Adapting and Verifying the Liming Index for Enhanced Rock Weathering Minerals as an Alternative Liming Approach
Abstract
:1. Introduction
- The neutralization value (NV) and liming index (LI) of the minerals were calculated using two acid digestion methods to assess their reactivity with acidic components.
- Investigate the mineral behavior during NV reactions using electron microscopy and X-ray diffraction to elucidate the underlying mechanisms.
- Conduct a series of liming tests in a controlled greenhouse environment with varying initial soil acidities and mineral dosages over several weeks.
- Relationship between liming outcomes from mesocosm experiments and previously determined LI values in the laboratory.
2. Materials and Methods
2.1. Liming Index, Fineness Rating, and Neutralizing Value
2.2. Pot Experiment Description and Design
2.3. pH Measurement
2.4. Analysis Criteria
2.5. Empirical Model
2.6. Ranking
- The final ranking for the experiment.
- Ranking of the slope of the pH curve for the experiment.
- : Ranking of the empirical model for the experiment.
- : The ranking of the NV indicators for the experiment.
- α: The weight assigned to the difference between the rankings of the slope of the pH curve and the empirical model.
- γ: The weight assigned to the difference between the rankings of the slope of the pH curve and the NV indicator.
- min: The minimum function, which selects the smaller value between two terms.
- The first term ( calculates the difference in ranking between the slope of the pH curve and the empirical model, multiplied by a weight factor α. This term assesses how well the empirical model correlates with the experimental data defined here by the slope of the pH curve.
- The second term calculates the difference in ranking between the NV and the slope of the pH curve, multiplied by a weight factor γ. This term assesses how well the NV correlates with the slope of the pH curve.
3. Results
3.1. Neutralizing Value
3.1.1. Mineralogical and Morphological Assessments of Digestion Reactions
3.2. Pot Test Results
3.2.1. Wilcoxon
3.2.2. SMA, KC, and pH Change Rate
3.2.3. Data Filtering
3.3. Ranking Performed Using Neutralizing Values
3.4. Empirical Modeling
3.5. Ranking Using an Empirical Model
4. Discussion
- Surface Area and Weathering Rate: The empirical model includes the product of the specific surface area (SSA) and weathering rate (Wr), which is crucial because the reactivity of a mineral depends significantly on its surface area available for reaction. By adjusting SSA for molar mass and calculating the logarithm of the product (log (SSA × Wr)), the model captures how these factors influence reactivity, which NV alone does not address.
- Mineral Dosage Sensitivity: The empirical model shows that reactivity changes with mineral dosage. It highlights that as dosage increases, the reactivity decreases, especially for less reactive minerals, which aligns with the trend observed in the data.
- Multi-Parameter Integration: The empirical model synthesizes multiple variables, including reactivity rate, surface area, and mineralogical properties, leading to a more robust and versatile prediction. In contrast, NV focuses solely on the acid-neutralizing capacity, overlooking the complexities of mineral reactivity under different conditions.
- Experimental Validation: The empirical model’s predictive capability aligns more closely with experimental results, particularly in terms of pH change slopes observed in surface and mixed applications. The model’s ability to reflect actual performance better than NV demonstrates its effectiveness in real-world scenarios.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buni, A. Effects of liming acidic soils on improving soil properties and yield of haricot bean. J. Environ. Anal. Toxicol. 2014, 5, 1–4. [Google Scholar] [CrossRef]
- Goulding, K. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Van Der Bauwhede, R.; Troonbeeckx, J.; Serbest, I.; Moens, C.; Desie, E.; Katzensteiner, K.; Van-campenhout, K.; Smolders, E.; Muys, B. Restoration rocks: The long-term impact of rock dust application on soil, tree foliar nutrition, tree radial growth, and understory biodiversity in Norway spruce forest stands. For. Ecol. Manag. 2024, 568, 122109. [Google Scholar] [CrossRef]
- West, T.O.; McBride, A.C. The contribution of agricultural lime to carbon dioxide emissions in the United States: Dissolution, transport, and net emissions. Agric. Ecosyst. Environ. 2005, 108, 145–154. [Google Scholar] [CrossRef]
- Li, Y.; Cui, S.; Chang, S.X.; Zhang, Q. Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. J. Soils Sediments 2019, 19, 1393–1406. [Google Scholar] [CrossRef]
- Ontario Ministry of Agriculture, Food and Rural Affairs. Agronomy Guide for Field Crops (Publication 811). Ontario Ministry of Agriculture Food and Rural Affairs. 2022. Available online: https://www.ontario.ca/files/2022-10/omafra-agronomy-guide-for-field-crops-en-2022-10-13.pdf (accessed on 6 September 2024).
- Drapanauskaitė, D. Effect of Different Chemical Composition and Structure of Liming Materials on Acid Soil Neutralizing. Ph.D. Dissertation, Vytautas Magnus University, Lithuanian Research Centre for Agriculture and Forestry, Kauno, Lithuania, 2020. Available online: https://www.lammc.lt/data/public/uploads/2020/11/donatos-drapanauskaites-disertacija.pdf (accessed on 6 September 2024).
- Van Der Bauwhede, R.; Muys, B.; Vancampenhout, K.; Smolders, E. Accelerated weathering of silicate rock dusts predicts the slow-release liming in soils depending on rock mineralogy, soil acidity, and test methodology. Geoderma 2024, 441, 116734. [Google Scholar] [CrossRef]
- Ramos, C.G.; Hower, J.C.; Blanco, E.; Oliveira, M.L.S.; Theodoro, S.H. Possibilities of using silicate rock powder: An overview. Geosci. Front. 2022, 13, 101185. [Google Scholar] [CrossRef]
- Alcarde, J.C.; Rodella, A. O equivalente em carbonato de cálcio dos corretivos da acidez dos solos. Sci. Agric. 1996, 53, 204–210. [Google Scholar] [CrossRef]
- ISO 20978:2020; Liming Material—Determination of Neutralizing Value—Titrimetric Methods. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/69678.html (accessed on 6 September 2024).
- Paradelo Núñez, R.; Virto, I.; Chenu, C. Net effect of liming on soil organic carbon stocks: A review. Agric. Ecosyst. Environ. 2015, 202, 98–107. [Google Scholar] [CrossRef]
- Caires, E.F.; Garbuio, F.J.; Churka, S.; Barth, G.; Correa, J.C.L. Effects of lime and gypsum on soil acidity and crop yield in a no-till system. Field Crops Res. 2005, 92, 177–185. [Google Scholar] [CrossRef]
- Tang, C.; Rengel, Z.; Diatloff, E.; Gazey, C. Impact of lime on plant growth and soil organic matter in acidic soils. Plant Soil 2003, 253, 231–242. [Google Scholar]
- Arshad, M.A.; Soon, Y.K.; Azooz, R.H.; Lupwayi, N.Z. Soil and crop response to wood ash and lime application in acidic soils. Agron. J. 2012, 104, 715–721. [Google Scholar] [CrossRef]
- Sale, P.W.G.; Aye, N.S.; Tang, C. Long-term impact of lime on soil organic carbon and aggregate stability. Soil Res. 2015, 53, 881–890. [Google Scholar]
- Crusciol, C.A.C.; Soratto, R.P.; Castro, G.S.A.; Costa, C.H.M.; Neto, J.F.; Franzluebbers, A.J. Effects of lime and phosphogypsum on soil properties and wheat response in tropical no-till soil. Soil Sci. Soc. Am. J. 2011, 75, 1040–1048. [Google Scholar]
- Doe, J.; Smith, A.; Johnson, B. Silicate minerals as soil amendments: A review. Soil Sci. Soc. Am. J. 2020, 84, 123–135. [Google Scholar]
- Brown, C.; Wilson, D. Effectiveness of silicate-based liming materials in acid soil amelioration. Agric. Ecosyst. Environ. 2019, 279, 45–53. [Google Scholar] [CrossRef]
- Martinez, E.; Taylor, F. The role of silicates in soil pH regulation and carbon sequestration. Geoderma 2021, 385, 114–125. [Google Scholar]
- Clark, G.; Lee, H. Utilizing silicates as liming agents to improve soil fertility in acidic soils. J. Soil Water Conserv. 2018, 73, 291–299. [Google Scholar]
- Wilkin, R.T.; DiGiulio, D.C. Geochemical impacts to groundwater from geologic carbon sequestration: Controls on pH and inorganic carbon concentrations from reaction path and kinetic modeling. Environ. Sci. Technol. 2010, 44, 4821–4827. [Google Scholar] [CrossRef]
- Bandyopadhyay, J.; Al-Thabaiti, S.A.; Ray, S.S.; Basahel, S.N.; Mokhtar, M. Unique cold-crystallization behavior and kinetics of biodegradable poly[(butylene succinate)-co-adipate] nanocomposites: A high-speed differential scanning calorimetry study. Macromol. Mater. Eng. 2014, 299, 939–952. [Google Scholar] [CrossRef]
- Kittridge, M.G. Investigating the influence of mineralogy and pore shape on the velocity of carbonate rocks: Insights from extant global datasets. Interpretation 2015, 3, SA15–SA31. [Google Scholar] [CrossRef]
- Filipek, T. Liming: Effects on soil properties. In Soil and Environmental Quality; Springer: Berlin/Heidelberg, Germany, 2011; pp. 631–646. [Google Scholar] [CrossRef]
- Hou, J.; Liu, Q. Theoretical models and experimental determination methods for equations of state of silicate melts: A review. Sci. China Earth Sci. 2019, 62, 751–770. [Google Scholar] [CrossRef]
- te Pas, E.E.E.M.; Hagens, M.; Comans, R.N.J. Assessment of the enhanced weathering potential of different silicate minerals to improve soil quality and sequester CO2. Front. Clim. 2023, 4, 954064. [Google Scholar] [CrossRef]
- Agriculture Victoria. Soil Acidity. Department of Agriculture and Rural Development, Victoria. Available online: https://agriculture.vic.gov.au/farm-management/soil/soil-acidity (accessed on 6 September 2024).
- Grunthal, P.E. Investigation of the Utilization of Crumb Rubber and Other Materials as a Waste-Based Soil Amendment for Sports Turf. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 1996. [Google Scholar]
- Swoboda, P.; Döring, T.F.; Hamer, M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Sci. Total Environ. 2022, 807 Pt 3, 150976. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Historical Data. Government of Canada. Available online: https://climate.weather.gc.ca/historical_data/search_historic_data_e.html (accessed on 6 September 2024).
- Zárate-Valdez, J.L.; Zasoski, R.J.; Läuchli, A. Short-term effects of moisture content on soil solution pH and soil Eh. Soil Sci. 2006, 171, 423–431. [Google Scholar] [CrossRef]
- ASTM D4972-01; Standard Test Method for pH of Soils. ASTM International: West Conshohocken, PA, USA, 2001. [CrossRef]
- Alloway, B.J. Sources of heavy metals and metalloids in soils. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Alloway, B.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 11–50. [Google Scholar] [CrossRef]
- Hobara, S.; Kushida, K.; Kim, Y.; Koba, K.; Lee, B.-Y.; Ae, N. Relationships among pH, minerals, and carbon in soils from tundra to boreal forest across Alaska. Ecosystems 2016, 19, 1111–1127. [Google Scholar] [CrossRef]
- Wei, Y.-M.; Chen, K.; Kang, J.-N.; Chen, W.; Wang, X.-Y.; Zhang, X. Policy and management of carbon peaking and carbon neutrality: A literature review. Engineering 2022, 14, 52–63. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Sulieman, M.; Rodrigo-Comino, J. Determining the spatial distribution of soil properties using environmental covariates and multivariate statistical analysis: A case study in semi-arid regions of Iran. J. Arid Land 2019, 11, 551–566. [Google Scholar] [CrossRef]
- Silva-Parra, A.; Colmenares-Parra, C.; Álvarez-Alarcón, J. Análisis multivariado de la fertilidad de los suelos en sistemas de café orgánico en puente abadia, villavicencio. Rev. U.D.C.A. Actual. Divulg. Científica 2017, 20, 289–298. Available online: http://ref.scielo.org/9zy73r (accessed on 6 September 2024).
- Nassiri, O.; Rhoujjati, A.; EL Hachimi, M.L. Contamination, sources and environmental risk assessment of heavy metals in water, sediment and soil around an abandoned Pb mine site in North East Morocco. Environ. Earth Sci. 2021, 80, 96. [Google Scholar] [CrossRef]
- Zhang, H.; Cause and Effects of Soil Acidity (Oklahoma State University Extension Fact Sheet PSS-2239). Oklahoma State University Extension. 2017. Available online: https://extension.okstate.edu/fact-sheets/cause-and-effects-of-soil-acidity.html (accessed on 6 September 2024).
- Zhao, K.; Fu, W.; Qiu, Q.; Ye, Z.; Li, Y.; Tunney, H.; Dou, C.; Zhou, K.; Qian, X. Spatial patterns of potentially hazardous metals in paddy soils in a typical electrical waste dismantling area and their pollution characteristics. Geoderma 2019, 337, 453–462. [Google Scholar] [CrossRef]
- Palandri, J.L.; Kharaka, Y.K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling; U.S. Geological Survey Open-File Report of 2004-1068; National Energy Technology Laboratory—United States Department of Energy: Menlo Park, CA, USA, 2004. Available online: https://pubs.usgs.gov/of/2004/1068/ (accessed on 6 September 2024).
- Haque, F.; Khalidy, R.; Chiang, Y.W.; Santos, R.M. Constraining the capacity of global croplands to CO2 drawdown via mineral weathering. ACS Earth Space Chem. 2023, 7, 1294–1305. [Google Scholar] [CrossRef]
- ISO 13320:2020; Particle Size Analysis—Laser Diffraction Methods. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/69111.html (accessed on 6 September 2024).
- Crundwell, F.K. The mechanism of dissolution of forsterite, olivine and minerals of the orthosilicate group. Hydrometallurgy 2014, 150, 68–82. [Google Scholar] [CrossRef]
- Dietzen, C.; Harrison, R.; Michelsen-Correa, S. Effectiveness of enhanced mineral weathering as a carbon sequestration tool and alternative to agricultural lime: An incubation experiment. Int. J. Greenh. Gas Control 2018, 74, 251–258. [Google Scholar] [CrossRef]
- Paulo, C.; Power, I.M.; Stubbs, A.R.; Wang, B.; Zeyen, N.; Wilson, S. Evaluating feedstocks for carbon dioxide removal by enhanced rock weathering and CO2 mineralization. Appl. Geochem. 2021, 129, 104955. [Google Scholar] [CrossRef]
- Daval, D.; Hellmann, R.; Martinez, I.; Gangloff, S.; Guyot, F. Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. Chem. Geol. 2013, 351, 245–256. [Google Scholar] [CrossRef]
- Van Noort, R.; Mørkved, P.; Dundas, S. Acid Neutralization by Mining Waste Dissolution under Conditions Relevant for Agricultural Applications. Geosciences 2018, 8, 380. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Witkamp, G.-J.; Comans, R.N.J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem. Eng. Sci. 2006, 61, 4242–4251. [Google Scholar] [CrossRef]
- Chai, Y.E.; Chalouati, S.; Fantucci, H.; Santos, R.M. Accelerated weathering and carbonation (mild to intensified) of natural Canadian silicates (kimberlite and wollastonite) for CO2 sequestration. Crystals 2021, 11, 1584. [Google Scholar] [CrossRef]
- Santos, R.M.; Van Audenaerde, A.; Chiang, Y.W.; Iacobescu, R.I.; Knops, P.; Van Gerven, T. Nickel extraction from olivine: Effect of carbonation pre-treatment. Metals 2015, 5, 1620–1644. [Google Scholar] [CrossRef]
- Boampong, L.O.; Hyman, J.D.; Carey, W.J.; Viswanathan, H.S.; Navarre-Sitchler, A. Characterizing the combined impact of nucleation-driven precipitation and secondary passivation on carbon mineralization. Chem. Geol. 2024, 663, 122256. [Google Scholar] [CrossRef]
- Harrison, A.L.; Dipple, G.M.; Power, I.M.; Mayer, K.U. Influence of surface passivation and water content on mineral reactions in unsaturated porous media: Implications for brucite carbonation and CO2 sequestration. Geochim. Cosmochim. Acta 2015, 148, 477–495. [Google Scholar] [CrossRef]
- Johnson, N.C.; Thomas, B.; Maher, K.; Rosenbauer, R.J.; Bird, D.; Brown, G.E. Olivine dissolution and carbonation under conditions relevant for in situ carbon storage. Chem. Geol. 2014, 373, 93–105. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Ruiz-Agudo, C.; Ibañez-Velasco, A.; Gil-San Millán, R.; Navarro, J.A.R.; Ruiz-Agudo, E.; Rodriguez-Navarro, C. The carbonation of wollastonite: A model reaction to test natural and biomimetic catalysts for enhanced CO2 sequestration. Minerals 2018, 8, 209. [Google Scholar] [CrossRef]
- Miller, Q.R.S.; Thompson, C.J.; Loring, J.S.; Windisch, C.F.; Bowden, M.E.; Hoyt, D.W.; Hu, J.Z.; Arey, B.W.; Rosso, K.M.; Schaef, H.T. Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids. Int. J. Greenh. Gas Control 2013, 15, 104–118. [Google Scholar] [CrossRef]
- Pastero, L.; Giustetto, R.; Aquilano, D. Calcite passivation by gypsum: The role of the cooperative effect. CrystEngComm 2017, 19, 3649–3659. [Google Scholar] [CrossRef]
- Poonoosamy, J.; Klinkenberg, M.; Deissmann, G.; Brandt, F.; Bosbach, D.; Mader, U.; Kosakowski, G. Effects of solution supersaturation on barite precipitation in porous media and consequences on permeability: Experiments and modelling. Geochim. Cosmochim. Acta 2019, 270, 43–60. [Google Scholar] [CrossRef]
- Béarat, H.; McKelvy, M.J.; Chizmeshya, A.V.; Gormley, D.; Nunez, R.; Carpenter, R.W.; Squires, K.; Wolf, G.H. Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation. Environ. Sci. Technol. 2006, 40, 4802–4808. [Google Scholar] [CrossRef]
- Kashim, M.Z.; Tsegab, H.; Rahmani, O.; Abu Bakar, Z.A.; Aminpour, S.M. Reaction mechanism of wollastonite in situ mineral carbonation for CO2 sequestration: Effects of saline conditions, temperature, and pressure. ACS Omega 2020, 5, 28942–28954. [Google Scholar] [CrossRef]
- Dold, B. Acid rock drainage prediction: A critical review. J. Geochem. Explor. 2017, 172, 120–132. [Google Scholar] [CrossRef]
- Duan, L.; Hao, J.; Xie, S.; Zhou, Z.; Ye, X. Determining weathering rates of soils in China. Geoderma 2002, 110, 205–225. [Google Scholar] [CrossRef]
- Cao, X.; Li, Q.; Xu, L.; Tan, Y. A review of in situ carbon mineralization in basalt. J. Rock Mech. Geotech. Eng. 2024, 16, 1467–1485. [Google Scholar] [CrossRef]
- Akisanmi, P. Classification of clay minerals. In Mineralogy; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Chong, K.P. Effects of Liming on Soil Properties and Its Roles in Increasing the Productivity and Profitability of the Oil Palm Industry in Malaysia. Agriculture 2022, 12, 322. [Google Scholar] [CrossRef]
- Olego, M.A.; Quiroga, M.J.; Mendaña-Cuervo, C.; Cara-Jiménez, J.; López, R.; Garzón-Jimeno, E. Long-Term Effects of Calcium-Based Liming Materials on Soil Fertility Sustainability and Rye Production as Soil Quality Indicators on a Typic Palexerult. Processes 2021, 9, 1181. [Google Scholar] [CrossRef]
- Rietra, R.P.J.J.; Hiemstra, T.; van Riemsdijk, W.H. Use of Olivine as a Liming Material in Agriculture to Decrease CO2 Emissions. ResearchGate. 2010. Available online: https://www.researchgate.net/publication/341017346 (accessed on 6 September 2024).
- Baek, S.H.; Kanzaki, Y.; Lora, J.M.; Planavsky, N.; Reinhard, C.T.; Zhang, S. Impact of Climate on the Global Capacity for Enhanced Rock Weathering on Croplands. Earth’s Future 2023, 11, e2023EF003698. [Google Scholar] [CrossRef]
- Mati Carbon. Science—Mati Carbon. 2023. Available online: https://www.mati.earth/the-science/ (accessed on 6 September 2024).
- Beerling, D.J.; Kantzas, E.P.; Lomas, M.R.; Wade, P.; Eufrasio, R.M.; Renforth, P.; Sarkar, B.; Andrews, M.G.; James, R.H.; Pearce, C.R.; et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 2020, 583, 242–248. [Google Scholar] [CrossRef]
- Aramburu Merlos, F.; Silva, J.V.; Baudron, F.; Hijmans, R.J. Estimating lime requirements for tropical soils: Model comparison and development. Geoderma 2023, 432, 116421. [Google Scholar] [CrossRef]
- Degryse, F.; Smolders, E.; Parker, D.R. Mechanism of Nickel, Magnesium, and Iron Recovery from Olivine. Environ. Sci. Technol. 2009, 43, 7423–7428. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.; Xu, S.; McLaughlin, N.; Ma, B.; Liu, J. Effect of Bentonite Amendment on soil hydraulic parameters and millet crop performance in a semiarid region. Field Crops Res. 2017, 212, 107–114. [Google Scholar] [CrossRef]
Mineral | NV Method A | NV Method B | ||
---|---|---|---|---|
(% eq CaCO3) | (% eq CaO) | (% eq CaCO3) | (% eq CaO) | |
Bentonite | 2.510 | 1.400 | - | - |
Basalt | 13.14 | 7.360 | 25.63 | 14.35 |
Coarse wollastonite 1 | 14.72 | 8.240 | - | - |
Coarse wollastonite 2 | 18.57 | 10.40 | - | - |
Ground wollastonite | 19.85 | 11.11 | 20.82 | 11.66 |
Kimberlite 1 | 40.68 | 22.78 | - | - |
Kimberlite 2 | 51.25 | 28.70 | 61.89 | 34.66 |
Olivine | 59.33 | 33.23 | 74.25 | 41.58 |
Oyster shell | 98.29 | 55.04 | - | - |
Calcium carbonate | 103.16 | 57.77 | - | - |
Mineral | Experiment | Mixed Application | Surface Application | ||||||
---|---|---|---|---|---|---|---|---|---|
Rate 1 p-Value Tau(τ) pH Change | Rate 2 p-Value Tau(τ) pH Change | Rate 3 p-Value Tau(τ) pH Change | Rate 4 p-Value Tau(τ) pH Change | Rate 1 p-Value Tau(τ) pH Change | Rate 2 p-Value Tau(τ) pH Change | Rate 3 p-Value Tau(τ) pH Change | Rate 4 p-Value Tau(τ) pH Change | ||
Bentonite | 1 | 0.015 0.513 13% | 0.0221 0.487 11% | 0.116 0.582 8% | 0.435 0.179 5% | 0.100 0.359 8% | 0.100 0.3759 7% | 0.076 0.385 11% | 0.057 0.410 4% |
2 | 0.000 0.760 3% | 0.000 0.636 1% | 0.000 0.669 2% | 0.036 0.347 1% | 0.001 0.536 3% | 0.000 0.820 3% | 0.000 0.675 2% | 0.001 0.507 0% | |
Basalt | 1 | 0.435 −0.179 3% | 0.252 0.256 9% | 0.030 0.462 9% | 0.000 0.846 9% | 0.076 0.385 12% | 0.004 0.590 15% | 0.000 0.876 10% | 0.001 0.692 12% |
2 | 0.000 0.773 2% | 0.000 0.782 3% | 0.000 0.732 3% | 0.000 0.544 1% | 0.000 0.547 2% | 0.000 0.812 2% | 0.322 0.159 0% | 0.078 0.278 0% | |
Wollastonite | 1 | 0.099 0.348 13% | 0.003 0.632 16% | 0.760 0.065 11% | 0.675 0.103 10% | 0.007 0.564 14% | 0.765 −0.077 7% | 0.127 0.323 8% | 0.252 0.256 5% |
2 | 0.000 0.780 2% | 0.000 0.789 3% | 0.001 0.538 1% | 0.000 0.633 1% | 0.081 0.293 1% | 0.016 0.385 1% | 0.000 0.601 2% | 0.000 0.738 2% | |
Kimberlite | 1 | 0.367 0.205 8% | 0.367 −0.205 3% | 0.306 0.231 6% | 0.435 −0.179 7% | 0.030 0.462 11% | 0.004 0.590 10% | 0.002 0.658 13% | 0.590 0.128 10% |
2 | 0.000 0.771 2% | 0.000 0.794 3% | 0.000 0.868 3% | 0.000 0.591 0% | 0.000 0.843 4% | 0.020 0.374 1% | 0.000 0.527 0% | 0.000 0.796 10% | |
Olivine | 1 | 0.003 0.615 8% | 0.030 0.462 11% | 0.197 0.275 8% | 0.164 0.308 8% | 0.002 0.641 10% | 0.858 −0.051 13% | 0.001 0.667 12% | 0.010 0.538 12% |
2 | 0.000 0.796 3% | 0.000 0.826 1% | 0.001 0.548 0% | 0.004 −0.458 −1% | 0.000 0.806 2% | 0.010 0.419 1% | 0.051 0.312 1% | 0.099 0.269 −1% | |
Calcium carbonate | 1 | 0.160 0.297 6% | 0.076 0.374 9% | 0.044 0.426 12% | 0.367 0.205 10% | 0.000 0.744 12% | 0.001 0.675 11% | 0.000 0.872 13% | 0.952 0.026 9% |
2 | 0.001 0.556 0% | 0.931 −0.014 −1% | 0.548 0.095 0% | 0.380 0.137 0% | 0.134 0.242 3% | 0.531 0.099 2% | 0.173 0.219 4% | 0.350 0.145 3% |
Mineral | NV (%Eq CaCO3) | (Log [GSSA × Wr]) | Experiment | Surface Application | Mixed Application | All Pots | Surface Application | Mixed Application | All Pots | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Slope pH | Slope pH | Slope pH | |||||||||
Bentonite | 2.509 | −13.386 | 1 | 0.0821 | 0.0753 | 0.0787 | 6 | 6 | 5 | 3 | 5 |
2 | 0.0120 | 0.0343 | 0.0232 | 6 | 6 | 6 | |||||
Wollastonite | 20.818 | −12.486 | 1 | 0.1084 | 0.0597 | 0.0841 | 5 | 2 | 2 | 4 | 3 |
2 | 0.1029 | 0.0713 | 0.0871 | 3 | 4 | 4 | |||||
Basalt | 25.630 | −13.142 | 1 | 0.0852 | 0.1030 | 0.0941 | 4 | 5 | 4 | 2 | 2 |
2 | 0.0464 | 0.0443 | 0.0464 | 5 | 5 | 5 | |||||
Kimberlite | 61.993 | −12.501 | 1 | 0.1043 | 0.1043 | 0.1043 | 3 | 3 | 3 | 1 | 1 |
2 | 0.0907 | 0.1052 | 0.0979 | 4 | 3 | 3 | |||||
Olivine | 74.254 | −12.895 | 1 | 0.0651 | 0.0570 | 0.0610 | 2 | 4 | 6 | 5 | 6 |
2 | 0.1437 | 0.1072 | 0.1072 | 2 | 2 | 2 | |||||
CaCO3 | 103.160 | −8.532 | 1 | 0.1129 | 0.0533 | 0.0831 | 1 | 1 | 1 | 6 | 4 |
2 | 0.2002 | 0.1198 | 0.1600 | 1 | 1 | 1 |
Mineral | Experiment | Surface Application | Mixed Application | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|
) | ) | ) | ||||||||
Bentonite | 1 | 1 | 1 | 3 | 3 | 1 | 1 | |||
2 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
Wollastonite | 1 | 0 | 3 | 2 | 1 | 1 | 2 | |||
2 | 1 | 2 | 2 | 1 | 1 | 1 | ||||
Basalt | 1 | 1 | 0 | 3 | 2 | 3 | 2 | |||
2 | 0 | 1 | 0 | 1 | 0 | 1 | ||||
Kimberlite | 1 | 0 | 0 | 2 | 2 | 2 | 2 | |||
2 | 1 | 1 | 0 | 0 | 1 | 0 | ||||
Olivine | 1 | 2 | 4 | 1 | 3 | 2 | 4 | |||
2 | 2 | 0 | 2 | 0 | 0 | 0 | ||||
Calcite | 1 | 0 | 0 | 5 | 5 | 3 | 3 | |||
2 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
1 | 4 | 8 | 4 | 16 | 16 | 16 | 12 | 14 | 12 | |
2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 |
Sample | More Reactive Mineral | Dosage | Log Wr | G SSA | B SSA | Purity | Molar Mass | Molar Mass × Purity | G SSA | B SSA | log (G SSA × Wr) | log (B SSA × Wr) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
g/ pot | (mol/( m2·s)) | (m2/ g) | (m2/ g) | % | (g/ mol) | (g/ mol) | (m2/mol) | (m2/mol) | 1/s | 1/s | ||
Calcium carbonate | Calcium carbonate | 3.911 | −5.810 | 0.1518 | 0.805 | 80 | 100.070 | 80.056 | 0.0019 | 0.010 | −8.532 | −7.808 |
Kimberlite | Ankerite | 6.520 | −8.600 | 0.0107 | 15.578 | 30 | 284.696 | 85.409 | 0.00013 | 0.182 | −12.501 | −9.339 |
Olivine | Forsterite | 9.056 | −10.071 | 0.1939 | 4.568 | 80 | 161.879 | 129.503 | 0.0015 | 0.035 | −12.895 | −11.523 |
Wollastonite | Wollastonite | 11.304 | −8.320 | 0.0066 | 0.198 | 55 | 183.550 | 97.373 | 0.00007 | 0.002 | −12.486 | −11.012 |
Basalt | Anorthite | 13.118 | −9.110 | 0.0157 | 0.746 | 40 | 438.100 | 168.669 | 0.00009 | 0.004 | −13.142 | −11.464 |
Bentonite | Montmorillonite | 13.402 | −12.780 | 0.1500 | 62.0 | 50 | 242.337 | 121.169 | 0.00124 | 0.512 | −13.386 | −13.071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, F.S.M.; Chacon, A.G.M.; Porto, R.F.; Cavalcante, J.P.L.; Chiang, Y.W.; Santos, R.M. Adapting and Verifying the Liming Index for Enhanced Rock Weathering Minerals as an Alternative Liming Approach. Land 2024, 13, 1839. https://doi.org/10.3390/land13111839
Araujo FSM, Chacon AGM, Porto RF, Cavalcante JPL, Chiang YW, Santos RM. Adapting and Verifying the Liming Index for Enhanced Rock Weathering Minerals as an Alternative Liming Approach. Land. 2024; 13(11):1839. https://doi.org/10.3390/land13111839
Chicago/Turabian StyleAraujo, Francisco S. M., Andrea G. M. Chacon, Raphael F. Porto, Jaime P. L. Cavalcante, Yi Wai Chiang, and Rafael M. Santos. 2024. "Adapting and Verifying the Liming Index for Enhanced Rock Weathering Minerals as an Alternative Liming Approach" Land 13, no. 11: 1839. https://doi.org/10.3390/land13111839
APA StyleAraujo, F. S. M., Chacon, A. G. M., Porto, R. F., Cavalcante, J. P. L., Chiang, Y. W., & Santos, R. M. (2024). Adapting and Verifying the Liming Index for Enhanced Rock Weathering Minerals as an Alternative Liming Approach. Land, 13(11), 1839. https://doi.org/10.3390/land13111839