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Abstract: Soil salinization is one of the primary factors contributing to land degradation in arid
areas, severely restricting the sustainable development of agriculture and the economy. Satellite
remote sensing is essential for real-time, large-scale soil salinity content (SSC) evaluation. However,
some satellite images have low temporal resolution and are affected by weather conditions, leading
to the absence of satellite images synchronized with ground observations. Additionally, some
high-temporal-resolution satellite images have overly coarse spatial resolution compared to ground
features. Therefore, the limitations of these spatiotemporal features may affect the accuracy of SSC
evaluation. This study focuses on the arable land in the Manas River Basin, located in the arid areas of
northwest China, to explore the potential of integrated spatiotemporal data fusion and deep learning
algorithms for evaluating SSC. We used the flexible spatiotemporal data fusion (FSDAF) model
to merge Landsat and MODIS images, obtaining satellite fused images synchronized with ground
sampling times. Using support vector regression (SVR), random forest (RF), and convolutional neural
network (CNN) models, we evaluated the differences in SSC evaluation results between synchronized
and unsynchronized satellite images with ground sampling times. The results showed that the FSDAF
model’s fused image was highly similar to the original image in spectral reflectance, with a coefficient
of determination (R?) exceeding 0.8 and a root mean square error (RMSE) below 0.029. This model
effectively compensates for the missing fine-resolution satellite images synchronized with ground
sampling times. The optimal salinity indices for evaluating the SSC of arable land in arid areas are
S3, S5, SI, SI1, SI3, SI4, and Intl. These indices show a high correlation with SSC based on both
synchronized and unsynchronized satellite images with ground sampling times. SSC evaluation
models based on synchronized satellite images with ground sampling times were more accurate
than those based on unsynchronized images. This indicates that synchronizing satellite images with
ground sampling times significantly impacts SSC evaluation accuracy. Among the three models, the
CNN model demonstrates the highest predictive accuracy in SSC evaluation based on synchronized
and unsynchronized satellite images with ground sampling times, indicating its significant potential
in image prediction. The optimal evaluation scheme is the CNN model based on satellite image
synchronized with ground sampling times, with an R? of 0.767 and an RMSE of 1.677 g-kg L.
Therefore, we proposed a framework for integrated spatiotemporal data fusion and CNN algorithms
for evaluating soil salinity, which improves the accuracy of soil salinity evaluation. The results
provide a valuable reference for the real-time, rapid, and accurate evaluation of soil salinity of arable
land in arid areas.
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1. Introduction

Soil salinization is a significant global ecological issue and a major cause of soil degra-
dation [1]. It often leads to reduced water resource utilization, decreased soil quality, and
stunted crop growth [2]. The impact of soil salinization is particularly acute in the arable
land of arid areas. In addition to factors such as climate, soil type, and groundwater,
improper irrigation practices accelerate soil salinization, severely hindering sustainable
agricultural development in irrigated areas [3,4]. Therefore, the accurate evaluation of soil
salinization information is fundamental for guiding farmland management and salinization
prevention. Compared to traditional soil sampling methods, using satellite images for eval-
uation is currently the primary method for rapid, large-scale soil salinization monitoring.

Many scholars have conducted extensive research on using satellite images to evaluate
soil salinization [5,6]. Based on the sensor source of the satellite images, the soil salinity
content (SSC) evaluation methods are mainly divided into two categories. The first category
is the SSC evaluation method based on single-source satellite images [7]. This method uses
satellite images from a single sensor to establish a model for evaluating SSC by leveraging
the relationship between the image’s reflectance spectrum and surface SSC [8,9]. For
instance, Whitney et al. [10] used MODIS images to develop an SSC evaluation model for the
semi-arid region of California, USA, enabling rapid and wide-scale SSC evaluation. Sahbeni
et al. [11] effectively evaluated SSC in the Hungarian plain using Landsat-8 OLI images.
Although modeling based on single-source satellite images is efficient and straightforward,
some satellite images (such as Landsat-8 OLI) have low temporal resolution (16 days) and
are affected by weather conditions, leading to the absence of satellite images synchronized
with ground observations. Additionally, some high-temporal-resolution satellite images
(such as MODIS) have overly coarse spatial resolution compared to ground features [12].
The limitations of these spatiotemporal features may affect the accuracy of the satellite
image evaluation of SSC. To overcome these limitations, scholars have proposed a second
method: SSC evaluation based on multi-source satellite image fusion [13]. This method uses
mathematical algorithms to fuse spatiotemporal information from different sensor satellite
images, producing fine-resolution images synchronized with the ground SSC acquisition
times, thereby enabling SSC evaluation [14]. For instance, Zhao et al. [15] used various
spatiotemporal fusion methods to fuse MODIS and Landsat-8 OLI images, generating
satellite images synchronized with ground sampling times. The results demonstrated a
significant improvement in SSC evaluation accuracy based on fused images. However, the
effectiveness of spatiotemporal fusion methods is closely related to surface conditions [16].
Currently, research on multi-source satellite spatiotemporal fusion methods for soil salinity
evaluation is mainly focused on the peak growing season of crops when the surface
typically has high vegetation cover, and spectral information primarily comes from the
crops [17]. However, during the early stages of crop growth with low vegetation cover,
spectral information includes both crops and bare soil, and research on spatiotemporal
fusion methods at this stage remains limited. Therefore, the application of multi-source
satellite image fusion in the evaluation of soil salinity in arable land in arid areas requires
further exploration.

The accuracy of evaluating SSC using satellite images is influenced not only by the
spatiotemporal features of the images but also by spectral features and seasonal vegetation
cover changes [18,19]. Different spectral indices sensitive to SSC vary under different
surface conditions. This is because surface features and vegetation cover alter the reflection
and absorption characteristics of the spectra, thereby affecting the sensitivity of spectral
indices to SSC [20]. For instance, Khan et al. [21] proposed the normalized difference salinity
index (NDSI) and the salinity index (SI), which can effectively evaluate SSC in bare soils
with low vegetation cover. Bouaziz et al. [22] found that in areas with higher vegetation
cover, salinity indices (SI 1, SI 2, SI 3) showed strong correlations with SSC, making them
suitable for SSC evaluation during the crop growth season. Although various salinity
indices have been proposed and have shown high accuracy in evaluating SSC in different
regions, uncertainty remains regarding which indices are most suitable for evaluating SSC
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in arable land in arid areas. Therefore, further validation and research are needed. Besides
the temporal and spectral features of satellite images, the chosen algorithm significantly
impacts the accuracy of SSC evaluation results [23,24]. Different algorithms vary in their
data processing strategies and efficiencies, making the selection of an appropriate algorithm
crucial for improving evaluation accuracy [25]. Machine learning algorithms are widely
applied in this field due to their adaptability and modeling flexibility. These methods can
handle multidimensional input features and provide relatively accurate predictions [26,27].
For instance, Chen et al. [28] constructed SSC evaluation models using multiple linear
regression (MLR), back propagation neural networks (BPNNs), and SVR algorithms in the
coastal area of the Yellow River Delta. They found that the SVR model had the highest
accuracy, with an R? of 0.78 and an RMSE of 3.02 g-kg~!. Fathizad et al. [29] effectively
evaluated soil salinity in the central desert of Iran using the RF model. Although traditional
machine learning algorithms perform exceptionally well in certain cases, particularly when
datasets are small or feature dimensions are relatively simple, they often face limitations
when dealing with complex spatial structures and changes. These limitations include low
computational efficiency and difficulty in capturing nonlinear relationships and spatial
feature changes [30,31]. In contrast, deep learning algorithms have shown significant
advantages in handling complex, large-scale satellite data. Wang et al. [32] discovered
that CNN models exhibited strong predictive performance for soil salinity in the desert
oasis region of northwest China. This is because the deep structure of CNN models can
automatically extract complex spatial features from satellite images, enhancing the model’s
robustness. This capability is particularly effective when dealing with heterogeneous
regions of soil and vegetation coverage, making CNN an ideal tool for SSC evaluation
under complex surface conditions [33]. However, the spectral features of satellite images
with different temporal features may affect the accuracy of evaluation results. Therefore,
proposing a scheme of integrated spatiotemporal data fusion and deep learning algorithms
to enhance the accuracy of soil salinity evaluation of arable land in arid areas remains a
subject requiring extensive research and exploration.

Therefore, to improve the accuracy of arable land soil salinity evaluation, this study
explores the applicability of integrating spatiotemporal data fusion and deep learning algo-
rithms for evaluating soil salinity in arid areas. In this study, the soil salinity content (S5C)
at a depth of 0-30 cm in cotton fields was taken as the research object. The optimal salinity
indices were selected based on satellite images synchronized and unsynchronized with
ground sampling times, and a variety of soil salinity evaluation models were constructed.
The purposes of this study were to (1) evaluate the impact of synchronicity between satellite
imagery spectral features and ground sampling times on the accuracy of SSC evaluation;
(2) validate the accuracy of each model and determine the optimal SSC evaluation scheme;
and (3) use the optimal evaluation scheme to map the SSC distribution and analyze the
spatial patterns of SSC for the arable land in the study area. The results of this study can
provide an important reference for timely and accurate soil salinity evaluation.

2. Materials and Methods
2.1. Study Area

The study area is located in the oasis arable land of the Manas River Basin, the southern
part of the Junggar Basin, Xinjiang Uyghur Autonomous Region, China (85°8'37"-86°23/39" E,
44°8/48"-44°59'37"" N). The total area covers 5.483 x 103 km? at an elevation between 300
and 600 m, and the terrain gradually decreases from southeast to northwest (Figure 1). This
region features a typical temperate continental climate characterized by abundant sunshine,
low precipitation, and high evaporation rates, with significant temperature variations
between day and night. The annual average temperature, precipitation, and evaporation
rate are 7.5-8.2 °C, 180-270 mm, and 1000-1500 mm, respectively. The evaporation rate
far exceeds precipitation, creating favorable conditions for soil salinization [34,35]. The
main soil types in the study area include calcisol, fluvisol, and gleysol. The land use type is
mainly arable land, accounting for 78% of the total area of the study area. The main crop
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is cotton, which occupies 85-90% of the total arable land [36,37]. The primary irrigation
method is subsurface drip irrigation [38]. Glacier meltwater from mountainous regions
is one of the primary water sources for the oasis. As it flows, the meltwater carries salts
from rock weathering, which deposit in the soil, exacerbating the salinization of the oasis.
As the terrain flattens, the salts the water takes accumulate in the soil, further intensifying
salinization [39]. Additionally, during early land reclamation, improper irrigation practices
caused the groundwater level to rise. Combined with the high mineralization of irrigation
water, this led to secondary salinization in the basin [40]. These issues have not only
severely hindered the development of oasis agriculture in arid areas but also present
significant challenges for the evaluation and management of soil salinization.
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Figure 1. Schematic diagram of the study area: (a) Xinjiang Uygur Autonomous Region, China;
(b) elevation of the Manas River Basin; (c) location of sampling points in arable land in the basin.

2.2. Methodological Framework

The methodological framework of this study is depicted in Figure 2 and comprises
the following steps: (1) Landsat-5 TM, Landsat-8 OLIL, and MCD43A4 images, along with
ground data, were collected for the study area. The flexible spatiotemporal data fusion
(FSDAF) model was used to fuse the Landsat and MCD43A4 images and obtain fine-
resolution fused images synchronized with ground sampling times. This fusion combines
Landsat’s fine spatial resolution with MODIS’s high temporal frequency, addressing both
spatial detail and temporal consistency, which are critical for accurate SSC evaluation;
(2) the correlation between 14 salinity indices of satellite images was calculated, both
synchronized and unsynchronized, with ground sampling times, SSC at a depth of 0-30 cm,
and selection of the optimal salinity indices; (3) and the optimal salinity indices were used
as input variables, three evaluation models (SVR, RF, and CNN) were constructed based
on satellite images, synchronized and unsynchronized, with ground sampling times, the
optimal SSC evaluation scheme was selected, and this scheme was used to map the spatial
distribution of SSC in the arable land of the study area.
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2.3. Soil Sample Collection and Analysis

Field sampling was conducted from 9 May to 16 May 2009 and from 18 July to 22
July 2017, with 61 and 43 soil samples collected, respectively. In May, during the early
growth stage of cotton, precipitation and snowmelt led to salinity accumulation in the
surface soil. In July, during the peak growth season, high transpiration and irrigation
caused salinity to infiltrate deeper into the soil. This dual-period sampling allowed for a
comprehensive analysis of soil salinity fluctuations during key stages of the crop growth
cycle. Sampling locations were determined based on the salinization status and uniformity
and representativeness of sampling points within the study area. The distance between
sampling points was 2-3 km. The sampling method used was the five-point sampling
technique. For each sampling point, four replicate samples were taken at approximately
10 m along the diagonals within a 30 m x 30 m area, resulting in five replicates per location.
Soil samples were collected from a depth of 0-30 cm using a soil auger, and the latitude
and longitude of each sampling point were precisely recorded using GPS.

The soil samples were air-dried, ground, and sieved through a 2 mm mesh. To
determine the soil salinity content (SSC), measured in g-kg~!, soil-water extracts were
prepared at a 1:5 ratio following the dry residue method. According to the Xinjiang soil
salinization grading standard, soil salinization levels were classified into five categories [41]:
non-saline soil (<3 g-kg~!), mildly salinized soil (3-6 g-kg~!), moderately salinized soil
(6-10 g-kg 1), severely salinized soil (10-20 g-kg '), and saline soil (>20 g-kg1).

2.4. Satellite Imagery and Preprocessing

In this study, to accurately evaluate surface salinity, factors such as image quality
and acquisition dates were comprehensively considered. Landsat-5 TM and Landsat-8
OLI satellite images were sourced from the LANDSAT/LT05/C02/T1_L2 and LAND-
SAT/LC08/C02/T1_L2 datasets on the Google Earth Engine (GEE) platform. Both datasets
provide 30 m surface reflectance and are 16 days composite products [42]. The MODIS
satellite images were sourced from the MODIS/006/MCD43A4 dataset, offering daily
surface reflectance with a spatial resolution of 500 m [43]. Additionally, the arable land
boundaries were extracted using the 30 m resolution GlobeLand30 land cover products
from 2010 and 2020 [44]. Detailed information on the satellite images is provided in Table 1.

Table 1. Corresponding information for Landsat-5 TM, Landsat-8 OLI, and MODIS satellite im-
agery data.

Band Landsat-5 Resolution Bandwidth Landsat-8 Resolution Bandwidth MCD43A4 Resolution Bandwidth
Names TM Bands (m) (nm) OLI Bands (m) (nm) Bands (m) (nm)
Blue 1 30 450-520 2 30 452-512 3 500 459-479
Green 2 30 520-600 3 30 533-590 4 500 545-565
Red 3 30 630-690 4 30 636-673 1 500 620-670
NIR 4 30 770-900 5 30 851-879 2 500 841-876
SWIR1 5 30 1550-1750 6 30 1566-1651 6 500 1628-1652
SWIR2 7 30 2080-2350 7 30 2107-2294 7 500 2105-2155

In this study, image preprocessing and downloading were completed using the GEE
platform [45]. We analyzed the correlation between SSC and Landsat images before and
after ground sampling, as well as the correlation between SSC and MODIS images. Based
on this analysis, Landsat-5 TM and MCD43A4 images from 20 May 2009 and Landsat-8
OLI and MCD43A4 images from 13 July 2017 were selected as the base datasets. The
MCD43A4 images from 13 May 2009 and 20 July 2017 were used as coarse-resolution
images to generate fine-resolution fused images for those dates. The analysis involved six
spectral bands: blue, green, red, near-infrared (NIR), shortwave infrared 1 (SWIR1), and
shortwave infrared 2 (SWIR2). MODIS images were reprojected and resampled to a 30 m
resolution using ENVI 5.3 software to ensure pixel alignment with the Landsat images.
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Numerous studies have confirmed that salinity indices are effective indicators for
characterizing SSC [21]. This study selected 14 salinity indices closely related to SSC and
performed Pearson correlation analysis using R Studio 2022 software. The formulas for
these indices are detailed in Table 2.

Table 2. Salinity indices and their calculation formulas.

Salinity Indices Equation Reference

NDSI (R—NIR)/(R+ NIR) [46]
SI-T (R/NIR) x 100 [47]
S1 B/R [48]
S2 (B—R)/(B+R) [48]
S3 (G x R)/B [48]
S5 (B x R)/G [48]
S6 (R x NIR)/G [48]
SI VB x R [46]
SI1 VG x R [49]
SI2 VG?+R? +NIR? [49]
SI3 VG24R? [49]
Si4 V(B=G) +(G-R) [50]
Intl (G+R)/2 [49]
Int2 (G+R+NIR)/2 [49]

Note: B: blue, G: green, R: red, NIR: near infrared.

2.5. Methods
2.5.1. Spatiotemporal Fusion Method

The spatiotemporal fusion method employs the flexible spatiotemporal data fusion
(FSDAF) model proposed by Zhu et al. [51]. This model uses a pair of fine- and coarse-
resolution satellite images at time T, and a coarse-resolution image at time Ty, to pre-
dict a fine-resolution image at time Tj,. The fine-resolution images capture spatial detail
changes, while the coarse-resolution images accurately describe temporal changes in fea-
tures, thereby capturing the spatiotemporal features of the terrain.

2.5.2. Construction of Soil Salinity Evaluation Model

Three different regression methods were used to establish SSC evaluation models, as
described below:

Support vector regression (SVR) is a machine learning method based on statistical
learning theory that maps data to a high-dimensional feature space through nonlinear
transformation to construct the model [26]. SVR is robust in handling small samples and
nonlinear data. Random forest (RF) is an ensemble learning method that constructs multiple
decision trees and averages their results for prediction [27]. This model excels in handling
large datasets and shows high robustness to outliers. A convolutional neural network
(CNN) is a deep learning architecture designed to predict continuous values by learning the
hierarchical spatial features of input data [33]. This model includes multiple convolutional
layers, pooling layers, fully connected layers, and an output layer, demonstrating excellent
capability in processing data with spatial correlations.

2.5.3. Model Verification and Accuracy
Validate the Accuracy of the Fusion Model

To evaluate the FSDAF model’s effectiveness in fusing spatial and temporal informa-
tion between different satellite sensors, we selected satellite images from years close to the
two sampling periods. These images, which were free from cloud cover or atmospheric
interference and aligned with ground sampling dates, were fused to validate the model’s
accuracy and stability. Specifically, we chose the MCD43A4 image from 15 May 2007,
and fused it with Landsat-5 TM and MCD43A4 images from 31 May 2007, to generate
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a fine-resolution fused image for 15 May, which was then compared with the original
Landsat-5 TM image from the same date. Similarly, we fused the MCD43A4 image from
1 August 2018, with Landsat-8 OLI and MCD43A4 images from 16 July 2018, to create a
fine-resolution fused image for 1 August. This fused image was then compared with the
original Landsat-8 OLI image to evaluate the model’s accuracy and stability.

The stability and predictive accuracy of the fusion model were validated using the
coefficient of determination (R?) and root mean square error (RMSE). R?> measures the
model’s fit, while RMSE quantifies the deviation between the fused image and the original
image. An R? value closer to 1 and a smaller RMSE indicate higher model accuracy and
better stability. The expressions for these evaluation metrics are as follows:

n .17 2
R2: 1— f/l:l (yl %)2 (1)
i1 (yi — Vi)
n . — 17 2
RMSE = i=1 (y;l yl) (2)

where 7 is the total number of pixels; y; is the reflectance of the i-th pixel in the original
image; ¥J; is the reflectance of the i-th pixel in the fused image; and ¥; is the mean reflectance
of the original image.

Validate the Accuracy of the Soil Salinity Evaluation Model

To enhance the model’s stability, we combined the soil samples from May 2009 and
July 2017, resulting in a total dataset of 104 samples with their corresponding salinity
indices, which was used to construct the model. First, before building the model, the
combined 104 soil samples and their corresponding salinity indices were normalized using
the min-max scaling method, standardizing the data to a range of 0 to 1. This ensured
that different variables contributed proportionally to the model and reduced potential
biases caused by environmental changes and variations in sampling conditions between
the two years, thereby improving model stability and convergence [52]. Next, the optimal
hyperparameters for each model were identified using a grid search strategy combined
with 10-fold cross-validation. This method reduced the risk of overfitting during parameter
tuning while maintaining high computational efficiency [53]. It systematically evaluated
various hyperparameter combinations to find those that minimized validation errors. In
this cross-validation method, the data were divided into 10 equally sized subsets. In
each iteration, 9 subsets were used for training, and the remaining subset was used for
validation. The results from all 10 iterations were averaged to evaluate each hyperparameter
combination’s effectiveness. After determining the optimal hyperparameters, the entire
dataset was used to train the model and generate predictions. The predicted results were
then denormalized to the original scale to ensure interpretability. Finally, the model’s
performance was evaluated using the leave-one-out cross-validation (LOOCV) method [54].
Specifically, in each iteration, one sample from the combined set was set aside as the
validation sample, while the remaining 103 samples were used for training the model.
This process was repeated for all 104 samples, with the final performance of the model
being assessed by averaging the results from all individual validation iterations. LOOCYV is
particularly suitable for studies involving small sample sizes, such as ours, as it maximizes
the use of all available data while minimizing the uncertainty introduced by arbitrary data
partitioning. It also provides a performance evaluation that closely approximates training
on the entire dataset, which is essential given the limited number of samples available in
this study.

During the selection of optimal hyperparameters for each model, RMSE was used as
the evaluation metric. For the final evaluation of model performance, the same metrics as
the fusion model were applied, using R? and RMSE to evaluate the predictive performance
of the models. Where 7 is the number of sampling points; y; is the observed value of soil
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sample 7; J; is the predicted value of soil sample i; and ¥; is the mean observed value of the
soil samples.

3. Results
3.1. Statistical Analysis of Soil Salinity Data

Table 3 shows the statistical characteristics of SSC at a depth of 0-30 cm for two
different years within the study area. In spring 2009, SSC ranged from 1.25-22.50 g-kg~!,
with an average of 4.76 g-kg~!, a median of 2.80 g-kg~!, and a standard deviation of
4.03 g'kg~!. In summer 2017, SSC ranged from 0.68-9.67 g-kg~!, with an average of
2.53 g-kg~!, a median of 1.93 g-kg ™!, and a standard deviation of 1.93 g-kg~!. Based on
the coefficient of variation (CV), which was below 100% in both years, the SSC showed
moderate variability, indicating a relatively uniform spatial distribution of soil salinization
in the study area. Additionally, the surface SSC in spring was notably higher than in
summer, exhibiting obvious seasonal variation characteristics. This finding aligns with the
results of Sun et al. [55], which showed that increased rainfall and frequent irrigation in the
arable land during the summer substantially reduce surface salinity levels.

Table 3. Statistical analysis of soil salinity content (g-kg~!) characteristics.

Year Total Sample Max Min Mean Median SD CcVv
2009 61 22.50 1.25 4.76 2.80 4.03 84.62%
2017 43 9.67 0.68 2.53 1.93 1.93 76.40%

Note: SD is the standard deviation; CV is the coefficient of variation; # is the number of samples.

3.2. Accuracy Verification of the Fusion Model

The fused and original images of the study area from 15 May 2007, and 1 August 2018,
were processed using false-color composition and local magnification (Figure 3). Visual
interpretation demonstrates that the fused images generated by the FSDAF model provide
clear spatial details and distinct layering, closely resembling the original images. This
indicates that the model accurately reconstructs the spatial characteristics and hierarchical
information of fine-resolution images for both time periods. The scatter plots of reflectance
in each band (Figures 4 and 5) show a strong linear correlation between predicted and
true reflectance across all six bands. The FSDAF model performed exceptionally well in
both the 2007 and 2018 validations. Notably, the red, NIR, and SWIR2 bands exhibited
the highest correlations for both years, with R? values of 0.923, 0.912, and 0.930 in 2017,
further increasing to 0.941, 0.951, and 0.938 in 2018. The RMSE values for all bands were
less than or equal to 0.03. The results indicate that the fused images generated by the
FSDAF model are highly similar to the original images across different years and bands,
demonstrating the model’s high fusion accuracy and stability. This further confirms that
the FSDAF model can effectively produce synchronized fine-resolution images, even when
satellite imagery and ground sampling times are not aligned. Thus, this study successfully
obtained fine-resolution fused images synchronized with the ground sampling times on 13
May 2009, and 20 July 2017, using the FSDAF model.
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Figure 3. False-color composite comparison between original and fused images for 2007 and 2018:
(a,b) Original and fused images (2007); (c,d) Original and fused images (2018); (e,f) Detailed maps of
original and fused images (2007); (g,h) Detailed maps of original and fused images (2018).
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Figure 4. Scatter plots of band reflectance for fused image and original image for 2007: (a) blue band;
(b) green band; (c) red band; (d) NIR band; (e) SWIR1 band; (f) SWIR2 band.
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Figure 5. Scatter plots of band reflectance for fused image and original image for 2018: (a) blue band;
(b) green band; (c) red band; (d) NIR band; (e) SWIR1 band; (f) SWIR2 band.

3.3. Correlation Analysis

Figure 6 shows the correlation heatmaps comparing the relationships between 14 salin-
ity indices and SSC in satellite images synchronized and unsynchronized with ground
sampling times. Overall, the fused images synchronized with ground sampling times
exhibit stronger correlations with SSC compared to the original unsynchronized Land-
sat images. In particular, the salinity indices S3, SI, SI1, SI3, and Intl show a significant
improvement in correlation with SSC when synchronization is applied. These indices
had their correlation coefficients (R) increase by more than 0.07 in the synchronized fused
images, with S3, SI1, SI3, and Intl displaying the highest correlations, with R values of
0.59, 0.55, 0.56, and 0.56, respectively. These values are statistically significant at the 0.01
probability level, highlighting the benefit of synchronizing satellite images with ground
sampling times for SSC evaluation. Furthermore, additional indices, including NDSI, SI-T,
51, 52, S5, SI, and SI4, in the synchronized images also exhibited statistically significant
correlations, with R values ranging from 0.40 to 0.53 (significant at the 0.01 level). In
contrast, in the unsynchronized original images, only S3 achieved an R value above 0.5
(R = 0.51), while the other salinity indices had weaker correlations, with R values below
0.5. Based on these results, this study selected the seven salinity indices (S3, S5, SI, SI1,
SI3, SI4, and Intl) that had R values over 0.5 in the fused image synchronized with ground
sampling times and over 0.4 in the original image unsynchronized with ground sampling
times as the optimal feature variables for constructing SSC evaluation models, ensuring the
models’ effectiveness and comparability.
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Figure 6. Correlation heatmap between salinity indices and soil salinity content: (a) original image;
(b) fused image. ** significant at the 0.01 probability level. * significant at the 0.05 probability level.
3.4. Construction and Validation of the Soil Salinity Evaluation Models
3.4.1. Comparison of Accuracy Across Different Evaluation Models
To validate the predictive capability of the three SSC evaluation models in the study
area, seven optimal salinity indices were used as input variables, with the combined
dataset of 104 field-measured SSC serving as the base dataset. SVR, RF, and CNN models
were constructed for both satellite images synchronized and unsynchronized with ground
sampling times. The optimal parameters for each model were determined using grid search
and 10-fold cross-validation (Table 4).
Table 4. Evaluation model structure.
Filter Number of  Activation
Model Image Type Parameters / Layers Size Neurons Function
SVR Original image kernel = RBE, cost = 3, gamma = 0.43, epsilon = 0.05 - - -
Fused image kernel = RBF, cost = 5, gamma=0.62, epsilon = 0.07 - - -
RE Original image ntree = 141, mtry = 4 - - -
Fused image ntree = 150, mtry =3 - - -
Convolutional layer 3x1 16 ReLU
Max-Pooling layer 2x1 - -
Original image Convolutional layer 3x1 32 ReLU
Fully connected layer - 64 ReLU
CNN Output layer - 1 Linear
Convolutional layer 3x1 16 ReLU
Max-Pooling layer 2x1 - -
Fused image Convolutional layer 3x1 32 ReLU
Fully connected layer - 64 ReLU
Output layer - 1 Linear

Table 5 shows the R? and RMSE values for each model. The results indicate that the
models constructed using fused images synchronized with ground sampling times signifi-
cantly outperformed those using original images unsynchronized with ground sampling
times in terms of predictive accuracy. Compared to the evaluation models based on the
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original images unsynchronized with ground sampling, the models using fused images
synchronized with ground sampling showed an increase in R? values by at least 0.081. This
improvement indicates that the FSDAF model effectively addresses temporal mismatches
between spectral information and ground measurements, enhancing the accuracy of SSC
evaluations. Among the specific models, the RF model showed the most significant im-
provement, with the R? increasing from 0.511 to 0.638, a 24.85% improvement, and the
RMSE decreasing from 2.429 g-kg~! to 2.090 g-kg~!. The CNN model followed, with the
R? increasing from 0.623 to 0.767, a 23.11% improvement, and the RMSE decreasing from
2.134 g'kg ! to 1.677 g-'kg~!. The SVR model showed the smallest improvement, with
the R? increasing from 0.404 to 0.485, a 20.05% improvement, and the RMSE decreasing
from 2.683 g-kg ! t0 2.493 g-kg~!. Among the three models, the CNN model exhibited the
highest predictive accuracy in evaluating SSC, regardless of whether the satellite images
were synchronized or unsynchronized with ground sampling times. Therefore, the CNN
model is deemed the most suitable for evaluating soil salinity in arid regions, particularly
where accurate synchronization with ground sampling times is crucial.

Table 5. Comparison of evaluation model accuracy.

Model R? RMSE (g-kg™1)
Original image—SVR 0.404 2.683
Fused image—SVR 0.485 2.493
Original image—RF 0.511 2.429
Fused image—RF 0.638 2.090
Original image—CNN 0.623 2.134
Fused image—CNN 0.767 1.677

Figure 7 shows scatter plots comparing observed versus predicted SSC values across
the three evaluation models (SVR, RF, and CNN) based on two types of satellite images:
synchronized with ground sampling times and unsynchronized. For models using unsyn-
chronized original images, the evaluation models performed well in predicting SSC for
non-saline and mildly salinized soils. However, for SSC values exceeding 10 g-kg~! in
severely salinized soils, all models underestimated the actual observed values, resulting in
less satisfactory predictions. In contrast, the models based on synchronized fused images
significantly improved the prediction accuracy across the SSC range. The synchronized
models performed particularly well for SSC values between 0-15 g-kg~!, although slight
underestimations occurred for values exceeding 15 g-kg . Among the models, the CNN
model demonstrated the highest predictive accuracy, outperforming both the SVR and RF
models. For SSC values exceeding 15 g-kg ™!, the CNN model’s predictions were closer to
the 1:1 line compared to the other models. In summary, the combination of the CNN model
with fused images synchronized with ground sampling times provides the most reliable
SSC evaluation, making it the optimal scheme for evaluating soil salinity in arid regions.

3.4.2. Spatiotemporal Analysis of Soil Salinity Content

This study used the optimal evaluation scheme, the CNN model based on fused
images synchronized with ground sampling times, to map the spatiotemporal distribution
of SSC in the Manas River Basin’s arable land for May 2009 and July 2017. The spatial
and temporal changes in soil salinity levels are shown in Figure 8. In terms of spatial
distribution, the soil salinization level in the study area during the spring of 2009 showed
a pattern of lower salinization in the southeast and higher salinization in the northwest.
Non-saline soil was mainly distributed in the southeastern part of the study area, while
mildly and moderately salinized soils were concentrated in the central region. Severely
salinized soil and saline soil were primarily found in the northwestern and northern edges
of the arable land. By the summer of 2017, there was a clear improvement in soil salinization
levels. The areas of non-saline soil and mildly salinized soil increased, while the severely
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salinized and saline soils in the northern and northwestern regions showed significant
reductions. This may be attributed to the fact that, in spring, soil is often affected by
precipitation and snowmelt, which can transport salts to the surface, resulting in higher
levels of salinization. In summer, although high temperatures and evaporation might
have intensified salt accumulation, crop growth and transpiration effectively reduced salt
concentrations on the soil surface. Additionally, increased irrigation activities caused salts
to move to deeper soil layers, further reducing surface soil salinity. Overall, the level of soil
salinization in this region was relatively low, and the evaluation results were consistent

with field surveys.
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Figure 7. Scatter plot of observed versus predicted values by the model: (a) original image—SVR
model; (b) original image—RF model; (c) original image—CNN model; (d) fused image—SVR model;
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Table 6 shows that from 2009 to 2017, 1083.26 km? of non-saline soil remained in its
non-saline state, representing the vast majority of this type. The remaining area mostly
transformed into mildly salinized soil, with smaller portions transitioning to moderately
salinized, severely salinized, and saline soil, covering 467.33 km?, 138.28 km?, 8.69 km?,
and 7.87 km?, respectively. Mildly salinized soil transitioned to non-saline soil, moder-
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ately salinized soil, severely salinized soil, and saline soil, covering areas of 489.22 km?,
287.53 km?, 73.31 km?, and 7.07 km?, respectively. Moderately salinized soil converted

to non-saline soil, mildly salinized soil, severely salinized soil, and saline soil over areas

of 415.09 km?, 187.15 km?, 47.54 km?2, and 4.32 km?, respectively. Severely salinized soil

transitioned to non-saline soil, mildly salinized soil, moderately salinized soil, and saline

soil, covering 252.12 km?, 111.86 km?, 28.80 km?2, and 1.60 km?, respectively. Saline soil

converted to non-saline soil, mildly salinized soil, moderately salinized soil, and severely
salinized soil over areas of 91.65 km?, 48.98 km?2, 11.97 km?, and 0.66 km?, respectively.
Overall, soil salinization in the study area improved in 2017, with significant recovery
observed in areas affected by mild to moderate salinization. However, some areas have
experienced worsening soil salinization, especially the transition from mildly salinized soil
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to higher salinization levels, which may be linked to poor local water management, climate
change, or other external factors. Therefore, despite the overall positive trend, continuous
management of key salinization areas is necessary to prevent further deterioration of the
salinization problem.

2017 }N\
e

¢ Legend

I Non-saline soil [ Severe salinized soil
0 10 20 4Ok [ ] Mild salinized soil B Saline soil
m [ I Moderately salinized soil
Figure 8. Spatiotemporal distribution of soil salinity based on the optimal evaluation model.
Table 6. Transfer matrix of soil salinization level at 0-30 cm depth for 20092017 (km?).
Soil 2017 2017 Mildiy 2017 Moderately 2017 Severe 2017
Salinization Level Non-Saline Soil Salinized Soil Salinized Soil Salinized Soil Saline Soil
20(.)9 . 1083.26 467.33 138.28 8.69 7.87
Non-saline Soil
20.0 9 Mlldly. 489.22 287.53 73.31 4.73 7.07
Salinized Soil
2009 Moderately 415.09 187.15 47.54 3.3 432
Salinized Soil
2009 Severe
Salinized Soil 252.12 111.86 28.80 1.64 1.60
2009 Saline Soil 91.65 48.98 11.97 0.68 0.66

4. Discussion
4.1. Interpretability and Limitations of Fusion Results

In practical applications, factors such as weather conditions, cloud cover, and imag-
ing intervals can significantly affect the quality and availability of satellite images, often
resulting in images that are insufficient for analysis. To address the issue of missing images,
spatiotemporal fusion algorithms are used to generate fine-resolution satellite images [14].
This study applied the FSDAF model to fuse satellite images with different temporal and
spatial resolutions, obtaining fine-resolution images synchronized with sampling times.
This process provided the data foundation for dynamic soil salinization assessment. Visual
interpretation and accuracy validation of the fused image confirmed the effectiveness of
the FSDAF model in compensating for missing fine-resolution images. The FSDAF model
requires only one set of fine- and coarse-resolution images and a coarse-resolution image
at the fusion time for image fusion, enhancing its practicality [51]. The FSDAF model’s
advantage lies in its ability to simulate the evolution of spectral features over different time
periods, not merely through simple interpolation but based on spectral transition predic-
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tions [56]. This method allows the model to robustly handle spatiotemporal changes in land
cover, overcoming the limitations of excessive data requirements and enabling rapid and
accurate reconstruction of complex dynamic processes [57,58]. Currently, spatiotemporal fu-
sion techniques mainly include five methods: pixel unmixing-based, weight function-based,
dictionary learning-based, Bayesian-based, and multiple hybrid methods [59]. This study
applied the FSDAF model, a multiple hybrid method, to the oasis farmland in the Manas
River Basin and conducted multi-level validation of its fused images. However, slight
differences in fusion accuracy among different methods may impact the accuracy of SSC
evaluating results. Therefore, in future research, we will compare various spatiotemporal
fusion models and explore improvements to enhance the accuracy of fusion results.

4.2. Comparison of Different Evaluation Models

In this study, we constructed evaluation models using SVR, RF, and CNN, and the
results showed that the CNN model consistently outperformed both SVR and RF models
in terms of accuracy, particularly in evaluating high-salinity samples. For example, Wang
et al. [32] demonstrated that CNN models significantly improved prediction accuracy
(R? =0.79, RMSE = 9.41 g-kg ') over traditional machine learning methods. Our results
align with these findings, as the CNN model showed higher accuracy with fewer errors
when applied to satellite images, both synchronized and unsynchronized with ground
sampling times. The superior performance of CNN is due to its ability to capture complex
nonlinear relationships between spectral features and soil salinity content (SSC) through
convolutional layers, making it especially suitable for remote sensing data [33]. In contrast,
SVR relies on kernel functions for nonlinear modeling, which limits its generalization ability
when processing high-dimensional data like satellite images [26]. Similarly, RF models face
challenges due to high correlation among decision trees, reducing model diversity and
robustness in spatially complex environments [60]. However, it is important to note that a
significant limitation of this study is the small sample size, which may negatively impact
the stability of model training and its ability to generalize across different salinity levels.
In particular, during the development of deep learning models, the adequacy of sample
size directly influences model performance, often leading to overfitting. This results in
excellent performance on the training set but poor performance during testing or real-world
applications. Nonetheless, a small sample size does not necessarily invalidate the results.
Numerous studies have proposed various methods to address small sample challenges. Tan
et al. [61], based on 84 ground-truth soil salinity data and various spectral parameters, ap-
plied variable selection methods and machine learning algorithms to successfully estimate
soil salinity and generate salinity maps. The model achieved an R? of 0.832, demonstrating
strong predictive performance. Shu et al. [62] compared different sample size combinations
and found that, even with a small sample size, accurate models and reliable estimation
results can still be achieved by using appropriate modeling methods. In this study, the
leave-one-out cross-validation (LOOCV) method was used to address the challenges of
limited sample size. LOOCYV is particularly suitable for small datasets, as it maximizes data
utilization by using each sample as both training and validation data [54]. This technique
helps reduce overfitting and ensures a more robust evaluation of model performance, which
is crucial when data are limited [63]. Despite the advantages of LOOCYV, small sample
sizes can still introduce localized biases, as the data may not capture the full variability of
soil salinity across the study area. Future research should aim to increase sample size and
explore hybrid models that integrate CNN with other techniques to enhance predictive
accuracy and generalizability.

4.3. Analysis of the Spatiotemporal Changes of Soil Salinization and Its Influencing Factors

From 2009 to 2017, the soil salinization levels in the Manas River Basin’s arable land
underwent significant changes. In 2009, SSC measurements were taken during the spring,
when salinization was primarily driven by precipitation and snowmelt. These factors
facilitated the upward movement of salts from deeper layers to the surface, resulting
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in elevated surface salinity levels. By contrast, the 2017 measurements were conducted
in the summer, a period characterized by higher temperatures, active crop growth, and
frequent irrigation. These conditions enhanced soil water movement through increased
transpiration, promoting the leaching of salts from the surface to deeper soil layers and
consequently lowering surface salinity. This seasonal shift in soil salinization is consistent
with findings by Hao et al. [64]. Overall, from 2009 to 2017, the soil salinization in the
arable land improved. The area of non-saline soils increased significantly, and mildly
salinized soils expanded. Salinized and saline soils gradually converted to less saline
or non-saline categories, indicating effective soil remediation. This improvement was
largely attributed to the widespread adoption of water-saving technologies, particularly
precision irrigation techniques like subsurface drip irrigation [38]. These techniques, widely
applied in the oasis arable land, helped reduce salt accumulation by minimizing water
loss and improving irrigation efficiency, leading to better soil quality. However, despite
these improvements, salinization worsened in some areas, where non-saline soils were
converted into saline soils. This phenomenon may be closely linked to the expansion of the
oasis and agricultural land, increasing the demand for water, especially in the arid region.
The expansion of the oasis and the growing irrigation needs exacerbated water shortages,
limiting effective irrigation management and leading to localized salt accumulation in the
soil [40]. Therefore, to prevent further soil salinization, it is essential to enhance water
resource management, optimize irrigation techniques, and carefully plan land use to ensure
the long-term sustainability of agriculture and the environment in the Manas River Basin.

5. Conclusions

This study proposed a framework for integrated spatiotemporal data fusion and
CNN algorithms for evaluating soil salinity, which improves the accuracy of soil salinity
evaluation. By combining the FSDAF algorithm with three models (SVR, RF, and CNN),
the feasibility and applicability of this framework in the evaluation of soil salinity of arable
land in arid areas were validated. The results are as follows:

(1) The FSDAF model demonstrates high fusion accuracy and can reliably generate
fine-resolution images synchronized with ground sampling, even when the satellite
imagery and ground sampling dates do not match.

(2) Synchronizing satellite imagery with ground sampling times significantly improves
the accuracy of SSC evaluation. Among the salinity indices, S3, S5, SI, SI1, SI3, SI4,
and Intl exhibited the highest correlations, making them the optimal feature variables
for constructing robust and effective SSC evaluation models.

(3) The CNN model outperformed the RF and SVR models in accuracy, and the evaluation
scheme combining fused images synchronized with ground sampling times with
the CNN model significantly improved the prediction accuracy of SSC (R? = 0.767,
RMSE = 1.677 g-kg~!). Additionally, the overall soil salinization in the study area
improved between spring 2009 and summer 2017, though some areas experienced
worsening salinization. Therefore, continued management of key areas is necessary
to prevent further deterioration of salinization.

In summary, this study combines the temporal and spectral features of satellite images
with the advantages of deep learning algorithms, significantly improving the accuracy
of SSC evaluation. The results provide a valuable reference for the real-time, rapid, and
accurate evaluation of soil salinity of arable land in arid areas.
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