Methods for Extracting Fractional Vegetation Cover from Differentiated Scenarios Based on Unmanned Aerial Vehicle Imagery
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. UAV Data and Preprocessing
3. Methods
3.1. Scenarios and Entropy
3.2. FVC Extraction Methods
- (1)
- Otsu–VVI Method
- (2)
- Color Space Method
- (3)
- LMM
- (4)
- SVM
- (5)
- NN
3.3. Precision Evaluation
- (1)
- Confusion Matrix
- (2)
- Kappa Coefficient
4. Result
4.1. Scenarios and Entropy
4.2. Otsu–VVIs
4.3. Color Space Method
4.4. LMM
4.5. SVM
4.6. NN
4.7. Confusion Matrix
- (1)
- Otsu–VVIs
- (2)
- Color Space Method
- (3)
- LMM
- (4)
- SVM
- (5)
- NN
4.8. Kappa Coefficient
- (1)
- Otsu–VVIs
- (2)
- Color Space Method
- (3)
- LMM
- (4)
- SVM
- (5)
- NN
5. Discussion
5.1. Comparison of Differentiated Scenarios and Entropy for FVC Extraction
- (1)
- Sparse Shrub Areas with Similar Backgrounds (No. 1 and No. 2)
- (2)
- Mixed Grass–Shrub Areas with Distinct Ground Vegetation Demarcation (No. 3 and No. 10)
- (3)
- Areas Cooccupied by Shrubs and Sparse Herbaceous Vegetation (No. 4 and No. 12)
- (4)
- Extensive Shrub Areas with Minor Grassland Integration (No. 6 and No. 7)
- (5)
- Mixed Grass–Shrub Areas with Indistinguishable Soil Backgrounds (No. 9)
- (6)
- Complex Vegetation Types with High Cover and Architectural Interference (No. 5, 8, and 11)
5.2. Comparison of FVC Extraction Methods
- (1)
- CIVE
- (2)
- Color Space Method
- (3)
- LMM
- (4)
- Machine Learning Algorithms
5.3. Accuracy of UAV Remote Sensing Images
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Zhang, X.; Wang, T.; Chen, G.; Zhu, K.; Wang, Q.; Wang, J. Detection of vegetation cover-age changes in the Yellow River Basin from 2003 to 2020. Ecol. Indic. 2022, 138, 108818. (In English) [Google Scholar] [CrossRef]
- Song, J.M.; Xia, N.; Hai, W.Y.; Tang, M.Y. Spatial-temporal variation of vegetation in Gobi region of Xinjiang based on NDVI-DFI model. Southwest China J. Agric. Sci. 2022, 35, 2867–2875. [Google Scholar]
- Zhao, J.; Li, J.; Zhang, Z.X.; Wu, S.L.; Zhong, B.; Liu, Q.H. A dataset of 16 m/10-day fractional vegetation cover of MuSyQ GF-series (2018–2020, China, Version 01). China Sci. Data 2022, 7, 221–230. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, R.; Wenxing, H.; Wang, L.; Shuang, L.; Song, H.; Zhao, W.; Li, L. Analysis of Fractional Vegetation Cover Changes and Driving Forces on Both Banks of Yongding River Before and After Ecological Water Replenishment. Ecol. Environ. Sci. 2023, 32, 264–273. [Google Scholar]
- Chen, X.; Lv, X.; Ma, L.; Chen, A.; Zhang, Q.; Zhang, Z. Optimization and Validation of Hyperspectral Estimation Capability of Cotton Leaf Nitrogen Based on SPA and RF. Remote Sens. 2022, 14, 5201. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Wang, M.; Guo, J.; Wei, X.; Shukla, M.K.; Qi, Y. Spatiotemporal Variation of Fractional Vegetation Cover and Its Response to Climate Change and Topography Characteristics in Shaanxi Province, China. Appl. Sci. 2023, 13, 11532. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, M.; Lin, H. Estimating the Urban Fractional Vegetation Cover Using an Object-Based Mixture Analysis Method and Sentinel-2 MSI Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 341–350. [Google Scholar] [CrossRef]
- Liang, J.; Liu, D. Automated estimation of daily surface water fraction from MODIS and Landsat images using Gaussian process regression. Int. J. Remote Sens. 2021, 42, 4261–4283. [Google Scholar] [CrossRef]
- Jia, X.; Shao, M.; Zhu, Y.; Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- Elmendorf, S.C.; Henry, G.H.; Hollister, R.D.; Björk, R.G.; Bjorkman, A.D.; Callaghan, T.V.; Collier, L.S.; Cooper, E.J.; Cornelissen, H.C.; Day, T.A.; et al. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecol. Lett. 2012, 15, 164–175. [Google Scholar] [CrossRef]
- Wang, N.; Guo, Y.; Wei, X.; Zhou, M.; Wang, H.; Bai, Y. UAV-based remote sensing using visible and multi-spectral indices for the estimation of vegetation cover in an oasis of a desert. Ecol. Indic. 2022, 141, 109155. [Google Scholar] [CrossRef]
- Zhong, G.; Chen, J.; Huang, R.; Yi, S.; Qin, Y.; You, H.; Han, X.; Zhou, G. High Spatial Resolution Fractional Vegetation Coverage Inversion Based on UAV and Sentinel-2 Data: A Case Study of Alpine Grassland. Remote Sens. 2023, 15, 4266. [Google Scholar] [CrossRef]
- Brazier, R.E.; Turnbull, L.; Wainwright, J.; Bol, R. Carbon loss by water erosion in drylands: Implications from a study of vegetation change in the south-west USA. Hydrol. Process. 2013, 28, 2212–2222. [Google Scholar] [CrossRef]
- Maurya, A.K.; Bhargava, N.; Singh, D. Efficient selection of SAR features using ML based algorithms f-or accurate FVC estimation. Adv. Space Res. 2022, 70, 1795–1809. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Verrelst, J.; Calvo, L.; Suárez-Seoane, S. Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrieval in heterogeneous ecological systems after fire. Remote Sens. Environ. 2021, 255, 12304. [Google Scholar] [CrossRef]
- Getzin, S.; Wiegand, K.; Schöning, I. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods Ecol. Evol. 2011, 3, 397–404. [Google Scholar] [CrossRef]
- Wu, S.; Deng, L.; Zhai, J.; Lu, Z.; Wu, Y.; Chen, Y.; Guo, L.; Gao, H. Approach for Monitoring Spatiotemporal Changes in Fractional Vegetation Cover Through Unmanned Aerial System-Guided-Satellite Survey: A Case Study in Mining Area. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5502–5513. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, D. Estimating fractional vegetation cover from multispectral unmixing modeled with local endmember variability and spatial contextual information. ISPRS J. Photogramm. Remote Sens. 2024, 209, 481–499. [Google Scholar] [CrossRef]
- Wang, H.; Han, D.; Mu, Y.; Jiang, L.; Yao, X.; Bai, Y.; Lu, Q.; Wang, F. Landscape-level vegetation classification and fractional woody and herbaceous vegetation cover estimation over the dryland ecosystems by unmanned aerial vehicle platform. Agric. For. Meteorol. 2019, 278, 107665. [Google Scholar] [CrossRef]
- AAshapure, A.; Jung, J.; Chang, A.; Oh, S.; Maeda, M.; Landivar, J. A Comparative Study of RGB and Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal UAS Data. Remote Sens. 2019, 11, 2757. [Google Scholar] [CrossRef]
- Du, M.; Li, M.; Noguchi, N.; Ji, J.; Ye, M. Retrieval of Fractional Vegetation Cover from Remote Sensing Image of Unmanned Aerial Vehicle Based on Mixed Pixel Decomposition Method. Drones 2023, 7, 43. [Google Scholar] [CrossRef]
- Guo, W.; Rage, U.K.; Ninomiya, S. Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput. Electron. Agric. 2013, 96, 58–66. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, J.; Xu, B.; Huang, J.; Memon, M.S.; Yin, G.; Zeng, Y.; Zhao, J.; Liu, K. Evaluation of Global Decametric-Resolution LAI, FAPAR and FVC Estimates Derived from Sentinel-2 Imagery. Remote Sens. 2020, 12, 912. [Google Scholar] [CrossRef]
- Wang, B.; Jia, K.; Liang, S.; Xie, X.; Wei, X.; Zhao, X.; Yao, Y.; Zhang, X. Assessment of Sentinel-2 MSI Spectral Band Reflectances for Estimating Fractional Vegetation Cover. Remote Sens. 2018, 10, 1927. [Google Scholar] [CrossRef]
- Li, J.; Fan, W.; Li, M. Application of linear mixing spectral model to classification of multi-spectral remote sensing image. J. Northeast. For. Univ. 2008, 36, 45–69. [Google Scholar]
- Hultquist, C.; Chen, G.; Zhao, K. A comparison of Gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests. Remote Sens. Lett. 2014, 5, 723–732. [Google Scholar] [CrossRef]
- Durbha, S.S.; King, R.L.; Younan, N.H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 2007, 107, 348–361. [Google Scholar] [CrossRef]
- Gränzig, T.; Fassnacht, F.E.; Kleinschmit, B.; Foerster, M. Mapping the fractional coverage of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102281. [Google Scholar] [CrossRef]
- Mao, H.; Meng, J.; Ji, F.; Zhang, Q.; Fang, H. Comparison of Machine Learning Regression Algorithms for Cotton Leaf Area Index Retrieval Using Sentinel-2 Spectral Bands. Appl. Sci. 2019, 9, 1459. [Google Scholar] [CrossRef]
- Jamin, A.; Humeau-Heurtier, A. (Multiscale) Cross-Entropy Methods: A Review. Entropy 2019, 22, 45. [Google Scholar] [CrossRef]
- Rankine, W.J.M.; Tait, P.G. Miscellaneous Scientific Papers; C. Griffin: Glasgow, Scotland, 1881. [Google Scholar]
- Liu, Y.; Mu, X.; Wang, H.; Yan, G. A novel method for extracting green fractional vegetation cover from digital images. J. Veg. Sci. 2011, 23, 406–418. [Google Scholar] [CrossRef]
- Geng, X.; Wang, X.; Fang, H.; Ye, J.; Han, L.; Gong, Y.; Cai, D. Vegetation coverage of desert ecosystems in the Qinghai-Tibet Plateau is underestimated. Ecol. Indic. 2022, 137, 108780. [Google Scholar] [CrossRef]
- Sainui, J.; Pattanasatean, P. Color Classification based on Pixel Intensity Values. In Proceedings of the 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Busan, Republic of Korea, 27–29 June 2018; pp. 302–306. [Google Scholar]
- Pan, Y.; Wu, W.; He, J.; Zhu, J.; Su, X.; Li, W.; Li, D.; Yao, X.; Cheng, T.; Zhu, Y.; et al. A novel approach for estimating fractional cover of crops by correcting angular effect using radiative transfer models and UAV multi-angular spectral data. Comput. Electron. Agric. 2024, 222, 109030. [Google Scholar] [CrossRef]
- Meyer, G.E.; Mehta, T.; Kocher, M.F.; Mortensen, D.A.; Samal, A. Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. Trans. ASAE 1998, 41, 1189–1197. [Google Scholar] [CrossRef]
- Meyer, G.E.; Hindman, T.W.; Laksmi, K. Machine vision detection parameters for plant species identification. In Proceedings of the SPIE the International Society for Optical Engineering, Boston, MA, USA, 14 January 1999; pp. 124–523. [Google Scholar]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Liu, J.; Wei, L.; Zheng, Z.; Du, J. Vegetation cover change and its response to climate extremes in the Yellow River Basin. Sci. Total Environ. 2023, 905, 167366. [Google Scholar] [CrossRef]
- Zaiming, Z.; Yanming, Y.; Benqing, C. Research on Vegetation Extraction and Fractional Vegetation Cover of Spartina Alterniflora Using UAV Images. Remote Sens. Technol. Appl. 2017, 32, 714–720. [Google Scholar]
- Huete, A.; Liu, H.; de Lira, G.; Batchily, K.; Escadafal, R. A soil color index to adjust for soil and litter noise in vegetation index imagery of arid regions. In Proceedings of the IGARSS’ 94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August; pp. 1042–1043.
- Yan, G.; Li, L.; Coy, A.; Mu, X.; Chen, S.; Xie, D.; Zhang, W.; Shen, Q.; Zhou, H. Improving the estimation of fractional vegetation cover from UAV RGB imagery by colour unmixing. ISPRS J. Photogramm. Remote. Sens. 2019, 158, 23–34. [Google Scholar] [CrossRef]
- Li, L.; Mu, X.; Macfarlane, C.; Song, W.; Chen, J.; Yan, K.; Yan, G. A half-Gaussian fitting method for estimating fractional vegetation cover of corn crops using unmanned aerial vehicle images. Agric. For. Meteorol. 2018, 262, 379–390. [Google Scholar] [CrossRef]
- Van de Voorde, T.; Vlaeminck, J.; Canters, F. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels. Sensors 2008, 8, 3880–3902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ni, H. Inversion of Forest Biomass Based on Multi-Source Remote Sensing Images. Sensors 2023, 23, 9313. (In English) [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Qin, L.; Mao, P.; Luo, J.; Zhao, W.; Qiu, G. Unmanned aerial vehicle(UAV)based methodology for spatial distribution pattern analysis of desert vegetation. J. Desert Res. 2020, 40, 169–179. [Google Scholar]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Croft, T.L.; Phillips, T.N. Least-Squares Proper Generalized Decompositions for Weakly Coercive Elliptic Problems. SIAM J. Sci. Comput. 2017, 39, A1366–A1388. [Google Scholar] [CrossRef]
VVIs | Formula | Reference |
---|---|---|
Excess green index (EXG) | [35] | |
Excess red index (EXR) | [36] | |
Excess red minus green index (EXER) | [37] | |
Normalized green–red difference index (NGRDI) | [38] | |
Normalized green–blue difference index (NGBDI) | [39] | |
Red–green ratio index (RGRI) | [40] | |
Visible-band difference vegetation index (VDVI) | [19] | |
Visible-band-modified soil-adjusted vegetation index (V-MSAVI) | [41] | |
Excess green minus red index (EXGR) | [42] | |
Modified green–red vegetation index (MGRVI) | [43] | |
Red–green–blue vegetation index (RGBVI) | [34] | |
Vegetation color index (CIVE) | [44] |
Marking Result | Extraction Result | |
---|---|---|
FVC | non-FVC | |
FVC | a | b |
non-FVC | c | d |
No. | Entropy | Differentiated Scenario |
---|---|---|
1 | Low Entropy | Sparse shrub areas with similar backgrounds |
2 | Low Entropy | Sparse shrub areas with similar backgrounds |
3 | Medium Entropy | Mixed grass–shrub areas with distinct ground vegetation demarcation |
4 | Medium Entropy | Areas cooccupied by shrubs and sparse herbaceous vegetation |
5 | High Entropy | Complex vegetation types with high cover and architectural interference |
6 | High Entropy | Extensive shrub areas with minor grassland integration |
7 | High Entropy | Extensive shrub areas with minor grassland integration |
8 | High Entropy | Complex vegetation types with high cover and architectural interference |
9 | Medium Entropy | Mixed grass–shrub areas with indistinguishable soil backgrounds |
10 | Low Entropy | Mixed grass–shrub areas with distinct ground vegetation demarcation |
11 | Medium Entropy | Complex vegetation types with high cover and architectural interference |
12 | Low Entropy | Areas cooccupied by shrubs and sparse herbaceous vegetation |
No. | VVIs | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | NGRDI | 61 | 39 | 79 | 21 | 0.410 | 0.436 | 0.610 | 0.508 | 0.790 | 0.390 |
EXG | 63 | 37 | 3 | 97 | 0.800 | 0.955 | 0.630 | 0.759 | 0.030 | 0.370 | |
EXR | 37 | 63 | 59 | 41 | 0.390 | 0.385 | 0.370 | 0.378 | 0.590 | 0.630 | |
EXER | 0 | 100 | 0 | 100 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | |
RGRI | 69 | 31 | 92 | 8 | 0.385 | 0.429 | 0.690 | 0.529 | 0.920 | 0.310 | |
NGBDI | 2 | 98 | 11 | 89 | 0.455 | 0.154 | 0.020 | 0.035 | 0.110 | 0.980 | |
VDVI | 68 | 32 | 2 | 98 | 0.830 | 0.971 | 0.680 | 0.800 | 0.020 | 0.320 | |
RGBVI | 61 | 39 | 1 | 99 | 0.800 | 0.984 | 0.610 | 0.753 | 0.010 | 0.390 | |
MGRVI | 21 | 79 | 3 | 97 | 0.590 | 0.875 | 0.210 | 0.339 | 0.030 | 0.790 | |
EXGR | 2 | 98 | 0 | 100 | 0.510 | 1.000 | 0.020 | 0.039 | 0.000 | 0.980 | |
V-MSAVI | 59 | 41 | 1 | 99 | 0.790 | 0.983 | 0.590 | 0.738 | 0.010 | 0.410 | |
CIVE | 69 | 31 | 4 | 96 | 0.825 | 0.945 | 0.690 | 0.798 | 0.040 | 0.310 | |
2 | NGRDI | 68 | 132 | 2 | 198 | 0.665 | 0.971 | 0.340 | 0.504 | 0.010 | 0.660 |
EXG | 126 | 74 | 23 | 177 | 0.758 | 0.846 | 0.630 | 0.722 | 0.115 | 0.370 | |
EXR | 163 | 37 | 79 | 121 | 0.710 | 0.674 | 0.815 | 0.738 | 0.395 | 0.185 | |
EXER | 0 | 200 | 0 | 200 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | |
RGRI | 159 | 41 | 46 | 154 | 0.783 | 0.776 | 0.795 | 0.785 | 0.230 | 0.205 | |
NGBDI | 5 | 195 | 94 | 106 | 0.278 | 0.051 | 0.025 | 0.033 | 0.470 | 0.975 | |
VDVI | 126 | 74 | 14 | 186 | 0.780 | 0.900 | 0.630 | 0.741 | 0.070 | 0.370 | |
RGBVI | 127 | 73 | 15 | 185 | 0.780 | 0.894 | 0.635 | 0.743 | 0.075 | 0.365 | |
MGRVI | 5 | 195 | 90 | 110 | 0.288 | 0.053 | 0.025 | 0.034 | 0.450 | 0.975 | |
EXGR | 0 | 200 | 0 | 200 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | |
V-MSAVI | 125 | 75 | 14 | 186 | 0.778 | 0.899 | 0.625 | 0.737 | 0.070 | 0.375 | |
CIVE | 138 | 62 | 30 | 170 | 0.770 | 0.821 | 0.690 | 0.750 | 0.150 | 0.310 | |
3 | NGRDI | 34 | 266 | 24 | 276 | 0.517 | 0.586 | 0.113 | 0.190 | 0.080 | 0.887 |
EXG | 177 | 123 | 2 | 298 | 0.792 | 0.989 | 0.590 | 0.739 | 0.007 | 0.410 | |
EXR | 43 | 257 | 295 | 5 | 0.080 | 0.127 | 0.143 | 0.135 | 0.983 | 0.857 | |
EXER | 15 | 285 | 0 | 300 | 0.525 | 1.000 | 0.050 | 0.095 | 0.000 | 0.950 | |
RGRI | 70 | 230 | 156 | 144 | 0.357 | 0.310 | 0.233 | 0.266 | 0.520 | 0.767 | |
NGBDI | 0 | 300 | 0 | 300 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | |
VDVI | 153 | 147 | 2 | 298 | 0.752 | 0.987 | 0.510 | 0.673 | 0.007 | 0.490 | |
RGBVI | 168 | 132 | 2 | 298 | 0.777 | 0.988 | 0.560 | 0.715 | 0.007 | 0.440 | |
MGRVI | 121 | 179 | 1 | 299 | 0.700 | 0.992 | 0.403 | 0.573 | 0.003 | 0.597 | |
EXGR | 59 | 241 | 1 | 299 | 0.597 | 0.983 | 0.197 | 0.328 | 0.003 | 0.803 | |
V-MSAVI | 171 | 129 | 2 | 298 | 0.782 | 0.988 | 0.570 | 0.723 | 0.007 | 0.430 | |
CIVE | 186 | 114 | 2 | 298 | 0.807 | 0.989 | 0.620 | 0.762 | 0.007 | 0.380 | |
4 | NGRDI | 4 | 146 | 47 | 103 | 0.357 | 0.078 | 0.027 | 0.040 | 0.313 | 0.973 |
EXG | 111 | 39 | 0 | 150 | 0.870 | 1.000 | 0.740 | 0.851 | 0.000 | 0.260 | |
EXR | 44 | 106 | 148 | 2 | 0.153 | 0.229 | 0.293 | 0.257 | 0.987 | 0.707 | |
EXER | 41 | 109 | 150 | 150 | 0.424 | 0.215 | 0.273 | 0.240 | 0.500 | 0.727 | |
RGRI | 12 | 138 | 108 | 42 | 0.180 | 0.100 | 0.080 | 0.089 | 0.720 | 0.920 | |
NGBDI | 98 | 52 | 0 | 150 | 0.827 | 1.000 | 0.653 | 0.790 | 0.000 | 0.347 | |
VDVI | 96 | 54 | 0 | 150 | 0.820 | 1.000 | 0.640 | 0.780 | 0.000 | 0.360 | |
RGBVI | 104 | 46 | 0 | 150 | 0.847 | 1.000 | 0.693 | 0.819 | 0.000 | 0.307 | |
MGRVI | 90 | 60 | 0 | 150 | 0.800 | 1.000 | 0.600 | 0.750 | 0.000 | 0.400 | |
EXGR | 80 | 70 | 0 | 150 | 0.767 | 1.000 | 0.533 | 0.696 | 0.000 | 0.467 | |
V-MSAVI | 109 | 41 | 0 | 150 | 0.863 | 1.000 | 0.727 | 0.842 | 0.000 | 0.273 | |
CIVE | 133 | 17 | 0 | 150 | 0.943 | 1.000 | 0.887 | 0.940 | 0.000 | 0.113 | |
5 | NGRDI | 89 | 211 | 157 | 143 | 0.387 | 0.362 | 0.297 | 0.326 | 0.523 | 0.703 |
EXG | 196 | 104 | 3 | 297 | 0.822 | 0.985 | 0.653 | 0.786 | 0.010 | 0.347 | |
EXR | 118 | 181 | 291 | 9 | 0.212 | 0.289 | 0.395 | 0.333 | 0.970 | 0.605 | |
EXER | 3 | 297 | 1 | 299 | 0.503 | 0.750 | 0.010 | 0.020 | 0.003 | 0.990 | |
RGRI | 126 | 174 | 264 | 36 | 0.270 | 0.323 | 0.420 | 0.365 | 0.880 | 0.580 | |
NGBDI | 1 | 299 | 4 | 296 | 0.495 | 0.200 | 0.003 | 0.007 | 0.013 | 0.997 | |
VDVI | 173 | 127 | 2 | 298 | 0.785 | 0.989 | 0.577 | 0.728 | 0.007 | 0.423 | |
RGBVI | 179 | 121 | 2 | 298 | 0.795 | 0.989 | 0.597 | 0.744 | 0.007 | 0.403 | |
MGRVI | 105 | 195 | 3 | 297 | 0.670 | 0.972 | 0.350 | 0.515 | 0.010 | 0.650 | |
EXGR | 51 | 249 | 1 | 299 | 0.583 | 0.981 | 0.170 | 0.290 | 0.003 | 0.830 | |
V-MSAVI | 183 | 117 | 2 | 298 | 0.802 | 0.989 | 0.610 | 0.755 | 0.007 | 0.390 | |
CIVE | 208 | 92 | 4 | 296 | 0.840 | 0.981 | 0.693 | 0.813 | 0.013 | 0.307 | |
6 | NGRDI | 43 | 207 | 43 | 62 | 0.296 | 0.500 | 0.172 | 0.256 | 0.410 | 0.828 |
EXG | 175 | 75 | 0 | 250 | 0.850 | 1.000 | 0.700 | 0.824 | 0.000 | 0.300 | |
EXR | 109 | 141 | 228 | 22 | 0.262 | 0.323 | 0.436 | 0.371 | 0.912 | 0.564 | |
EXER | 6 | 244 | 0 | 250 | 0.512 | 1.000 | 0.024 | 0.047 | 0.000 | 0.976 | |
RGRI | 67 | 183 | 238 | 12 | 0.158 | 0.220 | 0.268 | 0.241 | 0.952 | 0.732 | |
NGBDI | 3 | 247 | 12 | 238 | 0.482 | 0.200 | 0.012 | 0.023 | 0.048 | 0.988 | |
VDVI | 158 | 92 | 0 | 250 | 0.816 | 1.000 | 0.632 | 0.775 | 0.000 | 0.368 | |
RGBVI | 162 | 88 | 0 | 250 | 0.824 | 1.000 | 0.648 | 0.786 | 0.000 | 0.352 | |
MGRVI | 83 | 167 | 0 | 250 | 0.666 | 1.000 | 0.332 | 0.498 | 0.000 | 0.668 | |
EXGR | 37 | 213 | 0 | 250 | 0.574 | 1.000 | 0.148 | 0.258 | 0.000 | 0.852 | |
V-MSAVI | 168 | 82 | 0 | 250 | 0.836 | 1.000 | 0.672 | 0.804 | 0.000 | 0.328 | |
CIVE | 188 | 62 | 0 | 250 | 0.876 | 1.000 | 0.752 | 0.858 | 0.000 | 0.248 | |
7 | NGRDI | 10 | 90 | 67 | 33 | 0.215 | 0.130 | 0.100 | 0.113 | 0.670 | 0.900 |
EXG | 53 | 47 | 1 | 99 | 0.760 | 0.981 | 0.530 | 0.688 | 0.010 | 0.470 | |
EXR | 64 | 36 | 80 | 20 | 0.420 | 0.444 | 0.640 | 0.525 | 0.800 | 0.360 | |
EXER | 5 | 95 | 0 | 100 | 0.525 | 1.000 | 0.050 | 0.095 | 0.000 | 0.950 | |
RGRI | 16 | 84 | 87 | 13 | 0.145 | 0.155 | 0.160 | 0.158 | 0.870 | 0.840 | |
NGBDI | 0 | 100 | 6 | 94 | 0.470 | 0.000 | 0.000 | 0.000 | 0.060 | 1.000 | |
VDVI | 50 | 50 | 1 | 99 | 0.745 | 0.980 | 0.500 | 0.662 | 0.010 | 0.500 | |
RGBVI | 52 | 48 | 1 | 99 | 0.755 | 0.981 | 0.520 | 0.680 | 0.010 | 0.480 | |
MGRVI | 24 | 76 | 0 | 100 | 0.620 | 1.000 | 0.240 | 0.387 | 0.000 | 0.760 | |
EXGR | 20 | 80 | 0 | 100 | 0.600 | 1.000 | 0.200 | 0.333 | 0.000 | 0.800 | |
V-MSAVI | 56 | 44 | 1 | 99 | 0.775 | 0.982 | 0.560 | 0.713 | 0.010 | 0.440 | |
CIVE | 73 | 27 | 1 | 99 | 0.860 | 0.986 | 0.730 | 0.839 | 0.010 | 0.270 | |
8 | NGRDI | 30 | 220 | 155 | 95 | 0.250 | 0.162 | 0.120 | 0.138 | 0.620 | 0.880 |
EXG | 147 | 103 | 1 | 249 | 0.792 | 0.993 | 0.588 | 0.739 | 0.004 | 0.412 | |
EXR | 149 | 101 | 186 | 64 | 0.426 | 0.445 | 0.596 | 0.509 | 0.744 | 0.404 | |
EXER | 36 | 214 | 13 | 237 | 0.546 | 0.735 | 0.144 | 0.241 | 0.052 | 0.856 | |
RGRI | 44 | 206 | 193 | 57 | 0.202 | 0.186 | 0.176 | 0.181 | 0.772 | 0.824 | |
NGBDI | 4 | 246 | 47 | 203 | 0.414 | 0.078 | 0.016 | 0.027 | 0.188 | 0.984 | |
VDVI | 163 | 87 | 2 | 248 | 0.822 | 0.988 | 0.652 | 0.786 | 0.008 | 0.348 | |
RGBVI | 152 | 98 | 2 | 248 | 0.800 | 0.987 | 0.608 | 0.752 | 0.008 | 0.392 | |
MGRVI | 73 | 177 | 32 | 218 | 0.582 | 0.695 | 0.292 | 0.411 | 0.128 | 0.708 | |
EXGR | 64 | 186 | 1 | 249 | 0.626 | 0.985 | 0.256 | 0.406 | 0.004 | 0.744 | |
V-MSAVI | 164 | 86 | 2 | 248 | 0.824 | 0.988 | 0.656 | 0.788 | 0.008 | 0.344 | |
CIVE | 183 | 67 | 3 | 247 | 0.860 | 0.984 | 0.732 | 0.839 | 0.012 | 0.268 | |
9 | NGRDI | 179 | 21 | 89 | 111 | 0.725 | 0.668 | 0.895 | 0.765 | 0.445 | 0.105 |
EXG | 153 | 47 | 23 | 177 | 0.825 | 0.869 | 0.765 | 0.814 | 0.115 | 0.235 | |
EXR | 187 | 13 | 88 | 112 | 0.748 | 0.680 | 0.935 | 0.787 | 0.440 | 0.065 | |
EXER | 0 | 200 | 1 | 199 | 0.498 | 0.000 | 0.000 | 0.000 | 0.005 | 1.000 | |
RGRI | 191 | 9 | 140 | 60 | 0.628 | 0.577 | 0.955 | 0.719 | 0.700 | 0.045 | |
NGBDI | 0 | 200 | 47 | 153 | 0.383 | 0.000 | 0.000 | 0.000 | 0.235 | 1.000 | |
VDVI | 170 | 30 | 45 | 155 | 0.813 | 0.791 | 0.850 | 0.819 | 0.225 | 0.150 | |
RGBVI | 160 | 40 | 3 | 197 | 0.893 | 0.982 | 0.800 | 0.882 | 0.015 | 0.200 | |
MGRVI | 4 | 196 | 23 | 177 | 0.453 | 0.148 | 0.020 | 0.035 | 0.115 | 0.980 | |
EXGR | 2 | 198 | 0 | 200 | 0.505 | 1.000 | 0.010 | 0.020 | 0.000 | 0.990 | |
V-MSAVI | 150 | 50 | 3 | 197 | 0.868 | 0.980 | 0.750 | 0.850 | 0.015 | 0.250 | |
CIVE | 142 | 58 | 9 | 191 | 0.833 | 0.940 | 0.710 | 0.809 | 0.045 | 0.290 | |
10 | NGRDI | 20 | 180 | 62 | 138 | 0.395 | 0.244 | 0.100 | 0.142 | 0.310 | 0.900 |
EXG | 182 | 18 | 1 | 199 | 0.953 | 0.995 | 0.910 | 0.950 | 0.005 | 0.090 | |
EXR | 102 | 98 | 119 | 81 | 0.458 | 0.462 | 0.510 | 0.485 | 0.595 | 0.490 | |
EXER | 0 | 200 | 0 | 200 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | |
RGRI | 53 | 147 | 181 | 19 | 0.180 | 0.226 | 0.265 | 0.244 | 0.905 | 0.735 | |
NGBDI | 1 | 199 | 10 | 190 | 0.478 | 0.091 | 0.005 | 0.009 | 0.050 | 0.995 | |
VDVI | 184 | 16 | 1 | 199 | 0.958 | 0.995 | 0.920 | 0.956 | 0.005 | 0.080 | |
RGBVI | 181 | 19 | 1 | 199 | 0.950 | 0.995 | 0.905 | 0.948 | 0.005 | 0.095 | |
MGRVI | 94 | 106 | 1 | 199 | 0.733 | 0.989 | 0.470 | 0.637 | 0.005 | 0.530 | |
EXGR | 34 | 166 | 200 | 200 | 0.390 | 0.145 | 0.170 | 0.157 | 0.500 | 0.830 | |
V-MSAVI | 183 | 17 | 1 | 199 | 0.955 | 0.995 | 0.915 | 0.953 | 0.005 | 0.085 | |
CIVE | 189 | 11 | 2 | 198 | 0.968 | 0.990 | 0.945 | 0.967 | 0.010 | 0.055 | |
11 | NGRDI | 26 | 174 | 154 | 46 | 0.180 | 0.144 | 0.130 | 0.137 | 0.770 | 0.870 |
EXG | 125 | 75 | 1 | 199 | 0.810 | 0.992 | 0.625 | 0.767 | 0.005 | 0.375 | |
EXR | 47 | 153 | 175 | 25 | 0.180 | 0.212 | 0.235 | 0.223 | 0.875 | 0.765 | |
EXER | 20 | 180 | 1 | 199 | 0.548 | 0.952 | 0.100 | 0.181 | 0.005 | 0.900 | |
RGRI | 29 | 171 | 180 | 20 | 0.123 | 0.139 | 0.145 | 0.142 | 0.900 | 0.855 | |
NGBDI | 0 | 200 | 18 | 182 | 0.455 | 0.000 | 0.000 | 0.000 | 0.090 | 1.000 | |
VDVI | 128 | 72 | 1 | 199 | 0.818 | 0.992 | 0.640 | 0.778 | 0.005 | 0.360 | |
RGBVI | 124 | 76 | 1 | 199 | 0.808 | 0.992 | 0.620 | 0.763 | 0.005 | 0.380 | |
MGRVI | 87 | 113 | 4 | 196 | 0.708 | 0.956 | 0.435 | 0.598 | 0.020 | 0.565 | |
EXGR | 49 | 151 | 1 | 199 | 0.620 | 0.980 | 0.245 | 0.392 | 0.005 | 0.755 | |
V-MSAVI | 142 | 58 | 1 | 199 | 0.853 | 0.993 | 0.710 | 0.828 | 0.005 | 0.290 | |
CIVE | 167 | 33 | 9 | 191 | 0.895 | 0.949 | 0.835 | 0.888 | 0.045 | 0.165 | |
12 | NGRDI | 40 | 160 | 126 | 74 | 0.285 | 0.241 | 0.200 | 0.219 | 0.630 | 0.800 |
EXG | 121 | 79 | 7 | 193 | 0.785 | 0.945 | 0.605 | 0.738 | 0.035 | 0.395 | |
EXR | 111 | 89 | 190 | 10 | 0.303 | 0.369 | 0.555 | 0.443 | 0.950 | 0.445 | |
EXER | 16 | 184 | 0 | 200 | 0.540 | 1.000 | 0.080 | 0.148 | 0.000 | 0.920 | |
RGRI | 73 | 127 | 167 | 33 | 0.265 | 0.304 | 0.365 | 0.332 | 0.835 | 0.635 | |
NGBDI | 0 | 200 | 5 | 195 | 0.488 | 0.000 | 0.000 | 0.000 | 0.025 | 1.000 | |
VDVI | 79 | 121 | 0 | 200 | 0.698 | 1.000 | 0.395 | 0.566 | 0.000 | 0.605 | |
RGBVI | 78 | 122 | 0 | 200 | 0.695 | 1.000 | 0.390 | 0.561 | 0.000 | 0.610 | |
MGRVI | 62 | 138 | 0 | 200 | 0.655 | 1.000 | 0.310 | 0.473 | 0.000 | 0.690 | |
EXGR | 39 | 161 | 0 | 200 | 0.598 | 1.000 | 0.195 | 0.326 | 0.000 | 0.805 | |
V-MSAVI | 88 | 112 | 0 | 200 | 0.720 | 1.000 | 0.440 | 0.611 | 0.000 | 0.560 | |
CIVE | 133 | 67 | 6 | 194 | 0.818 | 0.957 | 0.665 | 0.785 | 0.030 | 0.335 |
No. | Component | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | R | 94 | 6 | 30 | 70 | 0.820 | 0.758 | 0.940 | 0.839 | 0.300 | 0.060 |
G | 76 | 24 | 31 | 69 | 0.725 | 0.710 | 0.760 | 0.734 | 0.310 | 0.240 | |
B | 69 | 31 | 30 | 70 | 0.695 | 0.697 | 0.690 | 0.693 | 0.300 | 0.310 | |
H | 35 | 65 | 5 | 95 | 0.650 | 0.875 | 0.350 | 0.500 | 0.050 | 0.650 | |
S | 63 | 37 | 7 | 93 | 0.780 | 0.900 | 0.630 | 0.741 | 0.070 | 0.370 | |
V | 40 | 60 | 8 | 92 | 0.660 | 0.833 | 0.400 | 0.541 | 0.080 | 0.600 | |
L | 43 | 57 | 10 | 90 | 0.665 | 0.811 | 0.430 | 0.562 | 0.100 | 0.570 | |
a | 72 | 28 | 3 | 97 | 0.845 | 0.960 | 0.720 | 0.823 | 0.030 | 0.280 | |
b | 21 | 79 | 9 | 91 | 0.560 | 0.700 | 0.210 | 0.323 | 0.090 | 0.790 | |
2 | R | 155 | 45 | 45 | 155 | 0.775 | 0.775 | 0.775 | 0.775 | 0.225 | 0.225 |
G | 124 | 76 | 58 | 142 | 0.665 | 0.681 | 0.620 | 0.649 | 0.290 | 0.380 | |
B | 111 | 89 | 64 | 136 | 0.618 | 0.634 | 0.555 | 0.592 | 0.320 | 0.445 | |
H | 183 | 17 | 9 | 191 | 0.935 | 0.953 | 0.915 | 0.934 | 0.045 | 0.085 | |
S | 155 | 45 | 20 | 180 | 0.838 | 0.886 | 0.775 | 0.827 | 0.100 | 0.225 | |
V | 131 | 69 | 59 | 141 | 0.680 | 0.689 | 0.655 | 0.672 | 0.295 | 0.345 | |
L | 123 | 77 | 50 | 150 | 0.683 | 0.711 | 0.615 | 0.660 | 0.250 | 0.385 | |
a | 158 | 42 | 14 | 186 | 0.860 | 0.919 | 0.790 | 0.849 | 0.070 | 0.210 | |
b | 130 | 70 | 5 | 195 | 0.813 | 0.963 | 0.650 | 0.776 | 0.025 | 0.350 | |
3 | R | 297 | 3 | 5 | 295 | 0.987 | 0.983 | 0.990 | 0.987 | 0.017 | 0.010 |
G | 285 | 15 | 3 | 297 | 0.970 | 0.990 | 0.950 | 0.969 | 0.010 | 0.050 | |
B | 282 | 18 | 3 | 297 | 0.965 | 0.989 | 0.940 | 0.964 | 0.010 | 0.060 | |
H | 156 | 144 | 92 | 208 | 0.607 | 0.629 | 0.520 | 0.569 | 0.307 | 0.480 | |
S | 246 | 54 | 253 | 47 | 0.488 | 0.493 | 0.820 | 0.616 | 0.843 | 0.180 | |
V | 293 | 7 | 7 | 293 | 0.977 | 0.977 | 0.977 | 0.977 | 0.023 | 0.023 | |
L | 296 | 4 | 10 | 190 | 0.972 | 0.967 | 0.987 | 0.977 | 0.050 | 0.013 | |
a | 282 | 18 | 92 | 208 | 0.817 | 0.754 | 0.940 | 0.837 | 0.307 | 0.060 | |
b | 246 | 54 | 225 | 75 | 0.535 | 0.522 | 0.820 | 0.638 | 0.750 | 0.180 | |
4 | R | 131 | 19 | 2 | 148 | 0.930 | 0.985 | 0.873 | 0.926 | 0.013 | 0.127 |
G | 140 | 10 | 4 | 146 | 0.953 | 0.972 | 0.933 | 0.952 | 0.027 | 0.067 | |
B | 138 | 12 | 2 | 148 | 0.953 | 0.986 | 0.920 | 0.952 | 0.013 | 0.080 | |
H | 138 | 12 | 36 | 114 | 0.840 | 0.793 | 0.920 | 0.852 | 0.240 | 0.080 | |
S | 138 | 12 | 5 | 145 | 0.943 | 0.965 | 0.920 | 0.942 | 0.033 | 0.080 | |
V | 138 | 12 | 4 | 146 | 0.947 | 0.972 | 0.920 | 0.945 | 0.027 | 0.080 | |
L | 139 | 11 | 3 | 147 | 0.953 | 0.979 | 0.927 | 0.952 | 0.020 | 0.073 | |
a | 139 | 11 | 5 | 145 | 0.947 | 0.965 | 0.927 | 0.946 | 0.033 | 0.073 | |
b | 133 | 17 | 32 | 118 | 0.837 | 0.806 | 0.887 | 0.844 | 0.213 | 0.113 | |
5 | R | 293 | 7 | 16 | 284 | 0.962 | 0.948 | 0.977 | 0.962 | 0.053 | 0.023 |
G | 292 | 8 | 15 | 285 | 0.962 | 0.951 | 0.973 | 0.962 | 0.050 | 0.027 | |
B | 260 | 40 | 11 | 289 | 0.915 | 0.959 | 0.867 | 0.911 | 0.037 | 0.133 | |
H | 236 | 64 | 91 | 209 | 0.742 | 0.722 | 0.787 | 0.753 | 0.303 | 0.213 | |
S | 260 | 40 | 19 | 281 | 0.902 | 0.932 | 0.867 | 0.898 | 0.063 | 0.133 | |
V | 291 | 9 | 14 | 286 | 0.962 | 0.954 | 0.970 | 0.962 | 0.047 | 0.030 | |
L | 293 | 7 | 14 | 286 | 0.965 | 0.954 | 0.977 | 0.965 | 0.047 | 0.023 | |
a | 242 | 58 | 6 | 294 | 0.893 | 0.976 | 0.807 | 0.883 | 0.020 | 0.193 | |
b | 193 | 107 | 28 | 272 | 0.775 | 0.873 | 0.643 | 0.741 | 0.093 | 0.357 | |
6 | R | 246 | 4 | 59 | 191 | 0.874 | 0.807 | 0.984 | 0.886 | 0.236 | 0.016 |
G | 246 | 4 | 55 | 195 | 0.882 | 0.817 | 0.984 | 0.893 | 0.220 | 0.016 | |
B | 227 | 23 | 25 | 225 | 0.904 | 0.901 | 0.908 | 0.904 | 0.100 | 0.092 | |
H | 221 | 29 | 39 | 211 | 0.864 | 0.850 | 0.884 | 0.867 | 0.156 | 0.116 | |
S | 226 | 24 | 86 | 164 | 0.780 | 0.724 | 0.904 | 0.804 | 0.344 | 0.096 | |
V | 247 | 3 | 43 | 207 | 0.908 | 0.852 | 0.988 | 0.915 | 0.172 | 0.012 | |
L | 246 | 4 | 45 | 205 | 0.902 | 0.845 | 0.984 | 0.909 | 0.180 | 0.016 | |
a | 214 | 36 | 8 | 242 | 0.912 | 0.964 | 0.856 | 0.907 | 0.032 | 0.144 | |
b | 192 | 58 | 35 | 215 | 0.814 | 0.846 | 0.768 | 0.805 | 0.140 | 0.232 | |
7 | R | 97 | 3 | 38 | 62 | 0.795 | 0.719 | 0.970 | 0.826 | 0.380 | 0.030 |
G | 93 | 7 | 38 | 62 | 0.775 | 0.710 | 0.930 | 0.805 | 0.380 | 0.070 | |
B | 93 | 7 | 32 | 68 | 0.805 | 0.744 | 0.930 | 0.827 | 0.320 | 0.070 | |
H | 95 | 5 | 28 | 72 | 0.835 | 0.772 | 0.950 | 0.852 | 0.280 | 0.050 | |
S | 96 | 4 | 35 | 65 | 0.805 | 0.733 | 0.960 | 0.831 | 0.350 | 0.040 | |
V | 98 | 2 | 53 | 47 | 0.725 | 0.649 | 0.980 | 0.781 | 0.530 | 0.020 | |
L | 98 | 2 | 58 | 42 | 0.700 | 0.628 | 0.980 | 0.766 | 0.580 | 0.020 | |
a | 94 | 6 | 12 | 88 | 0.910 | 0.887 | 0.940 | 0.913 | 0.120 | 0.060 | |
b | 54 | 46 | 19 | 81 | 0.675 | 0.740 | 0.540 | 0.624 | 0.190 | 0.460 | |
8 | R | 211 | 39 | 110 | 140 | 0.702 | 0.657 | 0.844 | 0.739 | 0.440 | 0.156 |
G | 210 | 40 | 105 | 145 | 0.710 | 0.667 | 0.840 | 0.743 | 0.420 | 0.160 | |
B | 216 | 34 | 216 | 127 | 0.578 | 0.500 | 0.864 | 0.633 | 0.630 | 0.136 | |
H | 242 | 8 | 250 | 0 | 0.484 | 0.492 | 0.968 | 0.652 | 1.000 | 0.032 | |
S | 172 | 78 | 250 | 0 | 0.344 | 0.408 | 0.688 | 0.512 | 1.000 | 0.312 | |
V | 199 | 51 | 250 | 0 | 0.398 | 0.443 | 0.796 | 0.569 | 1.000 | 0.204 | |
L | 201 | 49 | 133 | 117 | 0.636 | 0.602 | 0.804 | 0.688 | 0.532 | 0.196 | |
a | 219 | 31 | 44 | 206 | 0.850 | 0.833 | 0.876 | 0.854 | 0.176 | 0.124 | |
b | 238 | 12 | 239 | 11 | 0.498 | 0.499 | 0.952 | 0.655 | 0.956 | 0.048 | |
9 | R | 94 | 106 | 43 | 157 | 0.628 | 0.686 | 0.470 | 0.558 | 0.215 | 0.530 |
G | 93 | 107 | 98 | 102 | 0.488 | 0.487 | 0.465 | 0.476 | 0.490 | 0.535 | |
B | 36 | 164 | 55 | 145 | 0.453 | 0.396 | 0.180 | 0.247 | 0.275 | 0.820 | |
H | 143 | 57 | 143 | 57 | 0.500 | 0.500 | 0.715 | 0.588 | 0.715 | 0.285 | |
S | 187 | 13 | 101 | 9 | 0.632 | 0.649 | 0.935 | 0.766 | 0.918 | 0.065 | |
V | 37 | 163 | 104 | 96 | 0.333 | 0.262 | 0.185 | 0.217 | 0.520 | 0.815 | |
L | 50 | 150 | 41 | 159 | 0.523 | 0.549 | 0.250 | 0.344 | 0.205 | 0.750 | |
a | 186 | 14 | 31 | 169 | 0.888 | 0.857 | 0.930 | 0.892 | 0.155 | 0.070 | |
b | 9 | 101 | 112 | 88 | 0.313 | 0.074 | 0.082 | 0.078 | 0.560 | 0.918 | |
10 | R | 198 | 2 | 91 | 109 | 0.768 | 0.685 | 0.990 | 0.810 | 0.455 | 0.010 |
G | 153 | 47 | 22 | 178 | 0.828 | 0.874 | 0.765 | 0.816 | 0.110 | 0.235 | |
B | 166 | 34 | 19 | 181 | 0.868 | 0.897 | 0.830 | 0.862 | 0.095 | 0.170 | |
H | 177 | 27 | 43 | 157 | 0.827 | 0.805 | 0.868 | 0.835 | 0.215 | 0.132 | |
S | 191 | 9 | 3 | 197 | 0.970 | 0.985 | 0.955 | 0.970 | 0.015 | 0.045 | |
V | 157 | 43 | 24 | 176 | 0.833 | 0.867 | 0.785 | 0.824 | 0.120 | 0.215 | |
L | 156 | 44 | 15 | 185 | 0.853 | 0.912 | 0.780 | 0.841 | 0.075 | 0.220 | |
a | 192 | 8 | 19 | 181 | 0.933 | 0.910 | 0.960 | 0.934 | 0.095 | 0.040 | |
b | 50 | 150 | 40 | 160 | 0.525 | 0.556 | 0.250 | 0.345 | 0.200 | 0.750 | |
11 | R | 135 | 65 | 18 | 182 | 0.793 | 0.882 | 0.675 | 0.765 | 0.090 | 0.325 |
G | 95 | 105 | 19 | 181 | 0.690 | 0.833 | 0.475 | 0.605 | 0.095 | 0.525 | |
B | 116 | 84 | 18 | 182 | 0.745 | 0.866 | 0.580 | 0.695 | 0.090 | 0.420 | |
H | 174 | 26 | 22 | 178 | 0.880 | 0.888 | 0.870 | 0.879 | 0.110 | 0.130 | |
S | 160 | 40 | 65 | 135 | 0.738 | 0.711 | 0.800 | 0.753 | 0.325 | 0.200 | |
V | 100 | 100 | 17 | 183 | 0.708 | 0.855 | 0.500 | 0.631 | 0.085 | 0.500 | |
L | 93 | 107 | 17 | 183 | 0.690 | 0.845 | 0.465 | 0.600 | 0.085 | 0.535 | |
a | 180 | 20 | 22 | 178 | 0.895 | 0.891 | 0.900 | 0.896 | 0.110 | 0.100 | |
b | 156 | 44 | 22 | 178 | 0.835 | 0.876 | 0.780 | 0.825 | 0.110 | 0.220 | |
12 | R | 172 | 28 | 9 | 191 | 0.908 | 0.950 | 0.860 | 0.903 | 0.045 | 0.140 |
G | 191 | 9 | 47 | 153 | 0.860 | 0.803 | 0.955 | 0.872 | 0.235 | 0.045 | |
B | 191 | 9 | 40 | 160 | 0.878 | 0.827 | 0.955 | 0.886 | 0.200 | 0.045 | |
H | 181 | 19 | 72 | 128 | 0.773 | 0.715 | 0.905 | 0.799 | 0.360 | 0.095 | |
S | 181 | 19 | 29 | 171 | 0.880 | 0.862 | 0.905 | 0.883 | 0.145 | 0.095 | |
V | 159 | 41 | 10 | 190 | 0.873 | 0.941 | 0.795 | 0.862 | 0.050 | 0.205 | |
L | 189 | 11 | 38 | 162 | 0.878 | 0.833 | 0.945 | 0.885 | 0.190 | 0.055 | |
a | 161 | 39 | 16 | 184 | 0.863 | 0.910 | 0.805 | 0.854 | 0.080 | 0.195 | |
b | 171 | 29 | 129 | 71 | 0.605 | 0.570 | 0.855 | 0.684 | 0.645 | 0.145 |
No. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 72 | 28 | 3 | 97 | 0.845 | 0.960 | 0.720 | 0.823 | 0.030 | 0.280 |
2 | 163 | 37 | 40 | 160 | 0.808 | 0.803 | 0.815 | 0.809 | 0.200 | 0.185 |
3 | 231 | 69 | 3 | 297 | 0.880 | 0.987 | 0.770 | 0.865 | 0.010 | 0.230 |
4 | 136 | 14 | 20 | 130 | 0.887 | 0.872 | 0.907 | 0.889 | 0.133 | 0.093 |
5 | 239 | 61 | 5 | 295 | 0.890 | 0.980 | 0.797 | 0.879 | 0.017 | 0.203 |
6 | 216 | 34 | 2 | 248 | 0.928 | 0.991 | 0.864 | 0.923 | 0.008 | 0.136 |
7 | 97 | 3 | 8 | 92 | 0.945 | 0.924 | 0.970 | 0.946 | 0.080 | 0.030 |
8 | 229 | 21 | 33 | 217 | 0.892 | 0.874 | 0.916 | 0.895 | 0.132 | 0.084 |
9 | 166 | 34 | 6 | 194 | 0.900 | 0.965 | 0.830 | 0.892 | 0.030 | 0.170 |
10 | 177 | 23 | 21 | 179 | 0.890 | 0.894 | 0.885 | 0.889 | 0.105 | 0.115 |
11 | 176 | 24 | 11 | 189 | 0.913 | 0.941 | 0.880 | 0.910 | 0.055 | 0.120 |
12 | 179 | 21 | 27 | 173 | 0.880 | 0.869 | 0.895 | 0.882 | 0.135 | 0.105 |
No. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 78 | 22 | 3 | 97 | 0.875 | 0.963 | 0.780 | 0.862 | 0.030 | 0.220 |
2 | 159 | 41 | 1 | 199 | 0.895 | 0.994 | 0.795 | 0.883 | 0.005 | 0.205 |
3 | 294 | 6 | 4 | 296 | 0.983 | 0.987 | 0.980 | 0.983 | 0.013 | 0.020 |
4 | 135 | 15 | 5 | 145 | 0.933 | 0.964 | 0.900 | 0.931 | 0.033 | 0.100 |
5 | 183 | 117 | 26 | 274 | 0.762 | 0.876 | 0.610 | 0.719 | 0.087 | 0.390 |
6 | 231 | 19 | 12 | 238 | 0.938 | 0.951 | 0.924 | 0.937 | 0.048 | 0.076 |
7 | 99 | 1 | 8 | 92 | 0.955 | 0.925 | 0.990 | 0.957 | 0.080 | 0.010 |
8 | 189 | 61 | 17 | 233 | 0.844 | 0.917 | 0.756 | 0.829 | 0.068 | 0.244 |
9 | 189 | 11 | 31 | 169 | 0.895 | 0.859 | 0.945 | 0.900 | 0.155 | 0.055 |
10 | 192 | 8 | 1 | 199 | 0.978 | 0.995 | 0.960 | 0.977 | 0.005 | 0.040 |
11 | 186 | 14 | 5 | 195 | 0.953 | 0.974 | 0.930 | 0.951 | 0.025 | 0.070 |
12 | 169 | 31 | 9 | 191 | 0.900 | 0.949 | 0.845 | 0.894 | 0.045 | 0.155 |
No. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 49 | 51 | 0 | 100 | 0.745 | 1.000 | 0.490 | 0.658 | 0.000 | 0.510 |
2 | 163 | 37 | 2 | 198 | 0.903 | 0.988 | 0.815 | 0.893 | 0.010 | 0.185 |
3 | 296 | 4 | 4 | 296 | 0.987 | 0.987 | 0.987 | 0.987 | 0.013 | 0.013 |
4 | 138 | 162 | 168 | 132 | 0.450 | 0.451 | 0.460 | 0.455 | 0.560 | 0.540 |
5 | 214 | 86 | 2 | 298 | 0.853 | 0.991 | 0.713 | 0.829 | 0.007 | 0.287 |
6 | 214 | 36 | 38 | 212 | 0.852 | 0.849 | 0.856 | 0.853 | 0.152 | 0.144 |
7 | 97 | 3 | 8 | 92 | 0.945 | 0.924 | 0.970 | 0.946 | 0.080 | 0.030 |
8 | 174 | 76 | 48 | 202 | 0.752 | 0.784 | 0.696 | 0.737 | 0.192 | 0.304 |
9 | 190 | 10 | 6 | 194 | 0.960 | 0.969 | 0.950 | 0.960 | 0.030 | 0.050 |
10 | 172 | 28 | 0 | 200 | 0.930 | 1.000 | 0.860 | 0.925 | 0.000 | 0.140 |
11 | 176 | 24 | 13 | 187 | 0.908 | 0.931 | 0.880 | 0.905 | 0.065 | 0.120 |
12 | 182 | 18 | 46 | 154 | 0.840 | 0.798 | 0.910 | 0.850 | 0.230 | 0.090 |
No. | VVIs | Kappa |
---|---|---|
1 | NGRDI | −0.180 |
EXG | 0.600 | |
EXR | −0.220 | |
EXER | 0.000 | |
RGRI | −0.230 | |
NGBDI | −0.090 | |
VDVI | 0.660 | |
RGBVI | 0.600 | |
MGRVI | 0.180 | |
EXGR | 0.020 | |
V-MSAVI | 0.580 | |
CIVE | 0.650 | |
2 | NGRDI | 0.330 |
EXG | 0.515 | |
EXR | 0.420 | |
EXER | 0.000 | |
RGRI | 0.565 | |
NGBDI | −0.445 | |
VDVI | 0.560 | |
RGBVI | 0.560 | |
MGRVI | −0.425 | |
EXGR | 0.000 | |
V-MSAVI | 0.555 | |
CIVE | 0.540 | |
3 | NGRDI | 0.033 |
EXG | 0.583 | |
EXR | −0.840 | |
EXER | 0.050 | |
RGRI | −0.287 | |
NGBDI | 0.000 | |
VDVI | 0.503 | |
RGBVI | 0.553 | |
MGRVI | 0.400 | |
EXGR | 0.193 | |
V-MSAVI | 0.563 | |
CIVE | 0.613 | |
4 | NGRDI | −0.287 |
EXG | 0.740 | |
EXR | −0.693 | |
EXER | −0.212 | |
RGRI | −0.640 | |
NGBDI | 0.653 | |
VDVI | 0.640 | |
RGBVI | 0.693 | |
MGRVI | 0.600 | |
EXGR | 0.533 | |
V-MSAVI | 0.727 | |
CIVE | 0.887 | |
5 | NGRDI | −0.227 |
EXG | 0.643 | |
EXR | −0.575 | |
EXER | 0.007 | |
RGRI | −0.460 | |
NGBDI | −0.010 | |
VDVI | 0.570 | |
RGBVI | 0.590 | |
MGRVI | 0.340 | |
EXGR | 0.167 | |
V-MSAVI | 0.603 | |
CIVE | 0.680 | |
6 | NGRDI | −0.163 |
EXG | 0.700 | |
EXR | −0.476 | |
EXER | 0.024 | |
RGRI | −0.684 | |
NGBDI | −0.036 | |
VDVI | 0.632 | |
RGBVI | 0.648 | |
MGRVI | 0.332 | |
EXGR | 0.148 | |
V-MSAVI | 0.672 | |
CIVE | 0.752 | |
7 | NGRDI | −0.570 |
EXG | 0.520 | |
EXR | −0.160 | |
EXER | 0.050 | |
RGRI | −0.710 | |
NGBDI | −0.060 | |
VDVI | 0.490 | |
RGBVI | 0.510 | |
MGRVI | 0.240 | |
EXGR | 0.200 | |
V-MSAVI | 0.550 | |
CIVE | 0.720 | |
8 | NGRDI | −0.500 |
EXG | 0.584 | |
EXR | −0.148 | |
EXER | 0.092 | |
RGRI | −0.596 | |
NGBDI | −0.172 | |
VDVI | 0.644 | |
RGBVI | 0.600 | |
MGRVI | 0.164 | |
EXGR | 0.252 | |
V-MSAVI | 0.648 | |
CIVE | 0.720 | |
9 | NGRDI | 0.450 |
EXG | 0.650 | |
EXR | 0.495 | |
EXER | −0.005 | |
RGRI | 0.255 | |
NGBDI | −0.235 | |
VDVI | 0.625 | |
RGBVI | 0.785 | |
MGRVI | −0.095 | |
EXGR | 0.010 | |
V-MSAVI | 0.735 | |
CIVE | 0.665 | |
10 | NGRDI | −0.210 |
EXG | 0.905 | |
EXR | −0.085 | |
EXER | 0.000 | |
RGRI | −0.640 | |
NGBDI | −0.045 | |
VDVI | 0.915 | |
RGBVI | 0.900 | |
MGRVI | 0.465 | |
EXGR | −0.317 | |
V-MSAVI | 0.910 | |
CIVE | 0.935 | |
11 | NGRDI | −0.640 |
EXG | 0.620 | |
EXR | −0.640 | |
EXER | 0.095 | |
RGRI | −0.755 | |
NGBDI | −0.090 | |
VDVI | 0.635 | |
RGBVI | 0.615 | |
MGRVI | 0.415 | |
EXGR | 0.240 | |
V-MSAVI | 0.705 | |
CIVE | 0.790 | |
12 | NGRDI | −0.430 |
EXG | 0.570 | |
EXR | −0.395 | |
EXER | 0.080 | |
RGRI | −0.470 | |
NGBDI | −0.025 | |
VDVI | 0.395 | |
RGBVI | 0.390 | |
MGRVI | 0.310 | |
EXGR | 0.195 | |
V-MSAVI | 0.440 | |
CIVE | 0.635 |
No. | Components | Kappa |
---|---|---|
1 | R | 0.640 |
G | 0.450 | |
B | 0.390 | |
H | 0.300 | |
S | 0.560 | |
V | 0.320 | |
L | 0.330 | |
a | 0.690 | |
b | 0.120 | |
2 | R | 0.550 |
G | 0.330 | |
B | 0.235 | |
H | 0.870 | |
S | 0.675 | |
V | 0.360 | |
L | 0.365 | |
a | 0.720 | |
b | 0.625 | |
3 | R | 0.973 |
G | 0.940 | |
B | 0.930 | |
H | 0.213 | |
S | −0.023 | |
V | 0.953 | |
L | 0.941 | |
a | 0.633 | |
b | 0.070 | |
4 | R | 0.860 |
G | 0.907 | |
B | 0.907 | |
H | 0.680 | |
S | 0.887 | |
V | 0.893 | |
L | 0.907 | |
a | 0.893 | |
b | 0.673 | |
5 | R | 0.923 |
G | 0.923 | |
B | 0.830 | |
H | 0.483 | |
S | 0.803 | |
V | 0.923 | |
L | 0.930 | |
a | 0.787 | |
b | 0.550 | |
6 | R | 0.748 |
G | 0.764 | |
B | 0.808 | |
H | 0.728 | |
S | 0.560 | |
V | 0.816 | |
L | 0.804 | |
a | 0.824 | |
b | 0.628 | |
7 | R | 0.590 |
G | 0.550 | |
B | 0.610 | |
H | 0.670 | |
S | 0.610 | |
V | 0.450 | |
L | 0.400 | |
a | 0.820 | |
b | 0.350 | |
8 | R | 0.404 |
G | 0.420 | |
B | 0.213 | |
H | −0.032 | |
S | −0.312 | |
V | −0.204 | |
L | 0.272 | |
a | 0.700 | |
b | −0.004 | |
9 | R | 0.255 |
G | −0.025 | |
B | −0.095 | |
H | 0.000 | |
S | 0.021 | |
V | −0.335 | |
L | 0.045 | |
a | 0.775 | |
b | −0.468 | |
10 | R | 0.535 |
G | 0.655 | |
B | 0.735 | |
H | 0.653 | |
S | 0.940 | |
V | 0.665 | |
L | 0.705 | |
a | 0.865 | |
b | 0.050 | |
11 | R | 0.585 |
G | 0.380 | |
B | 0.490 | |
H | 0.760 | |
S | 0.475 | |
V | 0.415 | |
L | 0.380 | |
a | 0.790 | |
b | 0.670 | |
12 | R | 0.815 |
G | 0.720 | |
B | 0.755 | |
H | 0.545 | |
S | 0.760 | |
V | 0.745 | |
L | 0.755 | |
a | 0.725 | |
b | 0.210 |
No. | Kappa |
---|---|
1 | 0.690 |
2 | 0.615 |
3 | 0.760 |
4 | 0.773 |
5 | 0.780 |
6 | 0.856 |
7 | 0.890 |
8 | 0.784 |
9 | 0.800 |
10 | 0.780 |
11 | 0.825 |
12 | 0.760 |
No. | Kappa |
---|---|
1 | 0.750 |
2 | 0.790 |
3 | 0.967 |
4 | 0.867 |
5 | 0.523 |
6 | 0.876 |
7 | 0.910 |
8 | 0.688 |
9 | 0.790 |
10 | 0.955 |
11 | 0.905 |
12 | 0.800 |
No. | Kappa |
---|---|
1 | 0.490 |
2 | 0.805 |
3 | 0.973 |
4 | −0.100 |
5 | 0.707 |
6 | 0.704 |
7 | 0.890 |
8 | 0.504 |
9 | 0.920 |
10 | 0.860 |
11 | 0.815 |
12 | 0.680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Ma, Y.; Pan, H.; Wang, Q.; Guo, J.; Li, N.; Ran, H. Methods for Extracting Fractional Vegetation Cover from Differentiated Scenarios Based on Unmanned Aerial Vehicle Imagery. Land 2024, 13, 1840. https://doi.org/10.3390/land13111840
Sun C, Ma Y, Pan H, Wang Q, Guo J, Li N, Ran H. Methods for Extracting Fractional Vegetation Cover from Differentiated Scenarios Based on Unmanned Aerial Vehicle Imagery. Land. 2024; 13(11):1840. https://doi.org/10.3390/land13111840
Chicago/Turabian StyleSun, Changning, Yonggang Ma, Heng Pan, Qingxue Wang, Jiali Guo, Na Li, and Hong Ran. 2024. "Methods for Extracting Fractional Vegetation Cover from Differentiated Scenarios Based on Unmanned Aerial Vehicle Imagery" Land 13, no. 11: 1840. https://doi.org/10.3390/land13111840
APA StyleSun, C., Ma, Y., Pan, H., Wang, Q., Guo, J., Li, N., & Ran, H. (2024). Methods for Extracting Fractional Vegetation Cover from Differentiated Scenarios Based on Unmanned Aerial Vehicle Imagery. Land, 13(11), 1840. https://doi.org/10.3390/land13111840