data. Forest land
from the NFI was defined as tree coverage greater or equal to 20%, which includes tall
forests, bamboo stands, dense shrubland (shrub coverage is greater than 30% in the arid
and semi-arid region), tree nurseries and cleared forest areas due to fire disturbance and
harvesting. The statistical data for other LUC types (grassland, shrubland, bare land, water
body and built-up land) at the provincial level were collected from the First, Second and
Third National Land Survey in 1997, 2007 and 2020, respectively. To eliminate the large
fluctuation of inter-annual changes, statistical data were linearly fitted based on annual
area and recalculated based on these fitted lines.
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Figure 1. The study area and the distribution of major land use and cover types (Source: [17]) and the
training and validation sample plots. Note: the triangle points are visually-interpreted plots at a 1 km
spatial resolution; the dark circle points are field-investigated plots at a 30 m resolution (Source: [37]).

2.2.2. Geospatial Datasets

Many geospatial data were collected to assist in the generation of the LUCC dataset.
These include the existing LUCC products, long-term NDVI time series data and other
socioeconomic datasets (Table 1). The multiple LUCC products were collected to recon-
struct the boundary and historical changes in each LUC category. These datasets include
CLCD [17], ESRI LUCC (https://livingatlas.arcgis.com/landcover/, accessed on 25 July
2024), CLUDA [16], NLCD (http://www.nesdc.org.cn/, accessed on 25 July 2024), GLASS-
GLC [38], and MODIS [8]. We clipped NEC’s area from these national or global level LUCC
products. We also collected some literature data (nonspatial) for the evaluation of our
approach, including the Wang_wetland [36], Mao_wetland [39] and Ye_grassland [40] data.
Based on the NDVI data from AVHRR from 1982 to 1999 (GIMMs NDVI) and MODIS
from 2000 to 2020, previous researchers developed multiple NDVI datasets at 30 m, 1 km
and 0.05◦ spatial resolutions for the period 1981–2020 [32–34]. We first aggregated the
30 m NDVI dataset (1986–2020) to a 1 km resolution for the period 1986–2020 and applied
the change trends of the 0.05◦ NDVI dataset to extend the 1 km NDVI data for the period
1980–1985. These long-term NDVI data were used to extrapolate the change trend of land
shares. All the above geospatial datasets were downscaled or upscaled to the 1 km spatial
resolution based on the neighborhood or average principles.

https://livingatlas.arcgis.com/landcover/
http://www.nesdc.org.cn/
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Table 1. Geospatial datasets used for land use and cover reconstruction or comparisons.

Datasets Resolution Time Period Sources

ESRI-LUCC 10 m 2017–2023 https://livingatlas.arcgis.com/landcover/
(accessed on 25 July 2024)

FROM-GLC 10 m 2017 [10]

NLCD 30 m 1980, 1990, 1995, 2000, 2005,
2010, 2015, 2020

http://www.nesdc.org.cn/
(accessed on 25 July 2024)

MODIS 500 m 2000–2020
https:

//modis-land.gsfc.nasa.gov/landcover.html
(accessed on 25 July 2024)

CLUDA 1 km 1980–2015 [16]
CLCD 30 m 1990–2020 [17]

GLASS-GLC 0.05◦ 1982–2015 [38]
GLC 1 km 1980–2100 [41]

Yu_cropland 5 km 1900–2016 [20]
Xia_forest (CFCD) 1 km 1980–2015 [18]

GLCLUC 30 m 2000–2020 [42]
GFC 0.05◦ 1982–2016 [23]

You_croptype 10 m 2017–2019 [43]
Mao_wetland 30 m 2015 [29,39]

NDVI 30 m 1986–2020 [34]
NDVI 0.05◦ 1981–2023 [33]

2.2.3. The Sampling Plot Datasets

We collected the all-season sample set data developed by the Finer-Resolution Ob-
servation and Monitoring of Global Land Cover (FROM-GLC) project [37] to evaluate the
performance of our approach in generating the LUCC products. In total, 2453 validation
plots were included for the NEC region. These samples mostly reflected the LUC types in
2015 and have undergone standardization and strict processing. These sampling plots were
used for evaluating the performance of our developed datasets in reflecting the spatial
patterns of LUC types.

To evaluate the performance of our approach in generating the LUCC shares at the
pixel level, we further collected sampling plots from the Google Earth Pro platform using
the visual interpretation methods. The high-resolution (<5 m) images were chosen to
conduct digitizing LUC shares within 1 km2 pixels. The plots were chosen at the places
where at least two periods of high-resolution images were available during 2005–2020.
The boundaries of different LUC types were drawn by hand using polygons. The shares
of different LUC types were calculated based on the polygon areas. The share changes
between two time periods were calculated to represent the changes of LUCC shares during
this period. The years, LUC types and shares were recorded. The developed LUC share
datasets at the pixel level were finally compared with these sampling plot data, and thus
the LUCC areas and spatial patterns were evaluated against the sampling plot data during
the same time period. Due to very few available high-resolution images with at least two
time periods in NEC, we finally only identified 65 sampling plots.

3. Methods

To develop the integral LUCC dataset and match the statistical area for all LUC
types, we separately reconstructed the cropland, built-up land, forest, wetland, grassland,
shrubland and bare land in sequence, and different approaches were developed for each
LUC type due to different impact factors controlling the changes of these LUC types.

3.1. Hierarchical Assignment Method for Cropland Share Dataset

A hierarchical assignment method was applied to develop the cropland share maps
for 1980–2020. This method was first proposed by [30] in the United States and was further
applied in China [20]. To develop the gridded cropland share (%) data, we slightly modified

https://livingatlas.arcgis.com/landcover/
http://www.nesdc.org.cn/
https://modis-land.gsfc.nasa.gov/landcover.html
https://modis-land.gsfc.nasa.gov/landcover.html
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this procedure by fusing the approach in [44]. Integrating existing land use products to
produce new cropland maps involves a series of steps (Figure 2). First, the collected
six cropland datasets underwent uniform preprocessing. Then, the appropriate weight
order for these input products was determined. We used a fused method of accuracy
information and expert judgment to establish the weight order of the input datasets (higher
accuracy > lower accuracy, higher resolution > lower resolution). The second step was to
label high-score cropland pixels. Each pixel was assigned different scores based on the
weight order and various combinations, with the highest score being 21. When a pixel has
a higher score, it is more likely to be labeled as a cropland grid. The pixels with higher
scores were summed up and compared with the provincial cropland area (R) to identify
areas smaller than R, which are designated as cropland grids and marked as T (True), while
the remaining low-score pixels are labeled as P (Possible), with a total area marked as areaT.
However, this area differs significantly from the provincial statistical data (reference area,
RA), necessitating further selection of suitable pixels for allocation.
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The third step involved reallocating the remaining pixels. We needed to identify pixels
that were more likely to be cropland among the remaining pixels. Cropland cultivation
primarily relies on human activity, so land near human settlements is more likely to be
cultivated, while land farther from settlements is more prone to abandonment. Additionally,
cropland close to lakes, rivers and reservoirs is more likely to be irrigated than that further
away from water sources [44]. When prioritizing, proximity to densely populated areas
and watersheds should be considered, with the weighting based on the distance from each
grid cell to the nearest urban, rural and water body area. These two auxiliary weights
were combined with the scoring weight to further determine the cropland assignment
priority. All remaining cropland pixels were ranked in descending order based on the new
combined weight values. The total area of the cropland pixels with the highest weight
values was summed (TAn; n is the total iteration numbers) to match the provincial area.
If area1 was less than the RA, the cropland pixels with the second-highest weight value
were counted, and their area (areaP2) was combined and compared with the RA. If TAn
was still less than the RA, the iteration process turned to the third-highest weight and
continued until the total area was closest to the RA. This iterative thresholding process was
conducted in each province of NEC to obtain provincial cropland share maps. After the
cropland distribution maps were developed, the main crops within pixels were further
identified through a similar iterative approach based on the high-resolution (10 m) crop
type distribution data [43].

3.2. Built-Up Land and Water Body Share

The CLUDA data [16] are represented as a fractional share for each LUC type within
each pixel at a 1 km spatial resolution. Our built-up land and water body distribution data
were slightly modified based on CLUDA because this dataset has been compared with
many previous datasets and was consistent with the spatiotemporal change patterns of the
inventory data. The pixel-level built-up land and water body areas were slightly reduced,
in which the sum area for cropland, built-up land and water bodies was greater than 100%.

3.3. Forest Share Data Reconstruction Method

After the cropland, built-up and water body datasets were generated, we further
developed a procedure to reconstruct the forest area dataset (Figure 3). In this procedure,
the first step is to generate the maximum forest distribution boundary. The LUCC datasets
of ESRI-LUCC (2017–2023), FROM-GLC (2017), CLCD, CLUDA, GLASS, NLCD and MODIS
were used to obtain the maximum forest cover boundary. After a series of processes, such
as reprojection, clipping, resampling, combination and aggregation, we generated the
initial maximum forest distribution area for 1980–2020 at a 1 km resolution. The pixels
with a forest cover share less than 10% were removed, and then the final maximum forest
distribution boundary map was generated. The removal of non-forest area can reduce the
interference and confounding caused by other land cover types.

In the second step, the annual NDVImax dataset for 1980–2020 was reconstructed. The
combined monthly NDVI dataset at a 1 km spatial resolution for 1980–2020 was applied to
refit the change trends of forest share within forest-presence pixels. To eliminate the impact
of anomalies, we first used the maximum value composites (MVCs) method to compose
the monthly NDVI data and obtained the annual maximum NDVI dataset (NDVImax).
To remove the unreasonable annual variations, we applied the SG filter (Savitzky–Golay
Filter) to smooth the abnormal interannual variations of NDVImax at the pixel level. The SG
filter cannot guarantee a continuous change trend of NDVImax for 1980–2020; therefore, we
further fitted regression models at the pixel level using the year as the independent variable.
We found that the polynomial equation (y = ax2 + bx + c) is the most suitable regression
model for most pixels. Based on the fitted regression models, a new smooth-change annual
NDVImax dataset for 1980–2020 was generated.

The third step is to invert forest share and its interannual variations. We as-
sumed that the annual forest cover share changes can be represented by the annual
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NDVImax data. We first fitted the regression between regional change trends of annual
NDVImax and inventory forest share for 1980–2020 using the polynomial equation
Forestshare = −22.792NDVImax

2 + 34.77NDVImax − 12.916; we found there was a signif-
icant correlation coefficient between them (R2 = 0.90). However, we also found that this
relationship is not suitable for individual pixels, and different regression models should be
used to fit the forest area change. Therefore, we applied the random forest (RF) regressor
algorithm to modify the regression models over the spatial scale. The 5-year statistical
provincial forest cover share change data were linearly interpolated to an annual scale for
1980–2020. To obtain the change trend of provincial forest share, the RF regressor algorithm
was iteratively run until the fitted forest share change pattern was close to the inventory
forest share. After the RF regressor models were determined, they were applied to simulate
the pixel-level forest share changes using the NDVImax data as input.
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At the final step, the additional forest share in the pixels greater than 100% by summing
up cropland, built-up area, water bodies and forest shares was subtracted.
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3.4. Wetland Share Dataset Development

According to Niu et al. [21], China’s wetland area was reduced by 33% from 1978 to
2008. According to Wang et al. [36] and Mao et al. [39], the wetland area was reduced by
30% during 1980–2015 and 33% during 1990–2019, respectively. Based on the differences
in time periods, we finally calculated that wetland area was reduced by 34% from 1980
to 2020. In addition, based on their study year points (1980, 1990, 2000, 2013, 2015, 2019),
we finally applied the linear interpolation method to generate the annual wetland area for
1980–2020.

Before developing the geospatial wetland share dataset, we first calculated the maxi-
mum available land share for wetland by subtracting the sum values for cropland, built-up,
water body and forest shares. In the wetland share dataset development procedure, the first
step is to develop the wetland maximum boundary map and the current share (Figure 4).
Similar to forest share development, the 8 existing LUCC products for the most recent year
and Mao_Wetland [29] were used to generate the maximum wetland distribution boundary
map. The wetland share in 2020 was generated on the basis of Mao_Wetland data, which
are consistent with China’s wetland inventory data. This dataset was aggregated to a 1 km
spatial resolution, and the wetland share was calculated. Finally, the maximum (potential)
wetland boundary map and wetland share in 2020 were developed.
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The second step is to retrospect the wetland share for 1980–2019. Because the wetland
share was shrinking from 1980 to 2020, we need to expand the wetland area retrospectively
from 2020 to 1980. The key problem is where the potential wetland area would be located
in the history. Mao et al. [45], Wang et al. [36] and Luo et al. [46] noted that the reduction of
wetland area in China was mostly due to conversion to cropland. Mao et al. [45] indicated
that agricultural encroachment for food production is responsible for approximately 60%
of natural wetland loss in China, 74.7% (11,778 km2) of which occurred from 1990 to 2000.
In addition, the conversion of natural wetlands to cropland reached a maximum of 85.4%
in NEC. Furthermore, in a meta-analysis, Asselen et al. [47] also indicated that most of
global wetlands were converted to cropland. Therefore, we also assume that the decreasing
wetlands in NEC are primarily due to cropland expansion. In all pixels of the maximum
wetland distribution map, the increasing cropland area was assigned to the decreasing
wetlands. Based on this rule, the initial wetland share was developed starting from 2020
to 1980.

However, based on the initial wetland share dataset, we found that the decline of
wetland area from 1980 to 2020 was significantly greater than the actual decline area from
the inventory data. To be consistent with the inventory data, we needed to reduce the
magnitude of the declining wetland area. Similar to the cropland share data development
method (the second step), we removed some unlikely wetland pixels from the initial
wetland share dataset based on the declining order score rule. By iteratively tuning the
minimum score thresholds, we finally generated the wetland share dataset, which was
temporally consistent with the statistical wetland area data.

3.5. Reconstruction of Grassland, Shrubland and Bare Land Shares

Before developing the geospatial grassland, shrubland, and bare land share datasets,
we first calculated the maximum available land shares (remaining shares) for them by
subtracting the sum values for cropland, built-up, water body, forest and wetland shares.
The statistical data for grassland and shrubland area from the National Land Survey were
used for the constraint of the final area of these two LUC types.

To develop these datasets, the first step is to map the maximum distribution extents
of grassland (Gmax), shrubland (Smax) and bare land (Bmax) (Figure 5). Similar to above
procedures, the 6 LUCC products after preprocessing were overlaid, and pixels with the
presence of these LUC types were kept, while 0 was assigned for other pixels. Next, if
multiple LUCC products had an LUC type in a pixel, then all their shares were kept. The
share values of all products within a pixel were ranked by a declining order and finally
formed 6 initial share maps for each LUC type except for bare land, for example, G1, G2, . . .,
G6 (grassland); S1, . . ., S6 (shrubland). For bare land, there was no need to derive multiple
share maps since any area left was assigned to bare land.

In the second step, the first iteration was to run using the initial share data (G1 and S1).
The first share datasets for grassland (Gsh1) and shrubland (Ssh1) were calculated based on
the initial shares, with their ratios accounting for the remaining share (R). Based on the first
share datasets, the total grassland and shrubland areas were calculated and compared with
the statistical data. If the area of the grassland or shrubland was not close to the statistical
data, then the second-round iteration of calculation was implemented based on the G2 and
S2 share datasets. Finally, we obtained the grassland and shrubland share datasets that
were close to the statistical data. The left area (R-Gshi-Sshi) was assigned to bare land if it
was present in the pixels.

3.6. Synthesis Among All LUC Share Datasets

The shares for cropland, built-up land, water body, forest, wetland, grassland, shrub-
land and bare land were summed up (SUM) for each year. For some pixels, the total
shares were slightly less than 100%; therefore, we needed to reassign the leftover shares
(100%−SUM). In this case, the leftover share was assigned to all existing LUC types within
this pixel based on their proportions. For pixels without any LUC types, a bare land share
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was assigned. Therefore, all the above developed LUC shares were slightly adjusted and
formed the final products for all LUC types.
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3.7. Accuracy Assessment and Intercomparisons

The collected 2543 and 65 sample plots were used to evaluate the performance of
our developed LUCC datasets. We first chose the evaluation metrics of overall accuracy
(OA), user accuracy (UA), producer accuracy (PA) and Kappa coefficient to evaluate the
performance of spatial distribution patterns of various LUC types. Then, the performance of
LUC shares was evaluated against the 65 visually-interpreted plots based on the correlation



Land 2024, 13, 1814 12 of 23

analysis, using correlation coefficient (R2) as a metric. All these metrics collectively offered
a comprehensive evaluation of diverse facets of the model’s performance [48].

4. Results
4.1. Accuracy Assessment

The accuracy assessment was first conducted using the 2453 validation sampling plots.
The major LUC types in 2015 were extracted based on the share datasets for all LUC types.
Based on the confusion matrix (Table 2), the producer and user accuracies were mostly
greater than 80% for all LUC types, with lower accuracy for cropland and grassland and
higher accuracy for forest and built-up land. The overall accuracy was 82%, and the Kappa
coefficient was 0.77. Because the sample plot data from the FROM-GLC only reflected LUC
types at a 30 m spatial resolution, the lower accuracies for some LUC types may be caused
by the inadequate representations for the major LUC types at the 1 km pixel resolution.
Therefore, the overall accuracy and Kappa coefficient indicate that our developed datasets
can accurately reflect the true spatial distribution patterns of LUC types in NEC.

Table 2. The accuracy assessment confusion matrix for different land use and cover types.

Land
Cover Cropland Forest Built-Up Water Wetland Grassland Shrubland Total Producer

Accuracy
User

Accuracy

Cropland 194 42 29 16 0 23 7 311 62% 86%
Forest 10 839 12 29 10 26 21 947 89% 89%

Built-up 2 8 338 4 0 0 0 352 96% 80%
Water 0 0 6 276 9 0 0 291 95% 76%

Wetland 2 8 5 9 107 21 0 152 70% 82%
Grassland 16 41 30 20 5 173 12 297 58% 70%
Shrubland 1 2 3 9 0 3 85 103 83% 68%

Total 225 940 423 363 131 246 125 2453 100% 100%

Overall accuracy = 82.02%; Kappa = 0.77.

Due to few available high-resolution images for NEC regions, we only visually-
interpreted 65 sample plots for evaluating the performance of LUC share datasets at
a 1 km spatial resolution. The correlation analysis indicated that the correlation coefficient
(R2) was 0.82 between visually-interpreted shares and our developed datasets for various
LUC types (Figure 6). In addition, the spatial consistency was also compared using the
65 sample plots, and the result indicated that our classified LUC shares match well with
the visually-interpreted shares at the spatial scale (Figure 7).
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4.2. Temporal Change Patterns of Different Land Use and Cover Types

Based on the reconstructed datasets, the temporal change patterns of various LUC
areas were analyzed (Figure 8). The results indicated cropland, forest, and built-up land
areas have increased by 72.36%, 47.42% and 150%, respectively, from 1980 to 2020, while
wetland, grassland, shrubland and bare land have decreased by 39.04%, 43.67% and
68.73%, respectively. The largest increase of area was 1.71 × 105 km2 for forest due to the
afforestation projects in NEC, and the largest reduction was 2.61 × 105 km2 for grassland.
Cropland, built-up land and forest showed faster increases since 2000. The results from the
LUC conversion matrix indicated that the increased cropland share from 1980 to 2020 was
mostly owing to a conversion from grassland, followed by a conversion from wetland areas.
The increased forest share primarily came from the conversions of grassland and shrubland,
mainly owing to the world’s largest TNSF project. Wetland area was mainly converted to
cropland due to reclamation. At the provincial level, Heilongjiang Province experienced the
largest cropland expansion, with an increasing rate of 105.04%, while the least increase of
15.73% occurred in Liaoning Province. Forest share increased the most (64.17%) in Liaoning
Province and the least (20.56%) in Jilin Province. Wetland share reduced by 54.17% in
Heilongjiang Province, where it has the highest wetland area, while it only reduced by
18.45% in Inner Mongolia. The grassland share decreased the most (86.83%) in Heilongjiang
and the least (24.51%) in Inner Mongolia.

4.3. Spatial Change Patterns in Land Use and Cover Types

The LUC shares in 1980, 2000 and 2020 are displayed in Figure 9. The area of cropland
is mainly distributed in central and northeastern NEC (Songnen Plain and Liao River
Plain). Forests are mainly distributed in northwestern, north-central and southeastern
NEC. Wetlands are mainly distributed in northwestern, north-central and northeastern
NEC, surrounding the rivers and lakes. NEC has the largest wetland basins (Sanjiang Plain
and Songnen Plain) in China. Grassland is mainly distributed in southwestern China and
scattered in central NEC. Dense shrubland areas are scarce in NEC, mainly distributed in
northern and central NEC.
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The expanded cropland shares were mainly distributed in central and northeastern
NEC from 1980 to 2020 (Figure 10). The expansion primarily occurred during 2000–2020.
The expansion of cropland generally displayed a clustered and patchy pattern. Forest
showed a region-wide expansion during 1980–2020, with the largest increases during 2000–
2020 owing to the full implementation of the TNSF project and a stricter national forest
protection policy during this period. The largest declines of wetland shares mainly occurred
in northeastern (Sanjiang Plain) and central (Songnen Plain) NEC during 1980–2020, with
more declines occurring during 2000–2020, owing to the rapid expansion of cropland. The
decline of grassland was scattered throughout the entirety of NEC due to the expansions of
forest and cropland, with smaller declines in the main distribution area in the southwest
of Inner Mongolia. Shrubland areas experienced a greater decline during 1980–2020 as
compared with other LUC types because these areas were often also suitable for forest
plantations, and thus were converted to forest in the afforestation projects.

4.4. The Comparisons with Existing LUCC Products

The magnitudes and temporal change patterns of our developed datasets for cropland,
forest, wetland, and grassland shares were compared with other existing LUCC products
and the statistical data to reflect the effectiveness of our approach (Figure 11). For cropland
data, our dataset is close to the statistical data, and matched with most datasets in 2020;
however, the change trends among different datasets were significantly different. Cropland
area increased from 0% to 20% for most existing datasets, which is significantly lower than
the change trend of the statistical data (69.77%). For forest area, some LUCC products match
the statistical forest area in 2020, e.g., the NLCD, CLUDA and CLCD; while other datasets
generally showed a lower area in 2020. However, for the temporal change patterns from
1980 to 2020, only our dataset and Xia_Forest match well with the statistical data. Other
datasets only showed a slight increase or no change of forest area during this period. Most
existing LUCC products showed significantly lower wetland area as compared with the
inventory data. The wetland area of all existing LUCC datasets (excluding Wang_wetland



Land 2024, 13, 1814 15 of 23

and Mao_wetland datasets, which have been combined with the inventory data) showed
slight decrease (<5%) or no change during 1980–2020. For grassland, our dataset showed
a decline of 44% during 1980–2020, while the NLCD and GLASS-GLC datasets showed
a decline of 20.70% and 18.03%, respectively, and other datasets showed a less than 10%
decline. The inventory data from three of the National Land Surveys indicated that grass-
land area has declined from 50.01 km2 to 32.70 km2 at a rate of 24.62%, which is lower than
our result.
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Based on the visually-interpreted sample plot data, we also compared the performance
of our dataset for some pixels with two LUCC products (Figure 12). From these three
sampled pixels (1 km2), the digitized shares of our developed dataset generally capture the
actual shares of different LUC types, and the CLUDA dataset also matches well with the
actual data. In addition, the overall spatial patterns of these existing LUCC products were
also compared with our dataset, and we found a significant difference with our dataset
(See Supplementary Figures S1–S5).
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Figure 12. The comparisons of the LUC shares of our developed dataset with other existing LUCC
products for the pixels with visually-interpreted LUC shares.

5. Discussion
5.1. The Effectiveness of Our Approach in Reflecting Spatiotemporal LUCC Patterns

NEC has experienced extensive LUCC due to climate change, urbanization, land recla-
mation and economic development [17,36,40]. NEC is the most important food production
base in China, and crop yield is very high due to the fertile and moist soil conditions [20,43].
Due to the high nutrients and favorable water conditions, a large portion of wetland
area has been reclaimed for cropland to meet the increasing demand of cereal production
since the 2000s [45]. A large part of the TNSF project, the world’s largest afforestation
project, is located in the NEC region, which caused a rapid expansion of forest area and
reduction of other land areas, mostly grassland and shrubland, where it is suitable for tree
planting [49,50]. In addition, NEC was the major wood production base for China, causing
large areas of deforestation since the 1970s [51]. Since the 2000s, the Natural Forest Pro-
tection policy was fully implemented, and forest disturbance and loss has been gradually
decreased. All the above activities have driven a complex spatiotemporal LUCC pattern in
this region. However, these phenomena have not realistically been reflected in the current
existing geospatial LUCC products [17,18,20].
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Based on the statistical data and assisting datasets, our study has effectively integrated
multiple existing LUCC products and developed a subpixel LUC share dataset that can
accurately reflect the actual LUCC conditions in NEC. Most existing datasets showed that
forest area only slightly (<10%) increased in NEC, which is obviously inaccurate as many
studies have proved that NEC was becoming greener and that forest area and biomass
were increasing due to increasing forest coverage [18,24,25]. Similarly, the temporal change
patterns of other LUC types in most existing LUCC products were also not consistent with
the statistical data, such as grassland, cropland and wetland (Figure 11). Some LUCC
products have tried to solve the inaccuracy in representing temporal change of individual
LUC types. For example, Yu et al. [20,30] developed subpixel level cropland datasets for
all of China and the U.S.A. based on multiple LUCC products and statistical data; Xia
et al. [18] developed a pixel-level forest dataset for China by matching forest inventory
data. These approaches can solve the misrepresentation of temporal changes for individual
LUC types, but they come at the cost of losing accuracy for other LUC types. At present,
few geospatial datasets can comprehensively consider the accuracies for all LUC types.
Instead, our approach can effectively take account of the high accuracies of all LUC types
as compared with the regional statistical data.

Through comparisons with visually-interpreted LUC shares at each 1 km2 pixel, we
found that our classified LUC shares generally match well (R2 = 0.82) with the actual
LUC shares, suggesting that our approach can provide high spatial accuracy. Further
comparisons with other LUCC products indicated that our dataset can provide a more
detailed and accurate spatial representation for LUC shares (Figure 12).

5.2. The Reliability and Mechanisms of Our Approach

Although we found that most LUCC products cannot reflect actual temporal change
trends, it does not mean that these datasets are wrong. We need to correctly explain the
temporal patterns of the satellite-based products. Due to the limitations of pixel mixture,
the actual changes of individual LUC types within a pixel are difficult to detect, especially
for satellite images with a coarser resolution. For example, forest is often defined as 20%
tree cover within a certain area. Then, if the tree cover is 30%, this pixel is classified as
forest; however, the remaining 70% of the area within this pixel is difficult to attribute to
other LUC types. This further results in a failure to accurately track the temporal change of
forest area within each pixel since both 30% or 100% tree coverage is regarded as forest, and
thus the final classified product showed no temporal change of LUC type within this pixel.
The pixel mixture issue can be partially solved for images with higher resolution, e.g., a
spatial resolution lower than 5 m; however, there are few regional or global LUCC products
at such high resolution. At the current stage, we have to apply statistical approaches and
combine the different characteristics of existing LUCC products to uncover the elements
(various LUC types) within a blackbox (pixel). This is the reason why our study developed
an approach to effectively integrate the above information, and we have achieved this goal
by successfully matching the actual temporal changes of all LUC types and a more detailed
representation of LUCC at the subpixel level. The strengths of each LUCC dataset are
integrated through their fusion, thereby enhancing the overall utility of the analysis.

In the hierarchical procedure of cropland dataset development, we used the resolution
and distance weights to represent two distinct scales and assigned weights for each LUCC
product, and then a decision-tree method was applied to determine the probability of it
being cropland by iteratively changing the threshold values. Our approach combined the
hierarchical methods from two previous studies [20,44] and can integrate the strengths of
all cropland data products. RF and other machine-learning methods have been widely
used to fuse multiple LUCC datasets [17,38,52]. Our approach for developing a forest
dataset based on the RF method was different from the previous methods. The regression
models were first fitted between annual mean NDVImax and statistical forest share at the
provincial scale. Then, the RF regressor was applied to fit the regression model parameters
by iteratively revising the parameter values until the calculated provincial forest share was
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close to the statistical data. Our approach can fit the models at the pixel level and there is
no need for training the RF algorithm using the sampling plot data since the pixel-level
forest share data are difficult to obtain. For the wetland dataset development, a regular
decision-tree method was applied. The probability of wetland at the pixel level was first
calculated based on multiple wetland datasets. Then, different probability threshold values
were applied to iteratively run the decision-making process until the wetland area was close
to the statistical data. Most studies only applied the same method to fuse multiple LUCC
datasets for all LUC types; however, the controlling factors for the changes of various LUC
types are significantly different. Therefore, it is reasonable to apply different development
methods. The comparison with visually-interpreted plot data indicated that our approaches
can accurately reflect share changes of all LUC types within pixels, indicating that our
approach is reliable.

5.3. Uncertainties and Outlooks

In this study, there are several uncertainties that could affect the accuracy of our
approach. First, the provincial statistical/inventory data were used to constrain the spa-
tiotemporal patterns of LUCC shares. In fact, the change patterns of LUCC shares could
vary significantly even among pixels [44]; therefore, the low spatial resolution (provincial)
of the statistical data could cause large spatial location uncertainties within this province.
County-level data should be more suitable for narrowing down the spatial uncertainty.
In addition, statistical data were mostly extrapolated from plot-level sampling data; the
sampling and extrapolation methods could significantly affect the quality of the provincial
statistical data. Also, some LUC types in these sampling plots may be determined simply
because they are registered as such types during the land survey, which could also cause
large extrapolation errors of LUC area. Furthermore, there are several sources of statisti-
cal data and their magnitudes differed greatly, especially for the grassland and wetland
datasets. Although we chose the most authoritative data sources, it inevitably brought
either under- or over-estimation of LUCC shares.

Second, we made several extrapolations and assumptions during data development,
which could result in some uncertainties in our data accuracy. For example, due to a lack
of long-term and continuous inventory data for wetland area, we linearly interpolated
the annual change of wetland area during 1980–2020 based on expert knowledge and five
periods of data from different sources. Under the wetland protection policies, China’s
wetlands have increased during the recent decade; however, our developed dataset can not
capture this increasing pattern due to lack of inventory data. In addition, we also made
assumptions that most wetland area was converted to cropland and most forest area was
converted from grassland/shrubland.

Third, our fusion approach was based on multiple LUCC products. These datasets
were derived from different methods and researchers and have different spatial and tempo-
ral resolutions, which could cause large uncertainty and bias in calculating the probability
or mapping the distribution boundary. In addition, the uncertainty in the NDVImax dataset
could bring uncertainty in the developed forest datasets. Furthermore, we only have a
few sampling plots for evaluation of the LUC share at the pixel level due to a difficulty in
available high-resolution images and digitizing work. The fewer validation plots and the
possible visual interpretation errors could cause some uncertainties for the results. The
correlation between our classified LUC shares and the visually-interpolated validation data
also indicated that our approach slightly overestimated the actual LUC shares, partially
due to the lack of enough plot-level data for training the mechanisms. To reduce these
uncertainties, we will further expand the training and validation sampling plots, collect
county-level statistical data as a constraint and improve the fitting mechanisms for various
LUC types in the near future.

From our intercomparisons, we found the temporal and spatial patterns were signifi-
cantly different among the existing LUCC products. Many previous studies have applied
these geospatial LUCC products to estimate carbon fluxes and other socioeconomic and
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ecological services under the background of LUCC. For example, Yu et al. [26] applied
multiple LUCC datasets and a process-based model to estimate China’s carbon sink due
to LUCC; Chang et al. [27] assessed China’s carbon stock based on the NLCD dataset;
Li et al. [28] also applied the NLCD dataset and a simple model to reexamine China’s
terrestrial ecosystem carbon balance. These direct applications of the LUCC products could
result in large uncertainties in their results and conclusions. Through the comparisons, Yu
et al. [26] also revealed by using their own statistically-extrapolated LUCC product that
the carbon sink was significantly higher than that using multiple existing LUCC datasets.
To avoid inappropriate assessments of the LUCC effects, new LUCC share datasets for the
entirety of China and the globe are needed. Although our study used a region in China
as a case, the LUCC data quality was a universal issue for the entirety of China and many
other regions/nations. For example, Yu et al. [30] indicated that the U.S. cropland area
in multiple LUCC datasets was significantly different and the temporal changes patterns
were not consistent with the inventory data. Our approach was based on the existing
multiple LUCC products, statistical data and other assisting geospatial datasets, and our
reconstruction methods were also widely used in geospatial data development. Therefore,
our approach has the prospect of being further applied to reconstruct new LUCC datasets
at both the national and global scale.

6. Conclusions

To accurately and comprehensively reconstruct an LUCC dataset, our study introduced
a simple approach. This approach took advantage of the strengths of existing LUCC
products and integrated them with the statistical data using the regular decision-tree, RF
and hierarchical extrapolation methods. The share for each LUC type at the subpixel
level was reconstructed in sequence using different method and procedures. The accuracy
evaluations for the location, share and changes of LUC types indicated that our approach
can accurately match the temporal and spatial changes of all LUC types using NEC as a case
study region. Further comparisons with existing LUCC products also confirmed the higher
accuracy of our developed LUCC dataset. Considering the inadequacy and inconsistency
of most existing LUCC products in representations of the actual LUCC conditions, many
previous studies may have significantly under- or over-estimated LUCC consequences.
Researchers need to be cautious when choosing the existing LUCC datasets for studying
LUCC effects. And the most important and urgent thing is to reconstruct new LUCC share
datasets with high spatial and temporal accuracy for all LUC types at the national and
global scale, and our approach has the prospect of achieving this goal.
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