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Abstract: Fractional vegetation cover (FVC) plays a key role in ecological and environmental status
assessment because it directly reflects the extent of vegetation cover and its status, yet vegetation
is an important component of ecosystems. FVC estimation methods have evolved from traditional
manual interpretation to advanced remote sensing technologies, such as satellite data analysis and
unmanned aerial vehicle (UAV) image processing. Extraction methods based on high-resolution UAV
data are being increasingly studied in the fields of ecology and remote sensing. However, research
on UAV-based FVC extraction against the backdrop of the high soil reflectance in arid regions
remains scarce. In this paper, based on 12 UAV visible light images in differentiated scenarios in the
Ebinur Lake basin, Xinjiang, China, various methods are used for high-precision FVC estimation:
Otsu’s thresholding method combined with 12 Visible Vegetation Indices (abbreviated as Otsu-
VVIs) (excess green index, excess red index, excess red minus green index, normalized green–red
difference index, normalized green–blue difference index, red–green ratio index, color index of
vegetation extraction, visible-band-modified soil-adjusted vegetation index, excess green minus
red index, modified green–red vegetation index, red–green–blue vegetation index, visible-band
difference vegetation index), color space method (red, green, blue, hue, saturation, value, lightness,
‘a’ (Green–Red component), and ‘b’ (Blue–Yellow component)), linear mixing model (LMM), and two
machine learning algorithms (a support vector machine and a neural network). The results show
that the following methods exhibit high accuracy in FVC extraction across differentiated scenarios:
Otsu–CIVE, color space method (‘a’: Green–Red component), LMM, and SVM (Accuracy > 0.75,
Precision > 0.8, kappa coefficient > 0.6). Nonetheless, higher scene complexity and image entropy
reduce the applicability of precise FVC extraction methods. This study facilitates accurate, efficient
extraction of vegetation information in differentiated scenarios within arid and semiarid regions,
providing key technical references for FVC estimation in similar arid areas.

Keywords: arid zone; entropy; FVC; UAV; linear mixing model

1. Introduction

Fractional vegetation cover (FVC), typically expressed as a percentage, represents
the proportion of land surface covered by vegetation. It serves as a critical parameter for
assessing vegetation health and understanding the interactions between global change and
terrestrial ecosystems [1,2]. Moreover, FVC plays an essential role in evaluating ecosystem
models and predicting ecological changes [3,4], highlighting its ecological, environmental,
and societal relevance. Accurate FVC estimation aids in monitoring ecosystem health
and contributes to the sustainable management of natural resources, essential for both
environmental conservation and human society [5,6].
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Arid and semiarid regions, such as Xinjiang, have distinctive ecosystems shaped by
their unique geographical and climatic conditions. These regions are dominated by desert
and grassland systems, where key vegetation types include desert plants like desert willow
and poplar, semiarid species like bitterweed and reed, and mountain shrubs like saxaul
and tamarisk [7–9]. These vegetation types play significant ecological roles, including
mitigating wind erosion, preventing desertification, supporting wildlife habitats, and main-
taining soil stability and water cycles. Given the ecological importance of this vegetation
in Xinjiang, monitoring FVC is crucial for assessing regional ecological quality. However,
traditional FVC retrieval methods face significant challenges due to environmental distur-
bances, necessitating the development of high-precision, repeatable techniques for accurate
vegetation monitoring [10–12].

FVC extraction methods have traditionally relied on ground measurement and re-
mote sensing. Ground-based methods, while precise, are resource-intensive and limited to
small spatial and temporal scales, making them impractical in harsh environments [13,14].
Satellite remote sensing, on the other hand, provides wide coverage and allows large-scale
vegetation monitoring, but its accuracy diminishes in arid and semiarid areas where vege-
tation is sparse and fragmented. The heterogeneity of these regions, coupled with complex
terrain, further complicates satellite-based FVC extraction, and specialized methods are
required for better accuracy [15,16].

In recent years, unmanned aerial vehicle (UAV) remote sensing has emerged as a
promising alternative for estimating FVC, offering high spatial resolution, flexibility in
data collection, and strong resistance to environmental interference [17,18]. Additionally,
advances in machine learning algorithms have enhanced the ability to extract geoinforma-
tion from high-resolution UAV images, contributing to improved monitoring of vegetation
dynamics and biodiversity [19,20]. Various techniques have been applied for FVC extrac-
tion, although the effectiveness of different algorithms varies depending on the region and
vegetation characteristics [21,22].

This paper discusses different FVC extraction methods for arid and semiarid areas
under varying entropy-difference conditions. The following Python-based methods are
used: the Otsu–VVI method, color space method, linear mixing model [LMM], and two
machine learning algorithms (a support vector machine [SVM] and a neural network
[NN]). The precision of 24 extraction methods is validated using manually labeled points,
confusion matrices, and kappa coefficients to select optimal algorithms suitable for arid
and semiarid areas. This study aims to provide a scientific algorithmic basis and reference
for the use of UAV monitoring in extracting FVC in such environments.

2. Materials
2.1. Study Area

The study area is in the Ebinur Lake basin, geographically situated between 43◦38′ N
and 45◦52′ N, and 79◦53′ E and 85◦02′ E (Figure 1). The region features various geomorpho-
logical types, predominantly plains. Vegetation types are diverse and include the following:
Saline vegetation: this vegetation dominates the area and is characterized by salt-tolerant
plants. Common plants include Suaeda salsa and Haloxylon ammodendron [23], which
are able to survive the saline conditions typical of the region. Wetland vegetation: this
includes reedbeds dominated by Phragmites australis and Typha, which provide important
habitat for waterfowl and act as natural water filters. Desert shrubs: in the surrounding
arid areas, the vegetation includes drought-tolerant plants such as Tamarix chinensis Lour
and Haloxylon ammodendron [24,25], which play an important role in stabilizing the soil and
preventing erosion. Riparian vegetation: at the edge of the lake, plants such as Populus
and Willow Salix provide important habitat for birds and other wildlife [26,27]. In recent
years, human activities, especially agricultural expansion, irrigation water deployment
and industrial development, dam construction, and pumping of water from water supply
rivers have reduced the inflow to the lake, resulting in a drop in the water level and a
drastic reduction in the size of the lake, a reduction which threatens biodiversity, especially
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the flora and fauna that depend on these ecosystems for their survival [28]. Changes in
the Lake Ebey watershed therefore have important implications for scientific research and
conservation efforts [29].
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Figure 1. Overview map of the study area (the red numbers represent the number of each plot (1–12),
and the different colored tows indicate the entropy values (high, medium, and low entropy) of the
12 plots).

2.2. UAV Data and Preprocessing

The UAV used in this study is the DJI Phantom4 RTK SE, which is equipped with
a quadrotor flight system and a 20-million-pixel camera capable of capturing image in-
formation in three visible light bands (red: 650 nm ± 16 nm; green: 560 nm ± 16 nm;
blue: 450 nm ± 16 nm [RGB]). The experiments were conducted from 28 July 2022 to
1 August 2022 using 3D photogrammetry (grid flight). The conditions were wind speeds
less than 8 m/s, clear weather, visibility greater than 5 km, and a solar altitude angle
greater than 45◦ at time of flight. The flight altitude was 40 m with an 80% lateral overlap
and an 80% longitudinal overlap. Ground control points were established in each flight
test site (total error < 0.5 m) to ensure the correct georegistration of UAV orthoimages
(Figure 2). The collected UAV images were processed using the software Pix4D 4.4.10
(https://www.pix4d.com) (accessed on 11 July 2023) to obtain orthoimages with a pixel
spatial resolution of 0.03 m. FVC was extracted from the UAV image data using a combi-
nation of methods based on Python: the Otsu–VVI method, the color space method, an
LMM, and two machine learning algorithms (an SVM and an NN). These methods were
evaluated for accuracy, and the optimal FVC extraction method was selected.

https://www.pix4d.com
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Figure 2. Flowchart of FVC extraction from UAV image data.

3. Methods
3.1. Scenarios and Entropy

Differentiated scenarios typically refer to specific environments influenced by varying
geographic, climatic, and soil conditions and human activities. The concept of differentiated
scenarios was used in this study to understand and analyze vegetation distribution and
changes accurately under different environmental conditions. Based on manual visual
interpretation, 12 orthorectified visible light (RGB) drone images obtained in the experi-
ments were categorized into six scenarios according to vegetation distribution and surface
complexity: (1) sparse shrub areas with similar backgrounds, (2) mixed grass–shrub areas
with distinct ground vegetation demarcation, (3) mixed zone of sparse herbs and shrubs,
(4) extensive shrub areas with minor grassland integration, (5) mixed grass–shrub areas
with indistinguishable soil backgrounds, and (6) complex vegetation types with high cover
and architectural interference.

Herein, entropy was used to describe these scenarios quantitatively. In remote sensing
image processing, entropy is commonly used to measure the randomness or richness of
information in image pixels [30]. Specifically for vegetation cover images, entropy can
be used to analyze and differentiate the extent and type of vegetation coverage because
different vegetation types and coverage exhibit various textures and gray-level variabilities.
High entropy values indicate a wide and complex distribution of image pixel values,
corresponding to areas with complex or mixed vegetation. Low entropy values suggest that
the area is relatively uniform, with little variation in color and brightness, indicating simple
vegetation areas. Entropy is typically calculated using a gray-level cooccurrence matrix
(GLCM), a statistical method for characterizing image texture features [31]. A GLCM
calculates the frequency distribution of gray-level similarity or dissimilarity between
an image pixel and its neighboring pixels. Entropy is a statistical measure from this
matrix used to describe the complexity and irregularity of image textures. The calculation
formula is [31]

H = −∑i=1 pilog2(pi), (1)

Pi = Ci/N, (2)
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where Pi is the probability of the ith gray level occurring in the image, Ci is the number of
occurrences of gray level i, and N is the total number of pixels in the image.

3.2. FVC Extraction Methods

(1) Otsu–VVI Method

Otsu thresholding, also known as the maximum interclass variance method, is an
adaptive thresholding method for image segmentation based on image data. Its principle
involves calculating the image’s grayscale histogram to determine a threshold that divides
the image into the foreground and background. VVIs (Table 1) are used to extract vegetation
information from remote sensing images using the differential reflection between vegetation
and nonvegetation areas [32,33]. These indices, typically calculated using visible light
reflectance values, are based on data from different spectral bands [34]. Combining Otsu
thresholding with VVIs leverages their respective advantages to enhance the accuracy and
reliability of vegetation cover extraction.

Table 1. Visible Vegetation Indices (VVIs) and their formulas.

VVIs Formula Reference

Excess green index (EXG) 2 × G − R − B [35]
Excess red index (EXR) 1.4 × R − B [36]

Excess red minus green index (EXER) 2 × G − 2.4 [37]
Normalized green–red difference index (NGRDI) (G − R)/(G + R) [38]
Normalized green–blue difference index (NGBDI) (G − B)/(G + B) [39]

Red–green ratio index (RGRI) R/B [40]
Visible-band difference vegetation index (VDVI) (2 × G − R − B)/(2 × G + R + B) [19]
Visible-band-modified soil-adjusted vegetation

index (V-MSAVI)

(
2 × G + 1 −

√
(2 × G + 1)2 − 8 × (2 × G − R − B)

)
/2 [41]

Excess green minus red index (EXGR) 3 × G − 2.4 × R − B [42]
Modified green–red vegetation index (MGRVI)

(
G2 − R2)/(G 2 + R2

)
[43]

Red–green–blue vegetation index (RGBVI)
(
G2 − (B × R)

)
/
(
G2 + (B × R)

)
[34]

Vegetation color index (CIVE) 0.441 × R − 0.811 × G + 0.385 × B + 18.78745 [44]

R, G, and B represent the reflectance of the red, green, and blue bands, respectively.

(2) Color Space Method

The color space method for FVC extraction is based on the absorption and reflection
characteristics of vegetation at different wavelengths. This method involves converting
color remote sensing images into an appropriate color space, commonly RGB; hue, satura-
tion, value (HSV); and CIELab. Depending on the chosen color space, the original image is
transformed into the corresponding color space, and the relevant color channels (R, G, B,
H, S, V, L, a, and b) are extracted. Appropriate thresholds are set to segregate vegetated
and nonvegetated areas within the image. Different color channels may require varying
thresholds. Finally, FVC is obtained from UAV image data by calculating the proportion of
vegetated pixels to nonvegetated ones in the binary image.

(3) LMM

An LMM posits that the reflectance value of a pixel in a specific spectral band is a
linear combination of the reflectance values of the pixel’s endmember components and
their respective abundances [45].

Re f i = ∑m
j=1 Pi,j + εi (3)

where i = 1, 2, 3, . . . , n (where n is the number of spectral bands); j = 1, 2, 3, . . . , m (where m
is the number of endmember components within a pixel); Re f i is the mixed-pixel reflectance
value; Pi,j is the reflectance value of the jth endmember component in the ith spectral band;
and εi is the error in the ith band.
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(4) SVM

An SVM fundamentally operates by identifying a hyperplane in the feature space
that maximizes the margin between different classes. This hyperplane serves as a decision
boundary that discriminates between classes. For data that are not linearly separable,
an SVM uses kernel techniques to project these data into a higher-dimensional space to
identify a linear separating hyperplane. An SVM solves the optimization problem [46]

min
w,b

1
2
∥w∥2 + C∑n

i=1 ξi (4)

subject to the constraints

yi(w·xi + b) ≥ 1 − ξi, ξ i ≥ 0, i = 1, . . . , n, (5)

where w is the normal vector to the hyperplane; b is the bias of the hyperplane; C is
a regularization parameter that controls the misclassification penalty; ξi denotes slack
variables, allowing some data points to be on the incorrect side of the margin; yi is the label
of each sample, typically +1 or −1; and xi denotes the feature vectors.

The SVM model parameter settings include the kernel type, penalty coefficient C,
and gamma. C balances the accuracy of classification with the smoothness of the decision
surface. A larger C can reduce training errors but may lead to overfitting, whereas a smaller
C enhances the model’s robustness to noise but may increase training errors. The gamma
parameter determines the reach of a single training example’s influence, thereby affecting
classification granularity or smoothness.

(5) NN

Numerous nodes (neurons) are organized in a hierarchical structure within an NN.
Each neuron processes input signals through an activation function and produces output
signals for the next layer. In an NN, each connection has a weight, which is adjusted during
training through backpropagation algorithms to minimize the error between the model
outputs and the true labels. The basic equations of an NN involve forward propagation
and error backpropagation processes. In forward propagation, the output y of each neuron
is calculated as [36]

y = f
(
∑n

i=1 wixi + b
)

, (6)

where xi is the input value; wi is the weight; b is the bias; and f is the activation function,
whose common functions include sigmoid, tanh, or ReLU. During backpropagation, the
network minimizes the loss function, typically a function of the prediction error, such as
the mean squared error or cross-entropy loss.

The number of hidden layers and nodes, activation function, learning rate, number
of epochs, and batch size are commonly used parameters in traditional MLP NNs. The
numbers of hidden layers and their nodes define the network depth and width, respectively,
with each hidden layer potentially having a distinct number of nodes. Additional layers
and nodes can increase model complexity and lead to overfitting. Common activation
functions include sigmoid, tanh, and ReLU, which introduce nonlinear factors allowing the
network to learn complex data patterns. The learning rate, which determines the step size
of weight adjustments, is a crucial parameter in optimization algorithms. The number of
iterations, or epochs, is the number of times the entire training dataset is used to update the
model weights, with multiple iterations helping the network learn better. During training,
data are divided into batches, each used to compute model errors and update weights.

3.3. Precision Evaluation

The vegetated and nonvegetated areas in the 12 UAV images were manually marked
in this study (Figure 3). According to the area size and vegetation sparsity, type, and
complexity, vegetation and nonvegetation were proportionally marked in the images. From
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the 1st image to the 12th image, named 1–12, the total number of point markers was 200,
400, 600, 300, 600, 500, 200, 500, 400, 400, and 400, respectively. The 12 marked images were
then used to extract vegetation cover using the Otsu–VVI method, color space method,
LMM, and two machine learning methods (SVM and NN), followed by accuracy validation
using confusion matrices and kappa coefficients.
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(1) Confusion Matrix

The FVC extraction results of different methods were evaluated using confusion
matrices and accuracy metrics [37] (Formulas (7)–(12); Table 2).

Accuracy =
a + d

a + b + c + d
(7)

Precision =
a

a + c
(8)

Recall =
a

a + b
(9)

f =
2a

2a + b + c
(10)
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OA =
c

c + d
(11)

UA =
b

a + b
(12)

Table 2. Confusion matrix for precision validation.

Marking Result Extraction Result

FVC non-FVC
FVC a b

non-FVC c d

Several key statistical metrics were used to assess the FVC extraction accuracy of the
classification models: total accuracy, precision, recall, overestimation error, underestimation
error, and the f score. These metrics are defined as follows:

Accuracy: This is the proportion of correctly identified observations (vegetation and
nonvegetation in this study) to the total number of observations. This is the most straight-
forward performance evaluation metric; a higher value indicates better overall model
performance.

Precision: This was the proportion of correctly predicted vegetation observations out
of all predicted vegetation. A higher value indicated higher accuracy in the predicted
vegetation samples.

Recall: This metric was the proportion of actual vegetation observations that were
correctly predicted as vegetation. A higher value indicated a stronger ability of the model
to extract vegetation.

f score: This is the harmonic mean of precision and recall, ranging between 0 and 1.
Values closer to 1 indicated better FVC extraction effectiveness.

Overestimation Error (OA): This metric was the probability of nonvegetation observa-
tions being incorrectly predicted as vegetation.

N is the total number of observations, X is the number of correct classifications,
and E is the number expected by chance. The kappa coefficient ranges from −1 (total
disagreement) to +1 (perfect agreement); a value of 0 indicates that the observed agreement
is random. In practical applications, a higher kappa value signifies better classification
performance and considers the impact of random factors.

Underestimation Error (UA): This refers to the probability of vegetation observations
being missed or undetected.

These metrics constitute a comprehensive framework for evaluating the performance
of vegetation classification models in different aspects. Total accuracy reflects the overall
accuracy of each model. Underestimation and overestimation errors provide information
about potential misjudgments by each model.

(2) Kappa Coefficient

The kappa coefficient is a statistical measure used to assess classification accuracy,
especially in terms of accounting for random agreement. In the classification of FVC,
the kappa coefficient was used to understand the degree of consistency between the
classification results and actual conditions, providing insights beyond those offered by
overall accuracy alone. The kappa coefficient of each FVC extraction method was calculated
as [38]

N = a + b + c + d, (13)

X = a + d, (14)

E =

(
(a + c)× (a + b)

N

)
+

(
(b + d)× (c + b)

N

)
, (15)

Kappa =
X − E
N − E

. (16)



Land 2024, 13, 1840 9 of 34

4. Result
4.1. Scenarios and Entropy

Entropy values were calculated for the 12 images across the six scenarios (Table 3).
Based on the average entropy value and standard deviation, entropy classifications were
assigned as follows: high entropy (values greater than the mean minus 0.5 times the
standard deviation), low entropy (values less than the mean minus 0.5 times the standard
deviation), and medium entropy (values in between). These categories were used to classify
each of the 12 images into low-, medium-, and high-entropy categories. Subsequently, FVC
was extracted from these images using the Otsu–VVI method, color space method, LMM,
SVM, and NN.

Table 3. Classification of entropy and differentiated scenarios.

No. Entropy Differentiated Scenario

1 Low Entropy Sparse shrub areas with similar backgrounds
2 Low Entropy Sparse shrub areas with similar backgrounds
3 Medium Entropy Mixed grass–shrub areas with distinct ground vegetation demarcation
4 Medium Entropy Areas cooccupied by shrubs and sparse herbaceous vegetation
5 High Entropy Complex vegetation types with high cover and architectural interference
6 High Entropy Extensive shrub areas with minor grassland integration
7 High Entropy Extensive shrub areas with minor grassland integration
8 High Entropy Complex vegetation types with high cover and architectural interference
9 Medium Entropy Mixed grass–shrub areas with indistinguishable soil backgrounds
10 Low Entropy Mixed grass–shrub areas with distinct ground vegetation demarcation
11 Medium Entropy Complex vegetation types with high cover and architectural interference
12 Low Entropy Areas cooccupied by shrubs and sparse herbaceous vegetation

High entropy > Mean-0.5 × SD; low entropy < Mean-0.5 × SD; Mean-0.5 × SD ≤ medium entropy ≤ Mean: 0.5 × SD,
where SD is the standard deviation and Mean is the mean.

4.2. Otsu–VVIs

Twelve Otsu–VVI methods were used to extract FVC from the 12 orthorectified RGB
drone images, and extraction result maps were generated (Figure 4; Table 4).
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EXER 0 100 0 100 0.500 0.000 0.000 0.000 0.000 1.000 
RGRI 69 31 92 8 0.385 0.429 0.690 0.529 0.920 0.310 
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VDVI 126 74 14 186 0.780 0.900 0.630 0.741 0.070 0.370 

RGBVI 127 73 15 185 0.780 0.894 0.635 0.743 0.075 0.365 
MGRVI 5 195 90 110 0.288 0.053 0.025 0.034 0.450 0.975 
EXGR 0 200 0 200 0.500 0.000 0.000 0.000 0.000 1.000 

V-MSAVI 125 75 14 186 0.778 0.899 0.625 0.737 0.070 0.375 
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Figure 4. Thumbnails of 12 UAV results extracted based on the Otsu–VVI method.
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Table 4. Accuracy verification of Otsu–VVI method a.

No. VVIs a b c d Accuracy Precision Recall f OA UA

1

NGRDI 61 39 79 21 0.410 0.436 0.610 0.508 0.790 0.390
EXG 63 37 3 97 0.800 0.955 0.630 0.759 0.030 0.370
EXR 37 63 59 41 0.390 0.385 0.370 0.378 0.590 0.630

EXER 0 100 0 100 0.500 0.000 0.000 0.000 0.000 1.000
RGRI 69 31 92 8 0.385 0.429 0.690 0.529 0.920 0.310

NGBDI 2 98 11 89 0.455 0.154 0.020 0.035 0.110 0.980
VDVI 68 32 2 98 0.830 0.971 0.680 0.800 0.020 0.320

RGBVI 61 39 1 99 0.800 0.984 0.610 0.753 0.010 0.390
MGRVI 21 79 3 97 0.590 0.875 0.210 0.339 0.030 0.790
EXGR 2 98 0 100 0.510 1.000 0.020 0.039 0.000 0.980

V-MSAVI 59 41 1 99 0.790 0.983 0.590 0.738 0.010 0.410
CIVE 69 31 4 96 0.825 0.945 0.690 0.798 0.040 0.310

2

NGRDI 68 132 2 198 0.665 0.971 0.340 0.504 0.010 0.660
EXG 126 74 23 177 0.758 0.846 0.630 0.722 0.115 0.370
EXR 163 37 79 121 0.710 0.674 0.815 0.738 0.395 0.185

EXER 0 200 0 200 0.500 0.000 0.000 0.000 0.000 1.000
RGRI 159 41 46 154 0.783 0.776 0.795 0.785 0.230 0.205

NGBDI 5 195 94 106 0.278 0.051 0.025 0.033 0.470 0.975
VDVI 126 74 14 186 0.780 0.900 0.630 0.741 0.070 0.370

RGBVI 127 73 15 185 0.780 0.894 0.635 0.743 0.075 0.365
MGRVI 5 195 90 110 0.288 0.053 0.025 0.034 0.450 0.975
EXGR 0 200 0 200 0.500 0.000 0.000 0.000 0.000 1.000

V-MSAVI 125 75 14 186 0.778 0.899 0.625 0.737 0.070 0.375
CIVE 138 62 30 170 0.770 0.821 0.690 0.750 0.150 0.310

3

NGRDI 34 266 24 276 0.517 0.586 0.113 0.190 0.080 0.887
EXG 177 123 2 298 0.792 0.989 0.590 0.739 0.007 0.410
EXR 43 257 295 5 0.080 0.127 0.143 0.135 0.983 0.857

EXER 15 285 0 300 0.525 1.000 0.050 0.095 0.000 0.950
RGRI 70 230 156 144 0.357 0.310 0.233 0.266 0.520 0.767

NGBDI 0 300 0 300 0.500 0.000 0.000 0.000 0.000 1.000
VDVI 153 147 2 298 0.752 0.987 0.510 0.673 0.007 0.490

RGBVI 168 132 2 298 0.777 0.988 0.560 0.715 0.007 0.440
MGRVI 121 179 1 299 0.700 0.992 0.403 0.573 0.003 0.597
EXGR 59 241 1 299 0.597 0.983 0.197 0.328 0.003 0.803

V-MSAVI 171 129 2 298 0.782 0.988 0.570 0.723 0.007 0.430
CIVE 186 114 2 298 0.807 0.989 0.620 0.762 0.007 0.380

4

NGRDI 4 146 47 103 0.357 0.078 0.027 0.040 0.313 0.973
EXG 111 39 0 150 0.870 1.000 0.740 0.851 0.000 0.260
EXR 44 106 148 2 0.153 0.229 0.293 0.257 0.987 0.707

EXER 41 109 150 150 0.424 0.215 0.273 0.240 0.500 0.727
RGRI 12 138 108 42 0.180 0.100 0.080 0.089 0.720 0.920

NGBDI 98 52 0 150 0.827 1.000 0.653 0.790 0.000 0.347
VDVI 96 54 0 150 0.820 1.000 0.640 0.780 0.000 0.360

RGBVI 104 46 0 150 0.847 1.000 0.693 0.819 0.000 0.307
MGRVI 90 60 0 150 0.800 1.000 0.600 0.750 0.000 0.400
EXGR 80 70 0 150 0.767 1.000 0.533 0.696 0.000 0.467

V-MSAVI 109 41 0 150 0.863 1.000 0.727 0.842 0.000 0.273
CIVE 133 17 0 150 0.943 1.000 0.887 0.940 0.000 0.113
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Table 4. Cont.

No. VVIs a b c d Accuracy Precision Recall f OA UA

5

NGRDI 89 211 157 143 0.387 0.362 0.297 0.326 0.523 0.703
EXG 196 104 3 297 0.822 0.985 0.653 0.786 0.010 0.347
EXR 118 181 291 9 0.212 0.289 0.395 0.333 0.970 0.605

EXER 3 297 1 299 0.503 0.750 0.010 0.020 0.003 0.990
RGRI 126 174 264 36 0.270 0.323 0.420 0.365 0.880 0.580

NGBDI 1 299 4 296 0.495 0.200 0.003 0.007 0.013 0.997
VDVI 173 127 2 298 0.785 0.989 0.577 0.728 0.007 0.423

RGBVI 179 121 2 298 0.795 0.989 0.597 0.744 0.007 0.403
MGRVI 105 195 3 297 0.670 0.972 0.350 0.515 0.010 0.650
EXGR 51 249 1 299 0.583 0.981 0.170 0.290 0.003 0.830

V-MSAVI 183 117 2 298 0.802 0.989 0.610 0.755 0.007 0.390
CIVE 208 92 4 296 0.840 0.981 0.693 0.813 0.013 0.307

6

NGRDI 43 207 43 62 0.296 0.500 0.172 0.256 0.410 0.828
EXG 175 75 0 250 0.850 1.000 0.700 0.824 0.000 0.300
EXR 109 141 228 22 0.262 0.323 0.436 0.371 0.912 0.564

EXER 6 244 0 250 0.512 1.000 0.024 0.047 0.000 0.976
RGRI 67 183 238 12 0.158 0.220 0.268 0.241 0.952 0.732

NGBDI 3 247 12 238 0.482 0.200 0.012 0.023 0.048 0.988
VDVI 158 92 0 250 0.816 1.000 0.632 0.775 0.000 0.368

RGBVI 162 88 0 250 0.824 1.000 0.648 0.786 0.000 0.352
MGRVI 83 167 0 250 0.666 1.000 0.332 0.498 0.000 0.668
EXGR 37 213 0 250 0.574 1.000 0.148 0.258 0.000 0.852

V-MSAVI 168 82 0 250 0.836 1.000 0.672 0.804 0.000 0.328
CIVE 188 62 0 250 0.876 1.000 0.752 0.858 0.000 0.248

7

NGRDI 10 90 67 33 0.215 0.130 0.100 0.113 0.670 0.900
EXG 53 47 1 99 0.760 0.981 0.530 0.688 0.010 0.470
EXR 64 36 80 20 0.420 0.444 0.640 0.525 0.800 0.360

EXER 5 95 0 100 0.525 1.000 0.050 0.095 0.000 0.950
RGRI 16 84 87 13 0.145 0.155 0.160 0.158 0.870 0.840

NGBDI 0 100 6 94 0.470 0.000 0.000 0.000 0.060 1.000
VDVI 50 50 1 99 0.745 0.980 0.500 0.662 0.010 0.500

RGBVI 52 48 1 99 0.755 0.981 0.520 0.680 0.010 0.480
MGRVI 24 76 0 100 0.620 1.000 0.240 0.387 0.000 0.760
EXGR 20 80 0 100 0.600 1.000 0.200 0.333 0.000 0.800

V-MSAVI 56 44 1 99 0.775 0.982 0.560 0.713 0.010 0.440
CIVE 73 27 1 99 0.860 0.986 0.730 0.839 0.010 0.270

8

NGRDI 30 220 155 95 0.250 0.162 0.120 0.138 0.620 0.880
EXG 147 103 1 249 0.792 0.993 0.588 0.739 0.004 0.412
EXR 149 101 186 64 0.426 0.445 0.596 0.509 0.744 0.404

EXER 36 214 13 237 0.546 0.735 0.144 0.241 0.052 0.856
RGRI 44 206 193 57 0.202 0.186 0.176 0.181 0.772 0.824

NGBDI 4 246 47 203 0.414 0.078 0.016 0.027 0.188 0.984
VDVI 163 87 2 248 0.822 0.988 0.652 0.786 0.008 0.348

RGBVI 152 98 2 248 0.800 0.987 0.608 0.752 0.008 0.392
MGRVI 73 177 32 218 0.582 0.695 0.292 0.411 0.128 0.708
EXGR 64 186 1 249 0.626 0.985 0.256 0.406 0.004 0.744

V-MSAVI 164 86 2 248 0.824 0.988 0.656 0.788 0.008 0.344
CIVE 183 67 3 247 0.860 0.984 0.732 0.839 0.012 0.268



Land 2024, 13, 1840 12 of 34

Table 4. Cont.

No. VVIs a b c d Accuracy Precision Recall f OA UA

9

NGRDI 179 21 89 111 0.725 0.668 0.895 0.765 0.445 0.105
EXG 153 47 23 177 0.825 0.869 0.765 0.814 0.115 0.235
EXR 187 13 88 112 0.748 0.680 0.935 0.787 0.440 0.065

EXER 0 200 1 199 0.498 0.000 0.000 0.000 0.005 1.000
RGRI 191 9 140 60 0.628 0.577 0.955 0.719 0.700 0.045

NGBDI 0 200 47 153 0.383 0.000 0.000 0.000 0.235 1.000
VDVI 170 30 45 155 0.813 0.791 0.850 0.819 0.225 0.150

RGBVI 160 40 3 197 0.893 0.982 0.800 0.882 0.015 0.200
MGRVI 4 196 23 177 0.453 0.148 0.020 0.035 0.115 0.980
EXGR 2 198 0 200 0.505 1.000 0.010 0.020 0.000 0.990

V-MSAVI 150 50 3 197 0.868 0.980 0.750 0.850 0.015 0.250
CIVE 142 58 9 191 0.833 0.940 0.710 0.809 0.045 0.290

10

NGRDI 20 180 62 138 0.395 0.244 0.100 0.142 0.310 0.900
EXG 182 18 1 199 0.953 0.995 0.910 0.950 0.005 0.090
EXR 102 98 119 81 0.458 0.462 0.510 0.485 0.595 0.490

EXER 0 200 0 200 0.500 0.000 0.000 0.000 0.000 1.000
RGRI 53 147 181 19 0.180 0.226 0.265 0.244 0.905 0.735

NGBDI 1 199 10 190 0.478 0.091 0.005 0.009 0.050 0.995
VDVI 184 16 1 199 0.958 0.995 0.920 0.956 0.005 0.080

RGBVI 181 19 1 199 0.950 0.995 0.905 0.948 0.005 0.095
MGRVI 94 106 1 199 0.733 0.989 0.470 0.637 0.005 0.530
EXGR 34 166 200 200 0.390 0.145 0.170 0.157 0.500 0.830

V-MSAVI 183 17 1 199 0.955 0.995 0.915 0.953 0.005 0.085
CIVE 189 11 2 198 0.968 0.990 0.945 0.967 0.010 0.055

11

NGRDI 26 174 154 46 0.180 0.144 0.130 0.137 0.770 0.870
EXG 125 75 1 199 0.810 0.992 0.625 0.767 0.005 0.375
EXR 47 153 175 25 0.180 0.212 0.235 0.223 0.875 0.765

EXER 20 180 1 199 0.548 0.952 0.100 0.181 0.005 0.900
RGRI 29 171 180 20 0.123 0.139 0.145 0.142 0.900 0.855

NGBDI 0 200 18 182 0.455 0.000 0.000 0.000 0.090 1.000
VDVI 128 72 1 199 0.818 0.992 0.640 0.778 0.005 0.360

RGBVI 124 76 1 199 0.808 0.992 0.620 0.763 0.005 0.380
MGRVI 87 113 4 196 0.708 0.956 0.435 0.598 0.020 0.565
EXGR 49 151 1 199 0.620 0.980 0.245 0.392 0.005 0.755

V-MSAVI 142 58 1 199 0.853 0.993 0.710 0.828 0.005 0.290
CIVE 167 33 9 191 0.895 0.949 0.835 0.888 0.045 0.165

12

NGRDI 40 160 126 74 0.285 0.241 0.200 0.219 0.630 0.800
EXG 121 79 7 193 0.785 0.945 0.605 0.738 0.035 0.395
EXR 111 89 190 10 0.303 0.369 0.555 0.443 0.950 0.445

EXER 16 184 0 200 0.540 1.000 0.080 0.148 0.000 0.920
RGRI 73 127 167 33 0.265 0.304 0.365 0.332 0.835 0.635

NGBDI 0 200 5 195 0.488 0.000 0.000 0.000 0.025 1.000
VDVI 79 121 0 200 0.698 1.000 0.395 0.566 0.000 0.605

RGBVI 78 122 0 200 0.695 1.000 0.390 0.561 0.000 0.610
MGRVI 62 138 0 200 0.655 1.000 0.310 0.473 0.000 0.690
EXGR 39 161 0 200 0.598 1.000 0.195 0.326 0.000 0.805

V-MSAVI 88 112 0 200 0.720 1.000 0.440 0.611 0.000 0.560
CIVE 133 67 6 194 0.818 0.957 0.665 0.785 0.030 0.335

a a, b, c, and d in the Table 4 header indicate extracted results and results made from the confusion matrix.

4.3. Color Space Method

FVC was extracted from the 12 images using the color space method, and FVC extrac-
tion result maps were produced (Figure 5; Table 5).
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Table 5. Accuracy verification of color space method a.

No. Component a b c d Accuracy Precision Recall f OA UA

1

R 94 6 30 70 0.820 0.758 0.940 0.839 0.300 0.060
G 76 24 31 69 0.725 0.710 0.760 0.734 0.310 0.240
B 69 31 30 70 0.695 0.697 0.690 0.693 0.300 0.310
H 35 65 5 95 0.650 0.875 0.350 0.500 0.050 0.650
S 63 37 7 93 0.780 0.900 0.630 0.741 0.070 0.370
V 40 60 8 92 0.660 0.833 0.400 0.541 0.080 0.600
L 43 57 10 90 0.665 0.811 0.430 0.562 0.100 0.570
a 72 28 3 97 0.845 0.960 0.720 0.823 0.030 0.280
b 21 79 9 91 0.560 0.700 0.210 0.323 0.090 0.790
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Table 5. Cont.

No. Component a b c d Accuracy Precision Recall f OA UA

2

R 155 45 45 155 0.775 0.775 0.775 0.775 0.225 0.225
G 124 76 58 142 0.665 0.681 0.620 0.649 0.290 0.380
B 111 89 64 136 0.618 0.634 0.555 0.592 0.320 0.445
H 183 17 9 191 0.935 0.953 0.915 0.934 0.045 0.085
S 155 45 20 180 0.838 0.886 0.775 0.827 0.100 0.225
V 131 69 59 141 0.680 0.689 0.655 0.672 0.295 0.345
L 123 77 50 150 0.683 0.711 0.615 0.660 0.250 0.385
a 158 42 14 186 0.860 0.919 0.790 0.849 0.070 0.210
b 130 70 5 195 0.813 0.963 0.650 0.776 0.025 0.350

3

R 297 3 5 295 0.987 0.983 0.990 0.987 0.017 0.010
G 285 15 3 297 0.970 0.990 0.950 0.969 0.010 0.050
B 282 18 3 297 0.965 0.989 0.940 0.964 0.010 0.060
H 156 144 92 208 0.607 0.629 0.520 0.569 0.307 0.480
S 246 54 253 47 0.488 0.493 0.820 0.616 0.843 0.180
V 293 7 7 293 0.977 0.977 0.977 0.977 0.023 0.023
L 296 4 10 190 0.972 0.967 0.987 0.977 0.050 0.013
a 282 18 92 208 0.817 0.754 0.940 0.837 0.307 0.060
b 246 54 225 75 0.535 0.522 0.820 0.638 0.750 0.180

4

R 131 19 2 148 0.930 0.985 0.873 0.926 0.013 0.127
G 140 10 4 146 0.953 0.972 0.933 0.952 0.027 0.067
B 138 12 2 148 0.953 0.986 0.920 0.952 0.013 0.080
H 138 12 36 114 0.840 0.793 0.920 0.852 0.240 0.080
S 138 12 5 145 0.943 0.965 0.920 0.942 0.033 0.080
V 138 12 4 146 0.947 0.972 0.920 0.945 0.027 0.080
L 139 11 3 147 0.953 0.979 0.927 0.952 0.020 0.073
a 139 11 5 145 0.947 0.965 0.927 0.946 0.033 0.073
b 133 17 32 118 0.837 0.806 0.887 0.844 0.213 0.113

5

R 293 7 16 284 0.962 0.948 0.977 0.962 0.053 0.023
G 292 8 15 285 0.962 0.951 0.973 0.962 0.050 0.027
B 260 40 11 289 0.915 0.959 0.867 0.911 0.037 0.133
H 236 64 91 209 0.742 0.722 0.787 0.753 0.303 0.213
S 260 40 19 281 0.902 0.932 0.867 0.898 0.063 0.133
V 291 9 14 286 0.962 0.954 0.970 0.962 0.047 0.030
L 293 7 14 286 0.965 0.954 0.977 0.965 0.047 0.023
a 242 58 6 294 0.893 0.976 0.807 0.883 0.020 0.193
b 193 107 28 272 0.775 0.873 0.643 0.741 0.093 0.357

6

R 246 4 59 191 0.874 0.807 0.984 0.886 0.236 0.016
G 246 4 55 195 0.882 0.817 0.984 0.893 0.220 0.016
B 227 23 25 225 0.904 0.901 0.908 0.904 0.100 0.092
H 221 29 39 211 0.864 0.850 0.884 0.867 0.156 0.116
S 226 24 86 164 0.780 0.724 0.904 0.804 0.344 0.096
V 247 3 43 207 0.908 0.852 0.988 0.915 0.172 0.012
L 246 4 45 205 0.902 0.845 0.984 0.909 0.180 0.016
a 214 36 8 242 0.912 0.964 0.856 0.907 0.032 0.144
b 192 58 35 215 0.814 0.846 0.768 0.805 0.140 0.232

7

R 97 3 38 62 0.795 0.719 0.970 0.826 0.380 0.030
G 93 7 38 62 0.775 0.710 0.930 0.805 0.380 0.070
B 93 7 32 68 0.805 0.744 0.930 0.827 0.320 0.070
H 95 5 28 72 0.835 0.772 0.950 0.852 0.280 0.050
S 96 4 35 65 0.805 0.733 0.960 0.831 0.350 0.040
V 98 2 53 47 0.725 0.649 0.980 0.781 0.530 0.020
L 98 2 58 42 0.700 0.628 0.980 0.766 0.580 0.020
a 94 6 12 88 0.910 0.887 0.940 0.913 0.120 0.060
b 54 46 19 81 0.675 0.740 0.540 0.624 0.190 0.460
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Table 5. Cont.

No. Component a b c d Accuracy Precision Recall f OA UA

8

R 211 39 110 140 0.702 0.657 0.844 0.739 0.440 0.156
G 210 40 105 145 0.710 0.667 0.840 0.743 0.420 0.160
B 216 34 216 127 0.578 0.500 0.864 0.633 0.630 0.136
H 242 8 250 0 0.484 0.492 0.968 0.652 1.000 0.032
S 172 78 250 0 0.344 0.408 0.688 0.512 1.000 0.312
V 199 51 250 0 0.398 0.443 0.796 0.569 1.000 0.204
L 201 49 133 117 0.636 0.602 0.804 0.688 0.532 0.196
a 219 31 44 206 0.850 0.833 0.876 0.854 0.176 0.124
b 238 12 239 11 0.498 0.499 0.952 0.655 0.956 0.048

9

R 94 106 43 157 0.628 0.686 0.470 0.558 0.215 0.530
G 93 107 98 102 0.488 0.487 0.465 0.476 0.490 0.535
B 36 164 55 145 0.453 0.396 0.180 0.247 0.275 0.820
H 143 57 143 57 0.500 0.500 0.715 0.588 0.715 0.285
S 187 13 101 9 0.632 0.649 0.935 0.766 0.918 0.065
V 37 163 104 96 0.333 0.262 0.185 0.217 0.520 0.815
L 50 150 41 159 0.523 0.549 0.250 0.344 0.205 0.750
a 186 14 31 169 0.888 0.857 0.930 0.892 0.155 0.070
b 9 101 112 88 0.313 0.074 0.082 0.078 0.560 0.918

10

R 198 2 91 109 0.768 0.685 0.990 0.810 0.455 0.010
G 153 47 22 178 0.828 0.874 0.765 0.816 0.110 0.235
B 166 34 19 181 0.868 0.897 0.830 0.862 0.095 0.170
H 177 27 43 157 0.827 0.805 0.868 0.835 0.215 0.132
S 191 9 3 197 0.970 0.985 0.955 0.970 0.015 0.045
V 157 43 24 176 0.833 0.867 0.785 0.824 0.120 0.215
L 156 44 15 185 0.853 0.912 0.780 0.841 0.075 0.220
a 192 8 19 181 0.933 0.910 0.960 0.934 0.095 0.040
b 50 150 40 160 0.525 0.556 0.250 0.345 0.200 0.750

11

R 135 65 18 182 0.793 0.882 0.675 0.765 0.090 0.325
G 95 105 19 181 0.690 0.833 0.475 0.605 0.095 0.525
B 116 84 18 182 0.745 0.866 0.580 0.695 0.090 0.420
H 174 26 22 178 0.880 0.888 0.870 0.879 0.110 0.130
S 160 40 65 135 0.738 0.711 0.800 0.753 0.325 0.200
V 100 100 17 183 0.708 0.855 0.500 0.631 0.085 0.500
L 93 107 17 183 0.690 0.845 0.465 0.600 0.085 0.535
a 180 20 22 178 0.895 0.891 0.900 0.896 0.110 0.100
b 156 44 22 178 0.835 0.876 0.780 0.825 0.110 0.220

12

R 172 28 9 191 0.908 0.950 0.860 0.903 0.045 0.140
G 191 9 47 153 0.860 0.803 0.955 0.872 0.235 0.045
B 191 9 40 160 0.878 0.827 0.955 0.886 0.200 0.045
H 181 19 72 128 0.773 0.715 0.905 0.799 0.360 0.095
S 181 19 29 171 0.880 0.862 0.905 0.883 0.145 0.095
V 159 41 10 190 0.873 0.941 0.795 0.862 0.050 0.205
L 189 11 38 162 0.878 0.833 0.945 0.885 0.190 0.055
a 161 39 16 184 0.863 0.910 0.805 0.854 0.080 0.195
b 171 29 129 71 0.605 0.570 0.855 0.684 0.645 0.145

a a, b, c, and d in the Table 5 header indicate extracted results and results made from the confusion matrix, and the
first column of Table 5 shows the components of the color space method.

4.4. LMM

The LMM was used to extract FVC from the 12 images, and extraction outcome images
were obtained (Figure 6; Table 6).
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Table 6. Accuracy verification of LMM a.

No. a b c d Accuracy Precision Recall f OA UA

1 72 28 3 97 0.845 0.960 0.720 0.823 0.030 0.280
2 163 37 40 160 0.808 0.803 0.815 0.809 0.200 0.185
3 231 69 3 297 0.880 0.987 0.770 0.865 0.010 0.230
4 136 14 20 130 0.887 0.872 0.907 0.889 0.133 0.093
5 239 61 5 295 0.890 0.980 0.797 0.879 0.017 0.203
6 216 34 2 248 0.928 0.991 0.864 0.923 0.008 0.136
7 97 3 8 92 0.945 0.924 0.970 0.946 0.080 0.030
8 229 21 33 217 0.892 0.874 0.916 0.895 0.132 0.084
9 166 34 6 194 0.900 0.965 0.830 0.892 0.030 0.170

10 177 23 21 179 0.890 0.894 0.885 0.889 0.105 0.115
11 176 24 11 189 0.913 0.941 0.880 0.910 0.055 0.120
12 179 21 27 173 0.880 0.869 0.895 0.882 0.135 0.105

a a, b, c, and d in the Table 6 header indicate extracted results and results made from the confusion matrix.

4.5. SVM

The SVM was used to extract FVC from the 12 images, and extraction outcome images
were obtained (Figure 7; Table 7).
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Table 7. Accuracy verification of SVM a.

No. a b c d Accuracy Precision Recall f OA UA

1 78 22 3 97 0.875 0.963 0.780 0.862 0.030 0.220
2 159 41 1 199 0.895 0.994 0.795 0.883 0.005 0.205
3 294 6 4 296 0.983 0.987 0.980 0.983 0.013 0.020
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10 192 8 1 199 0.978 0.995 0.960 0.977 0.005 0.040
11 186 14 5 195 0.953 0.974 0.930 0.951 0.025 0.070
12 169 31 9 191 0.900 0.949 0.845 0.894 0.045 0.155

a a, b, c, and d in the Table 7 header indicate extracted results and results made from the confusion matrix.

4.6. NN

The NN was used to extract FVC from the 12 images, and extraction outcome images
were generated (Figure 8; Table 8).
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Figure 8. Thumbnail extraction of 12 UAV image results based on the NN.

Table 8. Accuracy verification of NN a.

No. a b c d Accuracy Precision Recall f OA UA

1 49 51 0 100 0.745 1.000 0.490 0.658 0.000 0.510
2 163 37 2 198 0.903 0.988 0.815 0.893 0.010 0.185
3 296 4 4 296 0.987 0.987 0.987 0.987 0.013 0.013
4 138 162 168 132 0.450 0.451 0.460 0.455 0.560 0.540
5 214 86 2 298 0.853 0.991 0.713 0.829 0.007 0.287
6 214 36 38 212 0.852 0.849 0.856 0.853 0.152 0.144
7 97 3 8 92 0.945 0.924 0.970 0.946 0.080 0.030
8 174 76 48 202 0.752 0.784 0.696 0.737 0.192 0.304
9 190 10 6 194 0.960 0.969 0.950 0.960 0.030 0.050

10 172 28 0 200 0.930 1.000 0.860 0.925 0.000 0.140
11 176 24 13 187 0.908 0.931 0.880 0.905 0.065 0.120
12 182 18 46 154 0.840 0.798 0.910 0.850 0.230 0.090

a a, b, c, and d in the Table 8 header indicate extracted results and results made from the confusion matrix.

4.7. Confusion Matrix

(1) Otsu–VVIs

The vegetation indices EXG, VDVI, RGBVI, V-MSAVI, and CIVE display universality
and stability across various entropy conditions (Figure 9). For the low-entropy images,
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these indices demonstrate an Accuracy range of 0.7–0.96, indicating excellent differentia-
tion between vegetation and nonvegetation. Precision ranges from 0.85 to 1, showing high
vegetation recognition precision. Although Recall is generally good, some misclassifica-
tion occurs. For the medium-entropy images, Accuracy slightly drops to 0.75–0.94, but
Precision increases to 0.87–1. Recall is similar to that for the low-entropy images (prone
to misclassification). For the high-entropy images, Accuracy ranges from 0.74 to 0.86 and
Precision is 0.98–1; however, the vegetation extraction accuracy is notably lower than
that for the low- and medium-entropy images. Recall is still generally good but includes
some misclassifications.

(2) Color Space Method

Each color component (R, G, B, H, S, V, L, a, and b) exhibits distinct stability and
universality between entropy conditions (Figure 9). For the low-entropy images, Accuracy
is 0.53–0.97 and Precision is 0.56–1, indicating good overall model performance and high
vegetation extraction precision, respectively. For the medium-entropy images, Accuracy
is 0.31–0.94 and Precision is 0.07–0.98, showing notable declines in overall performance
and vegetation extraction precision, respectively, compared with those for the low-entropy
images. For the high-entropy images, Accuracy ranges from 0.34 to 0.96 and Precision
from 0.41 to 0.98, suggesting lower overall performance and precision in vegetation ex-
traction, respectively, than for the low- and medium-entropy images. Furthermore, more
misclassifications are observed here than for the low- and medium-entropy images.

(3) LMM

For the low-, medium-, and high-entropy images, the model’s overall performance,
vegetation extraction precision, and accuracy significantly improve (Figure 9). Specifically,
for the low-entropy images, Accuracy is between 0.79 and 0.89, Precision is 0.87–0.97, and
Recall is between 0.59 and 0.9, with few misclassifications. As for the medium-entropy
images, Accuracy is between 0.88 and 0.91, Precision is between 0.87 and 0.99, and Recall is
0.77–0.91, with few misclassifications. For the high-entropy images, Accuracy is 0.89–0.94,
Precision is 0.87–0.99, and Recall is 0.80–0.97, with few misclassifications. Overall, the
overall model performance and vegetation extraction accuracy and precision are notably
better than those under the Otsu–VVI and color space methods.

(4) SVM

For the low-entropy images, FVC extraction Accuracy is 0.89–0.94, Precision is 0.87–0.99,
and Recall is 0.78–0.96, with few misclassifications (Figure 9). For the medium-entropy
images, Accuracy ranges from 0.89 to 0.98, Precision from 0.86 to 0.99, and Recall from 0.86
to 0.98, with few misclassifications. For the high-entropy images, Accuracy is 0.76–0.95,
Precision is 0.88–0.95, and Recall is 0.61–0.99, with few misclassifications. These indicate
high stability and precision across all entropy conditions.

(5) NN

For the low-entropy images, Accuracy ranges from 0.74 to 0.93, Precision from 0.8 to
1, and Recall from 0.49 to 0.91, with few misclassifications (Figure 9). These suggest good
overall model performance and significantly good vegetation extraction precision. For
the medium-entropy images, Accuracy is 0.45–0.99, Precision is 0.45–0.99, and Recall is
0.46–0.99, with few misclassifications. These show good overall model performance and
vegetation extraction precision.
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4.8. Kappa Coefficient

(1) Otsu–VVIs

For images with low, medium, and high entropy values, the VVIs EXG, VDVI, RGBVI,
V-MSAVI, and CIVE show optimal vegetation extraction accuracy. In particular, the CIVE
demonstrates high precision across all entropy conditions, with kappa coefficients ranging
from 0.54 to 0.94 (Figure 10; Table 9).
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Table 9. Kappa of FVC extraction using Otsu–VVIs.

No. VVIs Kappa

1

NGRDI −0.180
EXG 0.600
EXR −0.220

EXER 0.000
RGRI −0.230

NGBDI −0.090
VDVI 0.660

RGBVI 0.600
MGRVI 0.180
EXGR 0.020

V-MSAVI 0.580
CIVE 0.650

2

NGRDI 0.330
EXG 0.515
EXR 0.420

EXER 0.000
RGRI 0.565

NGBDI −0.445
VDVI 0.560

RGBVI 0.560
MGRVI −0.425
EXGR 0.000

V-MSAVI 0.555
CIVE 0.540
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Table 9. Cont.

No. VVIs Kappa

3

NGRDI 0.033
EXG 0.583
EXR −0.840

EXER 0.050
RGRI −0.287

NGBDI 0.000
VDVI 0.503

RGBVI 0.553
MGRVI 0.400
EXGR 0.193

V-MSAVI 0.563
CIVE 0.613

4

NGRDI −0.287
EXG 0.740
EXR −0.693

EXER −0.212
RGRI −0.640

NGBDI 0.653
VDVI 0.640

RGBVI 0.693
MGRVI 0.600
EXGR 0.533

V-MSAVI 0.727
CIVE 0.887

5

NGRDI −0.227
EXG 0.643
EXR −0.575

EXER 0.007
RGRI −0.460

NGBDI −0.010
VDVI 0.570

RGBVI 0.590
MGRVI 0.340
EXGR 0.167

V-MSAVI 0.603
CIVE 0.680

6

NGRDI −0.163
EXG 0.700
EXR −0.476

EXER 0.024
RGRI −0.684

NGBDI −0.036
VDVI 0.632

RGBVI 0.648
MGRVI 0.332
EXGR 0.148

V-MSAVI 0.672
CIVE 0.752
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Table 9. Cont.

No. VVIs Kappa

7

NGRDI −0.570
EXG 0.520
EXR −0.160

EXER 0.050
RGRI −0.710

NGBDI −0.060
VDVI 0.490

RGBVI 0.510
MGRVI 0.240
EXGR 0.200

V-MSAVI 0.550
CIVE 0.720

8

NGRDI −0.500
EXG 0.584
EXR −0.148

EXER 0.092
RGRI −0.596

NGBDI −0.172
VDVI 0.644

RGBVI 0.600
MGRVI 0.164
EXGR 0.252

V-MSAVI 0.648
CIVE 0.720

9

NGRDI 0.450
EXG 0.650
EXR 0.495

EXER −0.005
RGRI 0.255

NGBDI −0.235
VDVI 0.625

RGBVI 0.785
MGRVI −0.095
EXGR 0.010

V-MSAVI 0.735
CIVE 0.665

10

NGRDI −0.210
EXG 0.905
EXR −0.085

EXER 0.000
RGRI −0.640

NGBDI −0.045
VDVI 0.915

RGBVI 0.900
MGRVI 0.465
EXGR −0.317

V-MSAVI 0.910
CIVE 0.935
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Table 9. Cont.

No. VVIs Kappa

11

NGRDI −0.640
EXG 0.620
EXR −0.640

EXER 0.095
RGRI −0.755

NGBDI −0.090
VDVI 0.635

RGBVI 0.615
MGRVI 0.415
EXGR 0.240

V-MSAVI 0.705
CIVE 0.790

12

NGRDI −0.430
EXG 0.570
EXR −0.395

EXER 0.080
RGRI −0.470

NGBDI −0.025
VDVI 0.395

RGBVI 0.390
MGRVI 0.310
EXGR 0.195

V-MSAVI 0.440
CIVE 0.635

(2) Color Space Method

The ‘a’ component achieves high accuracy in images with low, medium, and high
entropy values, with kappa coefficients ranging from 0.63 to 0.89. This indicates that
this component has significant discriminative ability in extracting vegetation cover across
various entropy conditions (Table 10).

Table 10. Kappa of FVC extraction using color space method.

No. Components Kappa

1

R 0.640
G 0.450
B 0.390
H 0.300
S 0.560
V 0.320
L 0.330
a 0.690
b 0.120

2

R 0.550
G 0.330
B 0.235
H 0.870
S 0.675
V 0.360
L 0.365
a 0.720
b 0.625
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Table 10. Cont.

No. Components Kappa

3

R 0.973
G 0.940
B 0.930
H 0.213
S −0.023
V 0.953
L 0.941
a 0.633
b 0.070

4

R 0.860
G 0.907
B 0.907
H 0.680
S 0.887
V 0.893
L 0.907
a 0.893
b 0.673

5

R 0.923
G 0.923
B 0.830
H 0.483
S 0.803
V 0.923
L 0.930
a 0.787
b 0.550

6

R 0.748
G 0.764
B 0.808
H 0.728
S 0.560
V 0.816
L 0.804
a 0.824
b 0.628

7

R 0.590
G 0.550
B 0.610
H 0.670
S 0.610
V 0.450
L 0.400
a 0.820
b 0.350

8

R 0.404
G 0.420
B 0.213
H −0.032
S −0.312
V −0.204
L 0.272
a 0.700
b −0.004
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Table 10. Cont.

No. Components Kappa

9

R 0.255
G −0.025
B −0.095
H 0.000
S 0.021
V −0.335
L 0.045
a 0.775
b −0.468

10

R 0.535
G 0.655
B 0.735
H 0.653
S 0.940
V 0.665
L 0.705
a 0.865
b 0.050

11

R 0.585
G 0.380
B 0.490
H 0.760
S 0.475
V 0.415
L 0.380
a 0.790
b 0.670

12

R 0.815
G 0.720
B 0.755
H 0.545
S 0.760
V 0.745
L 0.755
a 0.725
b 0.210

(3) LMM

This model shows higher vegetation extraction accuracy in the low-entropy images,
with kappa coefficients between 0.62 and 0.78. For the medium-entropy images, the kappa
coefficients range from 0.76 to 0.89, indicating an improvement in vegetation extraction
accuracy compared with that for the low-entropy images. In the high-entropy images, the
kappa coefficients range from 0.78 to 0.89, suggesting that the model’s overall precision in
vegetation extraction is higher than that for the low-entropy images but lower than that for
the medium-entropy images (Table 11).

(4) SVM

In FVC extraction using the SVM, the low-entropy images show kappa coefficients
ranging from 0.75 to 0.96, indicating high vegetation extraction accuracy. The medium-
entropy images have kappa coefficients ranging from 0.79 to 0.97, showing a slight decline
in accuracy compared with the low-entropy images, but the overall performance of the
model remains good. The high-entropy images have kappa coefficients of 0.52 and 0.91,
indicating a decrease in vegetation extraction accuracy compared with that for the low-
and medium-entropy images (Table 12).
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Table 11. Kappa of FVC extraction using LMM.

No. Kappa

1 0.690
2 0.615
3 0.760
4 0.773
5 0.780
6 0.856
7 0.890
8 0.784
9 0.800
10 0.780
11 0.825
12 0.760

Table 12. Kappa of FVC extraction using SVM.

No. Kappa

1 0.750
2 0.790
3 0.967
4 0.867
5 0.523
6 0.876
7 0.910
8 0.688
9 0.790
10 0.955
11 0.905
12 0.800

(5) NN

Except the first low-entropy image, which has a kappa coefficient of 0.49, all low-
entropy images have kappa coefficients of 0.68–0.86, indicating low precision in sparse
vegetation areas. Except the fourth medium-entropy image, which has a kappa of −0.1,
the medium-entropy images have kappa coefficients ranging from 0.82 to 0.97, showing
high precision in extracting widely distributed vegetation but lower precision in extracting
sporadically distributed vegetation. Except the eighth high-entropy image, which has
a kappa coefficient of 0.50, the high-entropy images have kappa coefficients of 0.70 to
0.89, indicating lower precision in extracting vegetation in areas with sparse herbaceous
vegetation and widespread soil backgrounds (Table 13).

Table 13. Kappa of FVC extraction using NN.

No. Kappa

1 0.490
2 0.805
3 0.973
4 −0.100
5 0.707
6 0.704
7 0.890
8 0.504
9 0.920
10 0.860
11 0.815
12 0.680
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5. Discussion
5.1. Comparison of Differentiated Scenarios and Entropy for FVC Extraction

(1) Sparse Shrub Areas with Similar Backgrounds (No. 1 and No. 2)

Both are low-entropy images. In No. 1, the sparse yellow vegetation blends visually
with its soil background in color and texture. This reduces the applicability of extrac-
tion methods other than the vegetation indices EXG, VDVI, RGBVI, V-MSAVI, and CIVE
and the ‘b’ component of the color space method. These methods have limitations in
distinguishing subtle differences, affecting the accuracy and reliability of the overall data
analysis. Conversely, No. 2 displays a clearer contrast between vegetation and the back-
ground, improving the applicability and effectiveness of up to 20 high-precision FVC
extraction methods (including the above). This highlights the importance of environmen-
tal background differences for the selection of vegetation extraction methods and data
interpretation. Xie et al. (2020) introduced a new red–green–blue ratio vegetation index,
which showed 93.5% accuracy in vegetation cover extraction using simple RGB data [39].
However, this is clearly not suitable for FVC extraction in arid and semiarid regions.

(2) Mixed Grass–Shrub Areas with Distinct Ground Vegetation Demarcation (No. 3 and No. 10)

Both images cover mixed grass–shrub areas but show significant differences in the
distinctiveness of surface vegetation, so the same high-precision FVC extraction methods
apply to both images except the ‘S’ component. Specifically, the content of No. 10, a low-
entropy image, is uniform and simple, where the ‘S’ component (saturation) demonstrates
high accuracy in vegetation extraction. Therefore, in environments with simple, sparse
vegetation distributions, the ‘S’ component can effectively distinguish between vegetated
and nonvegetated areas, thus enhancing extraction accuracy. No. 3, a medium-entropy
image, is visually more complex and diverse, containing more information and noise
due to its mix of vegetation and nonvegetation and different surface features, reducing
the performance of the ‘S’ component in vegetation extraction. This complexity sharply
differs from the simpler, sparser vegetation distribution in No. 10, further highlighting
how environmental complexity affects the choice and effectiveness of UAV data analysis
methods, as noted by Mariana et al. (2017) [40].

(3) Areas Cooccupied by Shrubs and Sparse Herbaceous Vegetation (No. 4 and No. 12)

In these scenarios, the same methods apply to both images except NNs, which show
differing efficiencies. No. 4, a medium-entropy image, has a complex distribution of shrubs
and grass, including unevenly distributed, densely interwoven vegetation structures,
and variable surface features, which increase classification difficulty, compromising the
performance of the NN model. Similar to the findings by Yan et al. (2019), environmental
complexity significantly hinders NN performance [41]. By contrast, No. 12, a low-entropy
image, may have simpler or more regular vegetation and terrain distribution despite also
having shrubs and sparse grass, providing a more manageable data structure for the NN.
Additionally, No. 12 may benefit from optimized lighting conditions, further enhancing
data processing efficiency and accuracy. Thus, environmental complexity significantly
affects the effectiveness of NN methods in vegetation classification.

(4) Extensive Shrub Areas with Minor Grassland Integration (No. 6 and No. 7)

Both are medium-entropy images. Up to 19 methods are suitable for these widely, uni-
formly vegetated areas, mainly because the adequate resolution and spectral information
of the images allow these high-precision methods to better process and analyze the charac-
teristics of extensive, uniform vegetation distributions. Zhang et al. (2022) demonstrated
that random forest models perform particularly well in processing such uniform vegetation
distributions in arid regions [42]. Additionally, these methods benefit from their algorithms’
high data processing capability and robustness to environmental noise and background
variations, which are crucial for extensively vegetated areas. Therefore, methods besides the
five vegetation indices (NGRDI, EXR, EXER, RGRI, NGBDI) enable a more comprehensive
assessment and accurate extraction of vegetation cover in such environments.
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(5) Mixed Grass–Shrub Areas with Indistinguishable Soil Backgrounds (No. 9)

In this medium-entropy image, the spectral properties of the soil closely resemble
those of the surrounding vegetation, so traditional vegetation indices cannot effectively
distinguish between vegetation and soil. This significantly reduces the number of suitable
high-precision vegetation extraction methods, especially in the color space method, where
only the R, S, and ‘a’ component exhibit high extraction precision. Adjusting the UAV’s
shooting angle and optimizing lighting conditions, as suggested by Catherine et al. (2013),
can help improve vegetation extraction in such complex scenarios [43]. Data quality
should be optimized through adjustments in image capture timing, lighting conditions,
and camera angles to improve vegetation extraction in complex scenarios. Flying under
optimal sunlight conditions, such as early morning or late evening, can avoid the high
reflectance and intense shadows caused by direct midday sunlight and reduce spectral
differences between vegetation and soil due to changes in solar angle. Adjusting the UAV’s
shooting angle can capture more dimensional surface information, increasing the visual and
spectral distinction between vegetation and soil in images. This improves the recognition
and classification accuracy of vegetation features in UAV images and optimizes vegetation
cover estimates in areas with complex soil backgrounds.

(6) Complex Vegetation Types with High Cover and Architectural Interference (No. 5, 8, and 11)

No. 5 and No. 8 are high-entropy images, whereas Image 11 is a medium-entropy one.
In this scenario, the same high-precision vegetation extraction methods are applied to No. 5
and No. 11 due to their similar settings. As for No. 8, only 13 FVC extraction methods are
available, fewer than those for the two other images. Specifically, only five components
(G, B, H, S, V, and b) in the color space method are suitable. This is mainly because of
the extensive presence of sparse herbaceous vegetation and the soil background in Image
8, which lowers the accuracy of these color space components in distinguishing between
vegetation and nonvegetation. Li et al. (2019) have similarly highlighted the limitations of
vegetation indices in complex, mixed environments [44].

In conclusion, the effectiveness of vegetation cover extraction in different entropy
scenarios significantly depends on the entropy level and scene complexity, so selecting ex-
traction methods suitable for specific backgrounds and conditions is crucial. Future research
should further explore how to integrate the advantages of various methods—traditional
vegetation indices, machine learning techniques, and recent image processing algorithms—to
adapt to diverse environmental scenarios and improve vegetation extraction precision
(Figure 11).
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5.2. Comparison of FVC Extraction Methods

This study uses UAV image data and 24 FVC extraction methods to explore vegetation
cover extraction in typical arid areas in Xinjiang across different entropy values. These
methods encompass widely used vegetation indices, the color space method, LMM, and
machine learning algorithms (SVM and NN) that are becoming mainstream in various
research domains. Under different entropy conditions, the optimal FVC extraction methods
are the CIVE, the ‘a’ component of the color space method, LMM, and machine learning.
However, each method has distinct strengths and limitations in extracting FVC under
specific conditions, such as shadows, vegetation under shadows, yellow vegetation, sparse
vegetation, and biological soil crusts. These are detailed as follows (Figure 12, 15 m × 14 m):
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(1) CIVE

The CIVE performs well in distinguishing pure shadows from vegetation but identifies
biological soil crusts, sparse vegetation, yellow vegetation, and their branches as nonvegeta-
tion, which aligns with findings in desert regions by Hao et al. (2020), in which areas under
shadows are also frequently misclassified, highlighting the need for strict control over
lighting and angles during UAV image capture to enhance FVC extraction accuracy under
these conditions [45]. Vegetation under shadows is also frequently misclassified. This
necessitates strict control over lighting and angles during UAV image capture to enhance
FVC extraction accuracy under these conditions.

(2) Color Space Method

The ‘a’ component improves extraction accuracy for sparse vegetation and pure
shadow parts but identifies biological soil crusts, vegetation under shadows, yellow veg-
etation, and branch areas as nonvegetation, consistent with previous research on urban
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vegetation cover mapping [46]. Threshold adjustment can optimize the distinction between
vegetation and nonvegetation for optimal accuracy.

(3) LMM

Compared with the CIVE and the ‘a’ component, the LMM significantly improves
extraction accuracy for pure shadows, sparse vegetation, vegetation under shadows, and
biological soil crusts, but it has limitations with yellow vegetation and branches. Its overall
accuracy is significantly higher than that of the CIVE and the ‘a’ component, as reported by
Ni (2023) [46].

(4) Machine Learning Algorithms

The SVM and NN outperform the other methods in extracting yellow vegetation
and its branches. However, they have limitations in extracting pure shadow and sparse
vegetation parts, with the NN performing notably worse. Vegetation under shadows
and biological soil crusts are also not effectively recognized, with the SVM generally out-
performing the NN. Moreover, despite these methods’ high extraction accuracy for pure
green vegetation, limitations remain in extracting biological soil crusts, yellow vegeta-
tion, branches, shadows, and vegetation under shadows. Future research should explore
combining these methods’ strengths to develop more accurate and practical strategies,
particularly for vegetation cover extraction in arid and semiarid areas [47].

5.3. Accuracy of UAV Remote Sensing Images

UAV remote sensing bridges the gap between ground measurements and low-spatial-
resolution satellite sensing, providing fine centimeter-level ground data without the con-
straints of timing or other factors [48]. This particularly holds in specific small-scale moni-
toring tasks, where UAV operation costs are significantly lower than those of traditional
satellite sensing methods. In practical applications, high-resolution UAV imagery captures
more details, greatly enhancing the accuracy of assessments of vegetation type, health,
and cover. The high-resolution UAV imagery is one of its greatest advantages, allowing
researchers to observe and analyze surface features meticulously. However, whether the
accuracy of vegetation cover extraction linearly increases with the resolution of the original
images or the effect of resolution on FVC extraction stops being significant beyond a certain
threshold remains a critical question. This issue should be discussed to optimize UAV
remote sensing applications in ecological monitoring and environmental management.
Current research indicates that although high-resolution imagery provides rich surface
information, it can also introduce noise, especially in areas with unclear vegetation bound-
aries or dense vegetation, potentially decreasing FVC extraction accuracy [49]. Moreover, a
high image resolution typically entails considerable data processing demands, requiring
more advanced data processing hardware and high processing time and costs. Therefore,
determining the optimal image resolution to balance accuracy and cost is an important
direction for future research. Experimental and theoretical analyses should be performed
to assess FVC extraction performance systematically at different resolutions and establish
precise vegetation monitoring models. Finally, the lack of near-infrared (NIR) as well as
multispectral data in this study greatly limits the ability to capture nuances in vegetation
health, especially in the later stages of growth. Without the use of NIR or multispectral
imagery, more detailed information on plant health and soil-vegetation interactions cannot
be obtained. NIR data, however, are able to distinguish between healthy and stressed
vegetation and are widely used in vegetation studies.

6. Conclusions

This study utilizes UAV data combined with Otsu–VVIs (EXG, EXR, EXER, NGRDI,
NGBDI, RGRI, CIVE, V-MSAVI, EXGR, MGRVI, RGBVI, and VDVI), the color space method
(R, G, B, H, S, V, L, a, and b), LMM, and two machine learning algorithms (SVM and NN)
to extract fractional vegetation cover in different entropy scenarios in the arid regions of
Xinjiang. The most effective methods for extracting fractional vegetation cover against the
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backdrop of the strong reflective soil found in arid and semiarid regions were identified
and validated: the CIVE, the ‘a’ component in the color space method, LMM, and SVM.

Regarding the Otsu–VVIs in high-, medium-, and low-entropy images, the CIVE
outperforms the other vegetation indices, with Accuracy = 0.77–0.97 and Precision = 0.82–1.
These results highlight the CIVE’s superior overall performance, accuracy, and precision in
vegetation extraction, with low rates of missed and false detections.

Regarding the color space method in high-, medium-, and low-entropy images, the
‘a’ component demonstrates superior FVC extraction accuracy compared with the other
color components. It shows Accuracy = 0.82–0.95 and Precision = 0.75–0.96. These results
emphasize the applicability of the ‘a’ component in extracting vegetation cover in the arid
regions of Xinjiang.

The LMM achieves the following metrics in FVC extraction across high-, medium-,
and low-entropy images: Accuracy = 0.81–0.94, Precision = 0.87–0.99. Therefore, the LMM
provides high precision and accuracy in extracting vegetation cover in Xinjiang’s arid
regions, with low rates of missed and false detections.

The SVM achieves the following values in FVC extraction across high-, medium-, and
low-entropy images: Accuracy = 0.76–0.98, Precision = 0.88–0.95. Hence, the SVM is highly
applicable for extracting FVC under different entropy conditions in Xinjiang’s arid and
semiarid regions. On the contrary, the NN shows relatively lower accuracy in extracting
vegetation cover under varying entropy conditions among sparse distributions of shrubs
and grasslands in arid regions.
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