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Abstract: The Karst plateau region has a unique natural erosion environment and sharp human–land
conflicts. This study selected Bijie City, Northwest Guizhou, as the study area. To quantitatively
analyze the human and natural impacts on soil erosion in this area, this paper evaluated the anthro-
pogenic and natural soil erosion based on the Revised Universal Soil Loss Equation (RUSLE) coupled
with the Quantitative Analytical Model (QAM). The results showed the following: (1) the total soil
erosion modulus in the study area showed an increasing trend: 37.86 t/(ha·a) in 2010, 42.12 t/(ha·a)
in 2015, and 48.67 t/(ha·a) in 2020; (2) human activities reduced soil erosion, with an anthropogenic
soil erosion modulus of −13.79 t/(ha·a) in 2015 and −17.36 t/(ha·a) in 2020, indicating that human
activities, such as projects of returning farmland to forests and rocky desertification control, played a
key role in decreasing soil erosion in the study area.; and (3) the percentage of the area of soil erosion
deterioration dominated by natural factors (AGN) is gradually decreasing, 89.47% in 2015 and 81.85%
in 2020; the percentage of the area of soil erosion deterioration dominated by human activities (AGH)
is increasing from 6.17% in 2015 to 13.80% in 2020; and the percentage of the area of soil erosion
mitigation caused by human activities (ALH) and the area of soil erosion not affected by natural and
human activities (NNH) showed no significant change. This result suggests more attention should
be paid to the area of AGH to control soil erosion. This study analyzed the roles of natural factors
as well as human activities in the Karst plateau, enriched the application scope of the QAM, and
provided new ideas for theoretical research in this field.

Keywords: Revision of the Generalized Soil Loss Equation (RUSLE); Quantitative Analytical Model (QAM);
Karst plateau; anthropogenic soil erosion; Bijie City

1. Introduction

Soil erosion is one of the most serious environmental and public health problems [1],
which leads to a decrease in the productivity of arable land and the pollution of surround-
ing waters such as rivers and lakes [2]. Soil erosion is the result of a combination of natural
processes and human activities [3]. In the Universal Soil Loss Equation (USLE), the influ-
encing factors of soil erosion are categorized as rainfall, soil erosion resistance, topography,
vegetation cover, and soil and water conservation measures. Among the above factors,
soil erosion resistance and topography are difficult to change in a short period and are
non-significantly affected by natural and human activities. Rainfall is mostly governed by
natural processes and less influenced by human activity. Rainfall is one of the main factors
driving soil erosion, as numerous studies have demonstrated [4–7]. In the middle reaches
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of the Yarlung Tsangpo River, Wang et al. [8] studied soil erosion and found that the rate of
soil erosion rose by 1.8% for every 1% increase in precipitation.

The vegetation is affected by both natural processes and human activity. Moreover,
soil erosion is sharply influenced by vegetation [2]. Generally, vegetation reduces soil
erosion, due to the following: (1) vegetation canopies and dead leaves retain rainfall [2,9];
(2) the branches and trunks of vegetation retard surface runoff velocity [10]; and (3) the
root system of vegetation can fix the soil and increase the soil shear resistance [2,11–13].
Zhang et al. [14] found that vegetation has the greatest effect on the soil erosion modulus
when the vegetation cover is less than 35%. Furthermore, the effect of vegetation on the
erosion modulus decreases sharply when the vegetation cover is greater than 35%.

The soil and water conservation measures are mainly affected by human activities, by
way of changing land use patterns. Soil properties are influenced by land use practices [15,16].
Particularly, the increasing population results in the transforming of land use patterns and farmer
management [17], which can further affect soil erosion [18]. Gocić et al. [19] demonstrated in
the Jablanica River Basin, Serbia, that land use changes, such as cropland abandonment, have
significantly impacted soil erosion. Zhao et al. [20] found that the soil erosion rate of grass-
covered land classes was 1–3 orders of magnitude lower than that of agricultural land. Obiahu
et al. [21] showed that land use and land cover change are the major causes of soil erosion in
Nigeria; Borrelli et al. [22] assessed the global soil erosion rate in 2001 and 2012, and found that
soil erosion on cropland was 7 times higher than that of natural forests and concluded that the
acceleration of soil erosion is because of land use changing.

Human activities have both negative and positive effects on soil erosion. In recent years,
with the advancement of environmental awareness in China, many soil and water erosion
control measures have been carried out, which are mainly based on biological measures and
supplemented by engineering measures [23]. China’s soil and water conservation measures in
the upper reaches of the Yangtze River have reduced the area of water erosion from 37.2–63.2%
to 23.5–38.1% [23]. Han et al. [24] evaluated the soil erosion modulus of the Baocheng Gou
watershed of the Loess Plateau by using the USLE, to assess the impact of the gully land
consolidation project, which led to a 18.6% reduction in soil erosion in the area. Jin et al. [5]
demonstrated that soil erosion on the Loess Plateau has been on a downward trend because
of the change in surface conditions such as vegetation cover and soil and water conservation
measures, which have contributed 119% to the erosion reduction.

The karst region of southwestern China exhibits a distinctive natural erosion envi-
ronment, including the exposure of bedrock surfaces, the presence of shallow soil layers,
and the occurrence of dual (surface–subsurface) erosion processes [25]. The mechanisms
of soil erosion in this region diverge from those observed in non-karst areas. Further-
more, the region is one of the areas in China where the population living in poverty is
concentrated, and the intense human–land conflict has led to more intensive development
activities [26]. This further exacerbates the occurrence of local rock desertification and
causes soil erosion [27,28], especially in the Karst plateau area of northwest Guizhou, where
the population is large and has a widespread typical karst landscape. Since 1999, a number
of karst ecological restoration projects have been implemented in Southwest China, includ-
ing the “grain-for-green program”, “natural forest protection project”, and “public welfare
forest protection”. Qiao et al. [29] demonstrated those projects promoted the recovery of
local vegetation and exerted a positive effect on soil and water conservation [30].

Recent studies indicated that rainfall can exacerbate soil erosion. Yang et al. [31]
proposed that the quantity, frequency, and intensity of precipitation can influence rainfall
erosivity, which, in turn, affects soil erosion. The detrimental effects of climate change on
soil erosion resulting from global warming cannot be overlooked. Peng et al. [32] observed
a significant increase in precipitation from 2000–2015 in Guizhou province, with climate
contributing to a 71% change in soil retention. Zhu et al. [33] examined the rainfall patterns
in the Karst region of southern China between 1960 and 2017 and indicated that the annual
rainfall erosivity in the region has been on the rise. Hence, there is a complex interaction
between natural and anthropogenic influences on soil erosion in karst areas. It is necessary
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to quantify the role of local anthropogenic factors on soil erosion, focusing on the role of
human activities such as ecological restoration projects on soil erosion in the karst area.

Currently, few works of research have paid attention on quantitatively analyzing soil
erosion from human activities and the natural environment in the Karst plateau region.
The quantification of human and natural soil erosion in this region can facilitate the im-
provement in the soil erosion mechanism and provide theoretical support for local soil
and water conservation decision-makers. To address the above issues, we studied the soil
erosion of Bijie City in northwest Guizhou, China, where the area of rocky desertification is
598,400 ha. All types of karst rocky desertification can be found here [34]. Since 2011, all
districts and counties have been included in the national key counties for the comprehen-
sive management of rocky desertification, with the implementation of the comprehensive
management of rocky desertification in these areas. Additionally, Bijie is the most populous
city in Guizhou Province and is characterized by a significant human–land conflict.

This study introduces the Quantitative Assessment Model (QAM, [3]) based on the
Revised Universal Soil Erosion Equation (RUSLE) to evaluate the soil erosion in Bijie City.
The objective of this study aims to accomplish the following: (1) the quantification of the
natural and anthropogenic soil erosion and analysis of the structure of the anthropogenic
and natural soil erosion in Bijie; (2) the identification of the type of soil erosion; and (3) the
evaluation of the effectiveness of the recent implementation of projects such as returning
farmland to forests and soil conservation management. The findings of this study may
provide novel insights and methodologies for the investigation of soil erosion and soil and
water conservation in karst regions.

2. Study Area and Methods
2.1. Study Area

Bijie City is situated in the northwestern part of Guizhou Province in southwestern
China, with a total area of 26,900 km2 and an average elevation of 1689 m, which represents
the highest average elevation area in Guizhou Province. The topography of the study
area is characterized by a high elevation in the west and a low elevation in the east. Karst
landforms are widely distributed. The eastern part exhibits peak forests, valleys, peaks,
gentle hills, and depressions. The central part displays peaks and troughs. The western
part is characterized by the development of plateaus, gentle hills, and basins. Sedimen-
tary rocks are the dominant rock type observed in the outcrops, with exposed limestone
and dolomite accounting for 66.5% of the total area. The study area is situated within a
humid subtropical monsoon climate zone, characterized by abundant rainfall, with an
average annual precipitation of 1200 mm and an average annual evaporation of more than
1000 mm. The vertical climate change is particularly evident due to the large difference
in altitude. The soil is dominated by yellow and yellow-brown loam, with the majority
of the vegetation comprising secondary evergreen broad-leaved mixed forest. We found
that 4.61% of the territory belongs to the North Pearl River Basin, while 95.39% belongs
to the Yangtze River Basin. There are 193 rivers longer than 10 km, which flow into the
Wujiang River, Chishui River, Beipanjiang River, and Jinshajiang River. The density of
the river network is 0.5 km/km2. By the end of 2020, the forest area of the study area is
161,067,700 hm2, with a coverage of 60%. We found that 11 nature reserves have been
established in this area (Figure 1), with a total area of 53,932.4 hm2, accounting for 2.01% of
the total area.
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Figure 1. Study area.

2.2. Data Sources

The data employed in this study include data of climate, soil, Digital Elevation Model
(DEM), Normalized Difference Vegetation Index (NDVI), land use, and rock desertification
survey and protected area. The climatic data employed in this study comprise the daily
value dataset of China’s surface climate data (V3.0), which encompasses daily values of
barometric pressure, air temperature, precipitation, evaporation, relative humidity, and
other variables at 699 meteorological stations across China since January 1951. The soil data
utilized is from the World Unified Soil Database (WUSDB) 1.1. The DEM data employed
is from the GDEMV3 30M dataset. The NDVI data was obtained by extracting MODIS
standard products adopted from 1990 to 2022 using the Google Earth Engine platform. The
30 m land cover dataset was utilized to obtain land use data. Additionally, data from the
rocky desertification survey and protected areas in Guizhou, China, were sourced from the
Guizhou Forestry Bureau. The data sources are presented in Table 1.

Table 1. Data source.

Description Name Source

Climate data The daily data set of China’s ground
climate data V3.0

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/
(accessed on 1 September 2023)

Soil data World Unified Soil Database 1.1 (HWSD) https://doi.org/10.12072/ncdc.westdc.db3647.2023

DEM GDEMV3 30M https://lpdaac.usgs.gov/products/astgtmv003/
(accessed on 27 September 2024)

NDVI MODIS https://modis.gsfc.nasa.gov/ (accessed on
1 September 2023)

Land use data 1990–2021 China 30 m Resolution Annual Land
Cover Dataset and Its Dynamics https://doi.org/10.5281/zenodo.4417810

Stony desertification survey data
and protected area data Guizhou’s Third Rocky and Forestry Survey data Guizhou Forestry Bureau

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/
https://doi.org/10.12072/ncdc.westdc.db3647.2023
https://lpdaac.usgs.gov/products/astgtmv003/
https://modis.gsfc.nasa.gov/
https://doi.org/10.5281/zenodo.4417810
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2.3. Research Methods
2.3.1. RUSEL Model

The RUSLE model requires less data and has excellent overall performance, making
it a popular choice for soil erosion assessment and prediction studies in China. However,
the simulation results of the RUSLE model in karst areas had been found to have signif-
icant errors. As a result, the study adopted the RUSLE model of Pan et al. [35] after the
introduction of rock desertification factors.

A = (1 − α) · R · K · LS · C · P (1)

where A represents soil erosion modulus, t/(ha·a); R represents rainfall erosivity factor
(MJ·mm/(ha·h·a)); K represents soil erodibility factor (t·ha·h/(ha·MJ·mm)); LS is the topo-
graphic factor, dimensionless, and comprised of slope length (L) and slope gradient (S); C is the
vegetation cover and crop management factor, which is dimensionless and has a range of 0 to 1;
P represents soil and water conservation measures factor, dimensionless; and α represents the
degree of rock exposure, dimensionless.

The monthly rainfall erosivity model proposed by Yu and Rosewell [36], which has
been demonstrated to perform well in the southwestern region [33], was employed to
calculate the factor R. The factor K was calculated using the formula proposed by Sharpley
and Williams [37], which considers the carbon content of the topsoil.

The method proposed by Cai et al. [38] was utilized to calculate the factor C. Factor LS
was calculated using the method proposed by McCool et al. [39,40].

The factor P has been demonstrated to reduce the role of the amount and rate of soil
erosion [41]. It is challenging to ascertain the factor P through the establishment of natural
plots on a large scale. This study draws upon the findings of previous studies conducted in
karst areas [41–43] to assign values to the factor P. The details are presented in Table 2.

Table 2. Soil and water conservation scores for different land types.

Cropland Forest Shrub Grassland Water Snow/Ice Barren Impervious

P 0.23 0.24 0.23 0.15 0 0 1 0

2.3.2. QAM Model

Lang et al. [3] constructed a Quantitative Assessment Model (QAM) based on the
Chinese Soil Loss Equation (CSLE) to quantify the anthropogenic soil erosion modulus in
Jiangxi Province, China.

SEM = ASE + NaSE (2)

where SEM is integrated soil erosion; ASE is anthropogenic soil erosion; and NaSE is natural
soil erosion.

Initially, Lang et al. [3] used CSLE to calculate NaSE and ASE in Jiangxi Province. In
the calculation of NaSE, the engineering measure factor and the cultivation measure factor
of the CSLE model were assigned a value of 1 directly, as anthropogenic activities were not
considered. It is evident that climate change and human activities interact with vegetation
ecosystems [5,12]. The method was employed to establish the linear relationship between
the temperature data and NDVI data of the protected area where no human activities
are affected. The temperature data were employed to deduce NDVI and the vegetation
cover factor C with no human activities was calculated. Consequently, the SEM and NaSE
were obtained, and then the ASE was calculated by SEM subtracting NaSE. QAM model
provides a new direction for the calculation of anthropogenic soil erosion, but the setting of
the engineering measure factor and the cultivation measure factor is not reasonable enough.
The details can be seen in Section “Land Cover Background”.

Afterward, Lang et al. [3] constructed a contribution rate (CR) calculation table (Table 3)
to determine the dominant factors of soil erosion. Six types of soil erosion were classified,
i.e., exacerbation dominated by natural factors (AGN), exacerbation dominated by human
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activities (AGH), mitigation dominated by human activities (ALH), exacerbation dominated
by both natural factors and human activities (AGC), exacerbation led by natural factors
(AGN), and not influenced by natural factors and human activities (NNH).

Table 3. CR calculation table.

Influencing Factor Contribution Rate % Effect Factor

NF HA NF HA EC DF EFFECT

NaSE > 0

ASE > 0 CRN = NaSE/SEM × 100 CRH = ASE/SEM × 100
CRN > CRH NF aggregate
CRN < CRH HA aggregate
CRN = CRH HA&NF equivalent

ASE = 0 CRN = 100 CRH = 0 CRN > CRH NF aggregate

ASE < 0
CRN = (1 − CRH) × 100 CRH = ASE/(NaSE +

|ASE|) × 100 CRN > 1 NF aggregate

CRN = 100 CRH = −100 CRN = |CRH| HA alleviation

NaSE = 0
ASE > 0 CRN = 0 CRH = 100 CRN < CRH HA aggregate

ASE = 0 CRN = 0 CRH = 0 CRN = CRH - unaffected

Notes: NF is the Natural Factor; HA is Human Activity; EC is the Evaluation Condition; DF is the Dominant Factor;
and CRN is the Contribution Rate of the Natural Factor. The value of CRN is in the range of 0–200%; CRH is the
Contribution Rate of Human Activity, CRH is in the range of −100%~100%; and CRH + CRN = 100%.

Correlation Analysis of NDVI and Temperature

Previous studies [5,44] have demonstrated a strong correlation between vegetation
cover and climate change in Guizhou. In this study, data from meteorological stations
in and near Bijie City were used to obtain the monthly mean air temperature by inter-
polation. The maximum monthly NDVI data were calculated using MODIS data. The
correlation coefficient between the monthly mean air temperature and the monthly NDVI
in the protected area was calculated. As shown in Table 4, the highest correlation coefficient
in 2015 years was 0.68 in April, and the highest correlation coefficient in 2020 years was
0.75 in October. To avoid the error of NDVI values caused by seasonal changes, all re-
gression analyses were carried out using the month of April, which exhibited the highest
correlation coefficients.

Table 4. NDVI and temperature correlation coefficients.

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

2015 −0.37 0.54 ** 0.48 0.68 ** 0.28 −0.29 0.31 ** 0.10 −0.39 0.36 0.36 ** −0.15
2020 −0.37 0.10 0.61 ** 0.71 ** 0.59 ** 0.25 0.39 −0.05 −0.27 0.75 ** −0.52 −0.52

Note: ** represents significance at the 0.01 level.

Land Cover Background

In the CSLE model, Lang et al. [3] assumed a value of 1 for the engineering measure
factor and the cultivation measure factor to calculate Nase. This method does not take
into account the land cover background, which may lead to the NaSE overvalued. In this
study, when calculating NaSE, P was assigned based on the land use background, so the
calculation results are more in line with the actual situation.

Figure 2 shows the flow chart of the study. Firstly, the soil erosion modulus (SEM) for
2010, 2015, and 2020 were calculated. Secondly, the P was calculated using the 2010 data
as the land cover background. The fitted relationship between the NDVI and vegetation
cover in the protected area was then extracted. Finally, the temperature data were used to
calculate the C by referring to the whole Bijie City NDVI data. The NaSE and ASE were
calculated for the years 2015 and 2020. The CR table was employed to calculate the soil
erosion contribution rate and the dominant type of soil erosion.
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2.3.3. Nash–Sutcliffe Efficiency (NSE)

Nash–Sutcliffe efficiency (NSE) is one of the main methods used to evaluate the
simulation accuracy of models. In this study, NSE coefficient is used to evaluate the
simulation accuracy of RUSLE.

NSE = 1 − ∑ (yi − ŷi)
2

∑ (yi − y)2 (3)

where yi is the actual observation value, ŷi is the simulation result of the model, and y is
the average observation value.

3. Results and Analyses

The Nash efficiency coefficient (NSE) is commonly used to evaluate the effectiveness
of hydrological modeling. In this study, the NSE coefficient was employed to verify the
accuracy of the monitoring data from runoff plots at four monitoring stations in Bijie City;
stations are shown in Figure 1. Surface runoff catchment basins were constructed below
the runoff plots at each monitoring station, and the water volume and sand content of
the catchment basins were measured after each rainfall. The SEM was then calculated.
Due to the differing slopes, vegetation types, and coverage of the runoff plots, only the
2019 data from each monitoring station were available as a baseline. To provide a more
comprehensive assessment, similar plots within 500 m of each monitoring station were
selected for validation. The information for these plots is presented in Table 5. Yang [45] in
the Sala Creek Demonstration Area in Bijie demonstrated that the soil subsurface leakage
of runoff plots accounted for a significant proportion of the total soil erosion, ranging from
73.29% to 89.9%. These findings reflect the characteristics of surface and subsurface soil
erosion in the Bijie area, with an average of 83.58%. The runoff plots at each monitoring
station only observed surface soil loss; therefore, the observed results must be corrected.
Figure 3 shows the corrected soil erosion and simulated soil erosion modulus of each
monitoring station. The results of this correction are shown in Table 5, which indicates that
the NSE is 0.76, suggesting that the RUSLE model’s simulation effect is satisfactory.

Furthermore, the working news published by the Guizhou Development and Reform
Commission on the website of the Guizhou Provincial People’s Government [46] in 2011
indicated that the soil erosion modulus in Bijie, Guizhou was 33.89 t/(ha·a). The results of
this study indicate that the soil erosion modulus of Bijie City was 37.86 t/(ha·a) in 2010,
which is comparable to the data published by the government.
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Table 5. Runoff plot information.

Monitoring Station (2019) RUSLE (2020)

Site Slope ◦ Vegetation
Type

Vegetation
Cover %

Erosion Modulus
t/(ha·a)

Slope ◦ Vegetation
Type

Vegetation
Cover %

Erosion
Modulus

t/(ha·a)Surface Surface and
Subsurface

Dingjiazhai 15 Pyrus nivalis 50 13.07 79.6 15 Bush 50 46.63

Yuming 23 Natural
vegetation 50 0.38 2.33 23 Arbor 50 3.53

Baima 15.8 Fallow land 23 0.48 2.91 15 Grass 39 2.675

Jingmen 15 Privet
microphyll 50 1.86 0 17 Bush 50 0Land 2024, 13, x FOR PEER REVIEW 11 of 31 
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3.1. The Total Soil Erosion Characteristics

As illustrated in Figure 4, the average SEM in the study area is on the rise, and the
rising speed is accelerating. In 2015, the average erosion modulus in Bijie City increased
by 11% compared with 2010. Furthermore, in 2020, it increased by 16% compared with
2015. As illustrated in Figure 5, the intensity of the SEM in the central region of Bijie City is
considerably higher than that observed in the eastern and western areas. With the passage
of time, the central region of soil erosion presents the trend of polarization. As shown in
Table 6, This is evidenced by the increase in the area occupied by SEM < 5 t/(ha·a) and
SEM > 150 t/(ha·a).
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Table 6. Percentage of natural soil erosion by class.

Soil Erosion Models 2015 2020

0–5 7.75% 6.39%
5–25 24.95% 18.77%
25–50 25.28% 24.05%
50–80 18.74% 20.80%

80–150 17.23% 21.37%
150> 6.05% 8.62%

In terms of counties, Nayong County exhibited the highest SEM, with a multi-year
average SEM of 70.9 t/(ha·a). This was followed by Zhijin County, which exhibited a multi-
year annual average SEM of 58.0 t/(ha·a). Weining County exhibited the lowest and least
fluctuating SEM, with a multi-year annual average SEM of 32.5 t/(ha·a). The remaining
five counties exhibited a similar range, with values ranging from 35 to 40 t/(ha·a). The
SEM in Qixingguan, Hezhang, and Dafang Counties exhibited a pattern of a slight decline,
followed by a pronounced increase. The most notable increase was observed in Hezhang
County, where the SEM grew by 75% in 2020 in comparison to 2015. The SEM in Jinsha
and Nayong Counties has declined since 2015, with Jinsha County experiencing the largest
decline at 27%. In contrast, the SEM in Qianxi, Zhijin, and Weining Counties exhibited an
increase, although the growth rate slowed down. The slowest growth rate was observed in
Weining County.

3.2. Characteristics of Natural Soil Erosion Change (NaSE)

In the absence of human activities, soil erosion in Bijie City as a whole is expected to
deteriorate in line with the annual average natural erosion modulus of 56 t/(ha·a) in 2015,
which increased to 66 t/(ha·a). The NaSE was 0.21 t/(ha·a) in 2020, with low-intensity
erosion gradually shifting to high-intensity erosion. This is evidenced by the fact that
high-intensity soil erosion is mainly clustered in the central part of Bijie City.

As illustrated in Figure 6, the lowest annual average NaSE was observed in Weining County,
with a value of 41.18 t/(ha·a) over the study period. Conversely, the highest annual average
NaSE was observed in Zhijin and Nayong Counties, with values of 91.24 and 103.04 t/(ha·a),
respectively. The annual mean NSE in Dafang and Qianxi Counties was about 52 t/(ha·a), and
that in Jinsha, Qixingguan and Hezhang Counties was about 60 t/(ha·a).

Land 2024, 13, x FOR PEER REVIEW 14 of 31 
 

 
Figure 6. NSE. 

3.3. Characteristics of Anthropogenic Soil Erosion (ASE) 
ASE is defined as the acceleration or containment of soil erosion by human activities, 

used to indicate the influence of human activities on soil erosion. Soil erosion is acceler-
ated by human activities in the case of ASE >0, while soil erosion is inhibited by human 
activities in the case of ASE <0. A larger absolute value represents stronger human activi-
ties. 

In generally, Figure 7 illustrates that human activities have reduced the soil erosion 
modulus in terms of the annual average soil erosion. Furthermore, the weakening value 
of soil erosion has been increasing year by year, with a value of −13.79 in 2015 and −17.36 
t/(ha·a) in 2020. Figure 8 illustrates the ASE in Bijie City. In 2015, the positive effects of 
human activities were concentrated in the central region, while the negative effects were 
concentrated in the western part. In 2020, the positive effects of human activities began to 
be widely distributed throughout Bijie City, while the negative effects occurred mainly in 
the eastern hinterland. 

Figure 6. NSE.



Land 2024, 13, 1841 11 of 25

3.3. Characteristics of Anthropogenic Soil Erosion (ASE)

ASE is defined as the acceleration or containment of soil erosion by human activities,
used to indicate the influence of human activities on soil erosion. Soil erosion is accelerated
by human activities in the case of ASE >0, while soil erosion is inhibited by human activities
in the case of ASE <0. A larger absolute value represents stronger human activities.

In generally, Figure 7 illustrates that human activities have reduced the soil erosion modulus
in terms of the annual average soil erosion. Furthermore, the weakening value of soil erosion
has been increasing year by year, with a value of −13.79 in 2015 and −17.36 t/(ha·a) in 2020.
Figure 8 illustrates the ASE in Bijie City. In 2015, the positive effects of human activities were
concentrated in the central region, while the negative effects were concentrated in the western
part. In 2020, the positive effects of human activities began to be widely distributed throughout
Bijie City, while the negative effects occurred mainly in the eastern hinterland.
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The highest annual average ASE was −7.20 t/(ha·a) in Weining County during the
period 2010–2020. The lowest annual average ASE was found in Zhijin, Nayong, and Jinsha,
with an annual average ASE of −26 t/(ha·a). The annual average ASE for the remaining
counties were −11, −28.99, and −22.44 t/(ha·a), respectively. The remaining counties
exhibited a range of annual average AASE, with values between −11 and −16 t/(ha·a).

3.4. Soil Erosion Contribution and Soil Erosion Type

Figures 9 and 10 illustrate the contribution of soil erosion in each region. It can be
observed that the CRH decreased from −24.67% in 2015 to −26.29% in 2020. The average
CRN in 2015 and 2020 was 124.67% and 126.29%, respectively.

Land 2024, 13, x FOR PEER REVIEW 16 of 31 
 

As illustrated in Figure 11, four distinct types of soil erosion are observed in Bijie, 
namely, AGN, AGH, ALH, and NNH. AGN is the most prevalent type, occurring through-
out the entirety of Bijie, followed by AGH and NNH, with AGH being particularly con-
centrated in the eastern region of Bijie. In contrast, ALH is the least distributed type, ac-
counting for less than 0.01% of the total area of Bijie. As time passes, the prevalence of 
AGH has been on the rise. The AGN type in Bijie City has exhibited a gradual decline, 
with an 89.47% decrease observed in 2015 and an 81.85% decrease in 2020. Conversely, 
the area share of AGH has increased from 6.17% in 2015 to 13.80% in 2020. The area share 
of ALH and NNH has remained relatively stable. 

Figure 12 presents the percentage of soil erosion types at the county level. It can be 
observed that, at the county level, AGN remains the dominant soil erosion type, with a 
percentage exceeding 70% in all districts and counties. The highest AGN percentage is 
observed in Weining and Hezhang, at 96% and 92%, respectively, while the lowest AGN 
percentage is observed in Zhijin and Jinsha, both at around 72%. The highest percentage 
of AGH was observed in Jinsha, with a value of 26.53%. This was followed by Zhijin, with 
a value of 16.19%. The lowest percentage of AGH was observed in Hezhang and Weining, 
with values of 3.32% and 0.69%, respectively. The percentage of AGH in Dafang, Nayong, 
Qixingguan, and Qianxi was observed to be approximately 10%. The percentage of ALH 
in all districts and counties is less than 0.01%. The city’s highest NNH ratios are observed 
in Zhijin and Nayong, at 11.1% and 6.95%, respectively. The exception is Jinsha, which has 
an ALH ratio of 1.3%. The remaining five counties have ALH ratios of approximately 3%. 

 
Figure 9. CRN. Figure 9. CRN.

Land 2024, 13, x FOR PEER REVIEW 17 of 31 
 

 
Figure 10. CRH. 

 
Figure 11. Spatial distribution of soil erosion types. 

Figure 10. CRH.



Land 2024, 13, 1841 13 of 25

As illustrated in Figure 11, four distinct types of soil erosion are observed in Bi-
jie, namely, AGN, AGH, ALH, and NNH. AGN is the most prevalent type, occurring
throughout the entirety of Bijie, followed by AGH and NNH, with AGH being particularly
concentrated in the eastern region of Bijie. In contrast, ALH is the least distributed type,
accounting for less than 0.01% of the total area of Bijie. As time passes, the prevalence of
AGH has been on the rise. The AGN type in Bijie City has exhibited a gradual decline, with
an 89.47% decrease observed in 2015 and an 81.85% decrease in 2020. Conversely, the area
share of AGH has increased from 6.17% in 2015 to 13.80% in 2020. The area share of ALH
and NNH has remained relatively stable.
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Figure 12 presents the percentage of soil erosion types at the county level. It can be
observed that, at the county level, AGN remains the dominant soil erosion type, with a
percentage exceeding 70% in all districts and counties. The highest AGN percentage is
observed in Weining and Hezhang, at 96% and 92%, respectively, while the lowest AGN
percentage is observed in Zhijin and Jinsha, both at around 72%. The highest percentage of
AGH was observed in Jinsha, with a value of 26.53%. This was followed by Zhijin, with a
value of 16.19%. The lowest percentage of AGH was observed in Hezhang and Weining,
with values of 3.32% and 0.69%, respectively. The percentage of AGH in Dafang, Nayong,
Qixingguan, and Qianxi was observed to be approximately 10%. The percentage of ALH in
all districts and counties is less than 0.01%. The city’s highest NNH ratios are observed in
Zhijin and Nayong, at 11.1% and 6.95%, respectively. The exception is Jinsha, which has an
ALH ratio of 1.3%. The remaining five counties have ALH ratios of approximately 3%.
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A comparison of soil erosion types at the county level between 2015 and 2020 revealed
a notable trend of decreasing AGN and increasing AGH. The largest region of change is in
Jinsha County, where over 26.80% of the territory has changed from AGN to AGH, and,
by 2020, nearly 40% of Jinsha will be of the AGH type. Next are Qianxi and Zhijin, which,
in 2020, accounted for 14.70% and 10.72% of the total area transformed, and 18.23% and
21.54% of the AGH type, respectively. With only 0.6% and 2.38% of the area shifting from
AGN to AGH, Weining and Hezhang have had the least amount of erosion type shift. By
2020, Weining will have 0.99% AGH type.

4. Discussion
4.1. Natural Soil Erosion

Elevation and slope are the key factors influencing soil erosion [47,48]. This study
aimed to investigate the impact of natural factors on soil erosion, with a focus on eleva-
tion, slope, and vegetation type. The influence of elevation on soil erosion is primarily
manifested in the relationship between elevation and rainfall, as well as the impact of
human activities [48]. The topography of the Karst plateau in southwest China exhibits
a pronounced elevation gradient, with the highest elevations in the west and the low-
est in the east. This gradient can be used to divide the city into three distinct elevation
classes [49]. The first class, which is mainly located in Weining and Hezhang Coun-
ties, is characterized by highland and mountainous terrain, with elevations ranging from
1900–2500 m. The second degree is primarily situated in Dafang County, Qixingguan District,
Nayong County, and Zhijin County, characterized by mountainous terrain and elevations
of 1400–1900 m. The third level is predominantly found in Jinsha County, which is a low
mountainous terrain with an elevation of 1000–1400 m. As illustrated in Figure 13a, the SEM
exhibits a positive correlation with elevation at lower elevations [50,51]. However, a point of
variation occurs as the elevation increases, reaching between 1600 and 1800 m [51]. As shown
in Figure 6, high-intensity NaSE is mainly concentrated in the second class in the central
part of Karst plateau in southwest China, while the lowest grade of NaSE occurs in Weining,
which is in the first class. As shown in Figure 13b, slope also provides dynamic conditions
for soil erosion, with the increase in slope flow leading to the result where, the stronger the
gravitational potential energy, the stronger the scouring capacity of the soil; in addition to
the increase in the soil slope, this also leads to the weakening of the stability of the soil layer
being more prone to be eroded by the water flow [52,53], making the soil erosion modulus
higher where the slope is high. Vegetation is a significant factor influencing soil erosion, with
different types of vegetation exhibiting varying degrees of influence. Wakiyama et al. [54]
observed that less soil erosion occurred in coniferous forests compared to broadleaf forests
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based on 137Cs and 210Pb, a finding that was also evident in this study, as illustrated in
Figure 13c. Coniferous forest communities are characterized by the presence of thick moss
lichens attached to the ground surface. A study by Juan et al. [55] demonstrated that the
loss of sediment on slopes with moss cover was significantly reduced through simulation
experiments. However, despite being coniferous forests, the soil erosion rate of coniferous
forests with greater vegetation cover was found to be higher than that of coniferous forests
with less vegetation cover. This phenomenon requires further investigation in subsequent
studies. We suggest that the preferred choice of coniferous forests in afforestation activities
in the Karst plateau area is more conducive to the prevention of soil erosion.
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Figure 13. Soil erosion at different gradients of factors. (Note: (a) represents soil erosion under
different altitude gradients; (b) represents soil erosion under different slope gradients; (c) represents
soil erosion under different vegetation types. (d) stands for soil erosion at different population
densities. In (c), 1 represents the Rainfed cropland; 2 represents the Herbaceous cover; 3 repre-
sents the Irrigated cropland; 4 represents the Open evergreen broadleaved forest; 5 represents the
Closed evergreen broadleaved forest; 6 represents the Closed deciduous broadleaved forest (fc > 0.4);
7 represents the Open evergreen needle-leaved forest (0.15 < fc < 0.4); 8 represents the Closed ev-
ergreen needle-leaved forest (fc > 0.4); 9 represents the Shrubland; 10 represents the Evergreen
shrubland; and 11 represents the Grassland.)

4.2. Anthropogenic Soil Erosion

It has been demonstrated that human activities can both intensify and slow down
soil erosion [56,57]. Human activities have the potential to disrupt the equilibrium of the
land, which may, in turn, lead to soil erosion [58,59]. Furthermore, in the karst region, the
impact of human activities on the environment may be intensified, as observed by [60,61].
Soil erosion is not solely a consequence of urban construction and crop cultivation. In-
deed, a series of ecological protection measures are implemented to influence soil erosion
once economic construction has reached a certain level. This is driven by the necessity to
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create a better living environment and to consider future development. To mitigate the
environmental impact of human activities, the local government has implemented policies
and programs designed to restore the ecological balance and mitigate soil erosion. The
Bijie City Environmental Bulletin indicates that soil and water conservation work was con-
ducted annually between 2010 and 2020, with a total cumulative area of 1396.59 km2 of soil.
Furthermore, projects aimed at controlling soil and water erosion have been implemented
on an ongoing basis. These include the return of farmland to forests and the planting of
trees. As a result, the percentage of forests in the Karst plateau in southwest China has in-
creased from 40% to 60% between 2010 and 2020. Figures 8 and 10 demonstrate a declining
trend in the ASE in the Karst plateau in southwest China. This indicates that human activi-
ties have reduced the intensity of local soil erosion, both at the citywide and county levels.
Figures 14 and 15 illustrate the distribution of the resident population and industries in Bijie
over the past five years, with data sourced from the Guizhou Statistical Yearbook. It can be
observed that Weining County has the largest population and the highest agricultural share
in the city, and is one of the most densely populated counties in Guizhou Province. The high
population density and agricultural share result in frequent and extensive disturbances to
the land, which, in turn, leads to the highest ASE in Weining County. In contrast, in the
Karst plateau region, Zhijin, Nayong and Jinsha exhibit the lowest ASE. Here, the popula-
tion is the lowest and the proportion of agriculture is the lowest. The relationship between
human activities and soil erosion is analyzed by dividing the population density into four
gradients in terms of population density, as illustrated in Figure 13d. The expansion of
urban areas increases impervious surfaces [62], a phenomenon that reduces soil sources,
thereby reducing the soil erosion modulus. Furthermore, soil erosion is associated with
the unequal distribution of economic costs, with densely populated areas having greater
financial inputs to improve the environmental quality, which, in turn, slows down soil ero-
sion [22]. In contrast, in suburban and even more remote areas dominated by agricultural
development, especially in the Karst plateau area, due to the high topographic relief, flat
land resources are very limited. Consequently, sloping plowing has become a necessity to
sustain survival and development [63], which also generates more soil erosion.
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4.3. Total Soil Erosion

The SEM in the Karst plateau area was 37.86 t/(ha·a) in 2010, 42.12 t/(ha·a) in 2015,
and 48.67 t/(ha·a) in 2020. The SEM in the Karst plateau area demonstrated an overall
increasing trend, with a gradual acceleration in the growth rate. This trend aligns with the
findings of the study by Zhang [51] in the Karst region of southwest China, as illustrated in
Figure 16a. Among the many factors in the RUSLE model, only factors R, C, and P change
with time [64]. The R is influenced by climatic conditions and reflects the relationship
between rainfall and soil erosion. As economies develop, the C and P are increasingly
affected by human activities. The C has a negative correlation with vegetation cover, while
the P reflects the ratio of soil loss after taking certain soil and water conservation measures
to the amount of soil loss when no measures are taken. Figure 16b illustrates the temporal
trends of the R, C, and P factors, which are susceptible to change with time. Guizhou has
long implemented the policy of returning farmland to forests and has carried out rocky
desertification control projects since 2011 [65]. These policies have led to a year-on-year
increase in vegetation cover in Guizhou in recent years [66,67]. The trend of NDVI values
in the Southwest Karst region in recent years is illustrated in Figure 16c. It can be observed
that the vegetation, which has been rising year on year, has the effect of slowing down soil
erosion to a significant extent. The decreasing trend of both the C and P is related to these
policies. The factors of C and P are both decreasing, but the SEM continues to rise, which
should be taken seriously. In the context of global climate, the annual rainfall in China
is increasing year by year, and [68] showed that the annual rainfall erosivity is generally
increasing, which makes soil erosion more likely, and Lian et al. [69] and Zhu et al. [33]
found a similar trend in the karst region; see Figure 16d. The continuous increase in rainfall
erosivity masks the effectiveness of soil erosion control through ecological restoration,
returning farmland to forests, rocky desertification management, etc. The reason for
the increase in the soil erosion modulus in the Karst plateau area is mainly due to the
continuous increase in rainfall erosivity.

As can be seen in Figure 16, of the many changing factors, only the R factor is increasing
from year to year, while the others are decreasing. It can be seen that the increase in the
area of SEM < 5 t/(ha·a) is due to the improvement brought about by human activities such
as afforestation. However, although most factors are decreasing, factors such as K and LS
remain constant and continue to provide conditions for soil erosion to occur. Especially in
areas where it is difficult to carry out measures such as afforestation, their C and P have not
changed much. The increase in the erosive power of rainfall, on the other hand, contributes
greatly to the occurrence of soil erosion in these areas.
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Figure 16. Trend plots ((a) shows the results of this study compared with other studies; (b) shows
the trend of the factors in this study; (c) shows the results of the NDVI in this study compared
with other studies; and (d) shows the results of the factor R in this study compared with other
studies) [29,33,51,68–70].

4.4. Type of Soil Erosion

The occurrence of soil erosion is the result of a complex interaction between human
activities and natural factors [71]. The combined contribution rate of anthropogenic and
natural soil erosion reflects the influence of human and natural processes on soil erosion.
From 2015 to 2020, the area of AGH in the eastern part of the Karst plateau area exhibited
a gradual increase, while the western part remained almost unchanged. Jiang et al. [48]
demonstrated that elevation exerts a significant influence on human activities and rainfall
patterns. They observed that rainfall tends to increase when the air is cooled by elevation,
and subsequently declines when water vapor is depleted. This phenomenon has been
corroborated by Zhang [51]. In the short term, human activities primarily impact vegetation
and land use types, which only influence soil erosion to a limited extent. These activities are
not the primary drivers of soil erosion. Rainfall is the primary source of soil erosion power.
The lower erosive power of rainfall in the western part of the Karst plateau in southwest
China results in a reduced or amplified effect of human activities on soil erosion in this
area. The undulation of the land surface provides power conditions for slope flow, and the
relatively flat terrain of Western and eastern parts of the Karst plateau in southwest China
relies on the topography to weaken the erosion of soil by water flow, which also further
weakens the “reduction/amplification effect” of human activities. From an anthropogenic
perspective, studies [71] have demonstrated that human activities such as agriculture may
contribute to soil erosion. However, soil erosion control has been conducted annually in
the Karst plateau in southwest China. The high altitude of Weining, which also makes
transport challenging, has resulted in a lack of local industry and minimal disturbance
of the land by human activities. Consequently, despite the city of Weining having the
highest population density and the largest agricultural sector, the soil erosion modulus has
remained stable for an extended period.
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In conclusion, the deterioration of soil erosion in the Karst plateau in southwest China
is a consequence of climate change. Despite the implementation of numerous policies and
projects to alleviate soil erosion, these have not been effective in halting the increasing
trend of soil erosion. It is, therefore, imperative that soil and water conservation techniques
be updated with alacrity to counteract the climatic context in which the erosive power
of rainfall is increasing year by year. It is also worthy of note that the AGH area is still
increasing, for example, in Jinsha County, even though overall human activities play a
significant role in curbing soil erosion. While human activities have largely mitigated
the adverse effects of soil erosion, in certain areas, human activities have exacerbated the
problem due to the influence of natural factors and the interference of human activities
of various kinds. This indicates that the incidence of heavy erosion, which is the focus of
soil and water conservation measures, has been reduced. However, some of the erosion
patterns close to the critical point are susceptible to deterioration due to the influence
of human activities. This reflects the emphasis placed on treatment and a slight lack of
prevention in previous soil and water conservation work. It is therefore worthy of attention
in future soil and water conservation work.

4.5. The Relationship Between Vegetation and Soil Erosion on Different Land Types

Sobol global sensitivity analysis is a common method of sensitivity analysis, which
performs well in global sensitivity measurements [72]. In order to determine the effect of
each factor on soil erosion, this study used the Python language Sobol global sensitivity
analysis of each factor of the RUSLE model based on the SALib library. The first-order
sensitivity index of the R factor is −0.0008, and the rest are around 0.1 (Table 7). The total
sensitivity index is the same, except for R, which is 0.0423, and the other factors are around
0.3 (Table 7). The effect of the R factor on the soil erosion modulus is so small that it is
negligible (this may be due to the small study area), while the sensitivities of the other
factors are close to each other, which indicates that the settings of the factors in the RUSLE
model are relatively reasonable. The total sensitivity index of Rock is the largest, which
also reflects that bedrock exposure is a non-negligible part of the soil erosion process in
the karst region; as a karst plateau region, the topography of Bijie City has great ups and
downs, so the LS factor has a significant effect on the soil erosion. As a karst plateau area,
the topography of Bijie City has great ups and downs, so the LS factor has the second
highest total sensitivity index.

Table 7. Sensitivity analysis.

Factor First-Order Sensitivity Index Total Sensitivity Index

R −0.0008 0.0423
K 0.0987 0.3064
LS 0.1041 0.3334
C 0.0984 0.3009
P 0.0754 0.2935

ROCK 0.1056 0.3445

In addition, the Sobol sensitivity analysis supports the analysis of the interaction
between factors(Figure 17). C and P, the two factors dominated by human activities, have
the largest effect on soil erosion after interaction (0.0504), but all the sensitivities of the
factors in the figure are less than 0.06, which means that the effect of the interaction between
the two factors on soil erosion is relatively small.



Land 2024, 13, 1841 20 of 25

Land 2024, 13, x FOR PEER REVIEW 24 of 31 
 

4.5. The Relationship Between Vegetation and Soil Erosion on Different Land Types 
Sobol global sensitivity analysis is a common method of sensitivity analysis, which 

performs well in global sensitivity measurements [72]. In order to determine the effect of 
each factor on soil erosion, this study used the Python language Sobol global sensitivity 
analysis of each factor of the RUSLE model based on the SALib library. The first-order 
sensitivity index of the R factor is −0.0008, and the rest are around 0.1 (Table 7). The total 
sensitivity index is the same, except for R, which is 0.0423, and the other factors are around 
0.3 (Table 7). The effect of the R factor on the soil erosion modulus is so small that it is 
negligible (this may be due to the small study area), while the sensitivities of the other 
factors are close to each other, which indicates that the settings of the factors in the RUSLE 
model are relatively reasonable. The total sensitivity index of Rock is the largest, which 
also reflects that bedrock exposure is a non-negligible part of the soil erosion process in 
the karst region; as a karst plateau region, the topography of Bijie City has great ups and 
downs, so the LS factor has a significant effect on the soil erosion. As a karst plateau area, 
the topography of Bijie City has great ups and downs, so the LS factor has the second 
highest total sensitivity index. 

Table 7. Sensitivity analysis. 

Factor First-Order Sensitivity Index Total Sensitivity Index 
R −0.0008 0.0423 
K 0.0987 0.3064 
LS 0.1041 0.3334 
C 0.0984 0.3009 
P 0.0754 0.2935 

ROCK 0.1056 0.3445 

In addition, the Sobol sensitivity analysis supports the analysis of the interaction be-
tween factors(Figure 17). C and P, the two factors dominated by human activities, have 
the largest effect on soil erosion after interaction (0.0504), but all the sensitivities of the 
factors in the figure are less than 0.06, which means that the effect of the interaction be-
tween the two factors on soil erosion is relatively small. 

 
Figure 17. Interactive sensitivity index. Figure 17. Interactive sensitivity index.

Increasing vegetation cover has a good mitigating effect on soil erosion [73,74]. To
further discuss the relationship between vegetation restoration and soil erosion in karst
areas, we analyzed the relationship between soil erosion and vegetation cover of four land
types. As shown in Figure 18, the soil erosion modulus gradually decreased with the
increase in vegetation cover in forests, especially as the decrease in the soil erosion modulus
was accelerated after the vegetation cover exceeded 30%. Fonseca et al. (2023) found
that, with the restoration of vegetation cover from 0% to 65%, the soil erosion modulus
of the restored vegetation area decreased to 2% of that of bare land in the karst savanna
area [75]. Liang et al. (2023) investigated the soil physicochemical properties of three
artificial restoration measures in arbor forest, orchard, grassland, and farmland (control),
which were continuously implemented for 16 years, and the results showed that the soil
bulk density decreased, the capillary porosity increased, the soil water stable aggregates
increased, and the soil erodibility decreased by about 15% after vegetation restoration [76].
Jiang et al. (2009) pointed out that, in the karst region, soil erosion is greatly reduced when
the vegetation cover exceeds 60%, while soil loss is large when the vegetation cover is
less than 20% [77]. For “binary” erosion in karst areas, vegetation restoration can also
significantly improve the soil erosion resistance in the 10–20 cm soil layer in the fissure
zone [78]. It is clear that afforestation has an excellent effect on soil erosion, so we suggest
that afforestation should be carried out with a vegetation cover of more than 30%, preferably
up to 60%.

There is a parabolic relationship between the soil erosion modulus and vegetation
cover in cropland, with the highest soil erosion modulus at 60% vegetation cover. In
Bijie, farmland abandonment is a common phenomenon, Liu and Han (2020) showed that
the SOC of farmland after abandonment was close to that of the native vegetation area
and significantly higher than that of farmland [79]; and Yan et al. (2023) found that the
physicochemical properties of soils in karst areas deteriorated and then improved after
farmland abandonment, which helped to increase the resistance of soils to erosion. This is
the reason why the soil erosion modulus is lower when the vegetation cover is low [78].
Furthermore, the vegetation cover of arable land is a dynamic process involving a sowing
phase, a crop growing phase, and a crop harvesting phase. Predictably, vegetation cover is
low at the beginning and end of the ploughing period and is often accompanied by soil
turning, a series of actions that can weaken the soil’s ability to resist erosion, resulting in
an increase in soil erosion. During the growth phase of the crop, the vegetation cover is
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higher, the leaves reduce the kinetic energy of the raindrops, and the root system increases
the soil’s resistance to erosion, resulting in a lower soil erosion modulus. In response to this
phenomenon, it is recommended that soil erosion protection be provided in the early stages
of cultivation, for example, by laying plastic sheeting over the exposed part of the soil.
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Grasslands are similar to forests in that there is a negative correlation between vegeta-
tion cover and soil erosion. However, in scrubland, there is a positive correlation between
vegetation cover and soil erosion, and, when the vegetation cover of scrubland reaches
60%, the soil erosion modulus reaches the highest and gradually stabilizes, which is com-
pletely different from other land types. Shrubs and herbaceous plants grow in similar
environments and there is a competitive relationship between them, and an increase in
shrubs means a decrease in herbaceous plants [80]. Soils with herbaceous vegetation have
a higher shear strength and aggregate stability than planted shrubs and trees [81]. Leite
et al. (2020) also showed that sand production in areas with high herbaceous vegetation
cover was significantly higher than that in areas with high shrub vegetation cover [82]. An
increase in shrub cover can lead to bare surface soil and the loosening of the soil, resulting
in increased soil erosion [80]. Therefore, we believe that future soil and water conservation
efforts should address the damage to soil erosion resistance caused by shrub encroachment.
In native grassland areas, shrubs should be prevented from encroaching on the habitat of
herbaceous vegetation; in scrub areas, shrub and grass structures need to be optimized to a
reasonable degree to prevent soil erosion.

4.6. Deficiencies and Prospects

As shown in Figure 3, we find in the accuracy verification process that Dingjiazhai’s
predicted value is far lower than the measured value. In order to improve the accuracy, we
added the rock exposure to the RUSLE model to consider the complex soil erosion in the
karst plateau region. However, it is undeniable that the natural environment of the karst
region is extremely complex with high terrain fragmentation. Zeng et al. (2018) classified
the soil erosion in the karst region of southwest China into three types, SA, SB, and SC,
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through field surveys [83]; Fan et al. (2023) classified the soil erosion of karst slopes into
three types, RES, RCS, and SCR, based on the rock exposure from the microscopic point of
view [84]; and Fan et al. (2023) classified the soil erosion of karst slopes into three types,
RES, RCS and SCR, based on the rock exposure from the microscopic point of view [85].
RES, RCS, and SCR categories [84]. In addition, as shown in Figure 13, factors such as
the altitude, slope, vegetation type, and population density affect soil erosion in the study
area. It can be seen that the soil erosion modulus in karst areas is caused by many factors,
especially in the regional scale study of karst plateau areas. The same vegetation cover and
the same vegetation type may produce very different soil erosion situations when they are
encountered in different geographical strips. Feng et al. (2020) found a similar situation
and pointed out that factors such as the sustainability of vegetation cover, drought, and
rock type may affect the effect of vegetation restoration on the control of soil erosion in
karst regions [85]. Therefore, we believe it is necessary to pay attention to this point in
future research on soil erosion in karst areas.

5. Conclusions

In this study, the QAM model is improved based on the RUSLE model. The objective
is to evaluate soil erosion in the Karst plateau, including anthropogenic and natural soil
erosion, and to determine the soil erosion types in the study area. The results of the study
are presented below:

(1) The SEM in the study area increased year by year from 2010 to 2020, and the rate of
increase was accelerating. The average erosion modulus rose by 11% in 2015 compared
to 2010, and by 16% in 2020 compared to 2015;

(2) The anthropogenic soil erosion modulus in the study area was −13.79, and −17.36 t/(ha·a)
in 2015 and 2020, respectively, indicating that human activities have reduced soil erosion
in general;

(3) The type of study area is characterized by a dominance of natural factors (AGN) in
soil erosion, with a proportion of human-induced factors (AGH) increasing.

This study addresses a gap in the quantitative study of anthropogenic soil erosion in
the Karst plateau area by analyzing the role of natural factors and human activities on soil
erosion in the Bijie area in terms of mechanism. Furthermore, this study expands the scope
of the application of the QAM and provides a new way of thinking for theoretical research
in this field.
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Land Use and Demographic Changes in the Jablanica River Basin, Serbia. Agriculture 2020, 10, 345. [CrossRef]

20. Zhao, J.; Wang, Z.; Dong, Y.; Yang, Z.; Govers, G. How soil erosion and runoff are related to land use, topography and annual
precipitation: Insights from a meta-analysis of erosion plots in China. Sci. Total Environ. 2022, 802, 149665. [CrossRef]

21. Obiahu, O.H.; Elias, E. Effect of land use land cover changes on the rate of soil erosion in the Upper Eyiohia river catchment of
Afikpo North Area, Nigeria. Environ. Chall. 2020, 1, 100002. [CrossRef]

22. Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.;
et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [CrossRef]

23. Zhen, L. The national census for soil erosion and dynamic analysis in China. Int. Soil Water Conserv. Res. 2013, 1, 12–18. [CrossRef]
24. Han, X.; Lv, P.; Zhao, S.; Sun, Y.; Yan, S.; Wang, M.; Han, X.; Wang, X. The Effect of the Gully Land Consolidation Project on Soil

Erosion and Crop Production on a Typical Watershed in the Loess Plateau. Land 2018, 7, 113. [CrossRef]
25. Han, Z.; Yang, X.; Yin, X.; Fang, Q.; Zhao, L. How do the distribution patterns of exposed roots affect the rainfall-runoff processes

of sloped land under simulated multi-rainfall conditions in karst region? CATENA 2024, 236, 107708. [CrossRef]
26. Wang, L.C.; Lee, D.W.; Zuo, P.; Zhou, Y.K.; Xu, Y.P. Karst environment and eco-poverty in southwestern China: A case study of

Guizhou Province. Chin. Geogr. Sci. 2004, 14, 21–27. [CrossRef]
27. Yang, R.; Zhong, C.; Yang, Z.; Liu, F.; Peng, H. Analysis on poverty influencing factors in deep poverty county of Karst

Rocky-desertified Area in Southwest China. World Geogr. Res. 2022, 31, 1298–1309. [CrossRef]
28. Zhang, J.Y.; Dai, M.H.; Wang, L.C.; Zeng, C.F.; Su, W.C. The challenge and future of rocky desertification control in karst areas in

southwest China. Solid Earth 2016, 7, 83–91. [CrossRef]
29. Qiao, Y.; Jiang, Y.; Zhang, C. Contribution of karst ecological restoration engineering to vegetation greening in southwest China

during recent decade. Ecol. Indic. 2021, 121, 107081. [CrossRef]
30. Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; De Keersmaecker, W.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased

vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [CrossRef]
31. Yang, F.; Lu, C. Spatiotemporal variation and trends in rainfall erosivity in China’s dryland region during 1961–2012. CATENA

2015, 133, 362–372. [CrossRef]
32. Peng, J.; Tian, L.; Zhang, Z.; Zhao, Y.; Green, S.M.; Quine, T.A.; Liu, H.; Meersmans, J. Distinguishing the impacts of land use and

climate change on ecosystem services in a karst landscape in China. Ecosyst. Serv. 2020, 46, 101199. [CrossRef]
33. Zhu, D.; Xiong, K.; Xiao, H. Multi-time scale variability of rainfall erosivity and erosivity density in the karst region of southern

China, 1960–2017. CATENA 2021, 197, 104977. [CrossRef]

https://doi.org/10.1016/j.catena.2020.105129
https://doi.org/10.1016/j.jseaes.2019.04.019
https://doi.org/10.1007/s11356-019-06738-y
https://www.ncbi.nlm.nih.gov/pubmed/31808079
https://doi.org/10.1016/j.geomorph.2011.10.009
https://doi.org/10.1016/j.catena.2005.03.007
https://doi.org/10.1016/j.geoderma.2012.01.006
https://doi.org/10.1016/j.catena.2015.08.015
https://doi.org/10.1016/j.geoderma.2021.115319
https://doi.org/10.1016/j.geoderma.2022.115720
https://doi.org/10.1007/s42729-020-00290-2
https://doi.org/10.1186/1472-6785-13-46
https://doi.org/10.3390/agronomy10081081
https://doi.org/10.1016/j.jssas.2021.01.005
https://doi.org/10.3390/agriculture10080345
https://doi.org/10.1016/j.scitotenv.2021.149665
https://doi.org/10.1016/j.envc.2020.100002
https://doi.org/10.1038/s41467-017-02142-7
https://doi.org/10.1016/S2095-6339(15)30035-6
https://doi.org/10.3390/land7040113
https://doi.org/10.1016/j.catena.2023.107708
https://doi.org/10.1007/s11769-004-0004-4
https://doi.org/10.3969/j.issn.1004-9479.2022.06.2020533
https://doi.org/10.5194/se-7-83-2016
https://doi.org/10.1016/j.ecolind.2020.107081
https://doi.org/10.1038/s41893-017-0004-x
https://doi.org/10.1016/j.catena.2015.06.005
https://doi.org/10.1016/j.ecoser.2020.101199
https://doi.org/10.1016/j.catena.2020.104977


Land 2024, 13, 1841 24 of 25

34. Shi, J. Evaluation and countermeasure analysis of comprehensive control of stony desertification in Bijie City. Master’s Thesis,
Guizhou University, Guiyang, China, 2021. (In Chinese).

35. Pan, L.D.; Li, R.; Shu, D.C.; Zhao, L.N.; Chen, M.; Jing, J. Effects of rainfall and rocky desertification on soil erosion in karst area of
Southwest China. J. Mt. Sci. 2022, 19, 3118–3130. [CrossRef]

36. Yu, B.; Rosewell, C. An assessment of a daily rainfall erosivity model for New South Wales. Soil Res. 1996, 34, 139. [CrossRef]
37. Sharpley, A.; Williams, J.R. EPIC-Erosion/Productivity Impact Calculator: 1. Model Documentation; US Government Printing Office:

Washington, DC, USA, 1990.
38. Cai, C.; Ding, S.; Shi, H.; Huang, L.; Zhang, G. Prediction of soil erosion in a small watershed using USLE model and IDRISI.

J. Soil Water Conserv. 2000, 2, 19–24. (In Chinese)
39. McCool, N.D.K.; Brown, N.L.C.; Foster, N.G.R.; Mutchler, N.C.K.; Meyer, N.L.D. Revised Slope Steepness Factor for the Universal

Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [CrossRef]
40. McCool, N.D.K.; Foster, N.G.R.; Mutchler, N.C.K.; Meyer, N.L.D. Revised Slope Length Factor for the Universal Soil Loss Equation.

Trans. ASAE 1989, 32, 1571–1576. [CrossRef]
41. Ghosal, K.; Bhattacharya, S.D. A Review of RUSLE Model. Photonirvachak 2020, 48, 689–707. [CrossRef]
42. Rao, W.; Shen, Z.; Duan, X. Spatiotemporal patterns and drivers of soil erosion in Yunnan, Southwest China: RULSE assessments

for recent 30 years and future predictions based on CMIP6. CATENA 2023, 220, 106703. [CrossRef]
43. Getachew, B.; Manjunatha, B.R.; Bhat, G.H. Assessing current and projected soil loss under changing land use and climate using

RUSLE with Remote sensing and GIS in the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Egypt. J. Remote Sens. Space
Sci. 2021, 24, 907–918. [CrossRef]

44. Wu, Y.; Yang, J.; Li, S.; Guo, C.; Yang, X.; Xu, Y.; Yue, F.; Peng, H.; Chen, Y.; Gu, L.; et al. NDVI-Based Vegetation Dynamics and
Their Responses to Climate Change and Human Activities from 2000 to 2020 in Miaoling Karst Mountain Area, SW China. Land
2023, 12, 1267. [CrossRef]

45. Yang, Q. Study on the Contribution Rate of Soil Surface-Subsurface Loss and Its Influencing Factors in a Typical Areas of Karst
Rocky Desertification in Plateau Mountains. Master’s Thesis, Guizhou Normal University, Gui Yang, China, 2023. Available
online: https://link.cnki.net/doi/10.27048/d.cnki.ggzsu.2023.001274 (accessed on 27 September 2024). (In Chinese)

46. Guizhou Provincial Development and Reform Commission. The Ecological Construction of Guizhou Province Will Enter a Stage
to Ensure the Harmonious Development of Man and Nature. Guizhou Provincial People’s Government 2011, March 10. Available
online: https://www.guizhou.gov.cn/home/gzyw/202109/t20210913_70337228.html (accessed on 1 September 2023).

47. Jain, S.K.; Goel, M.K. Assessing the vulnerability to soil erosion of the Ukai Dam catchments using remote sensing and GIS.
Hydrol. Sci. J. 2002, 47, 31–40. [CrossRef]

48. Jiang, Y.; Gao, J.; Yang, L.; Wu, S.; Dai, E. The interactive effects of elevation, precipitation and lithology on karst rainfall and
runoff erosivity. CATENA 2021, 207, 105588. [CrossRef]

49. Qu, K. Study on Evaluation of Geological Hazard Susceptibility of Collapse and Landslide in Bijie City, Guizhou Province.
Master’s Thesis, Jilin University, Changchun, China, 2020. Available online: https://link.cnki.net/doi/10.27162/d.cnki.gjlin.2019
.000616 (accessed on 27 September 2024). (In Chinese)

50. Huang, Z.; Yu, J.; Fang, L.; Fang, F.; Miao, Y.; Zhi, J.; Xu, G.; Shui, H.; Cao, Y. Study on soil erosion and its influencing factors in
Qingyijiang River Basin based on InVEST model. J. Soil Water Conserv. 2023, 37, 189–197. (In Chinese)

51. Zhang, Y. Soil Erosion Patterns and Driving Mechanisms Based on the Degree of Karst Development. Master’s Thesis, Guizhou
Normal University, Gui Yang, China, 2023. Available online: https://link.cnki.net/doi/10.27048/d.cnki.ggzsu.2023.001161
(accessed on 27 September 2024). (In Chinese)

52. Assouline, S.; Ben-Hur, M. Effects of rainfall intensity and slope gradient on the dynamics of interracial erosion during soil
surface sealing. CATENA 2006, 66, 211–220. [CrossRef]

53. Devia, G.K.; Ganasri, B.; Dwarakish, G. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [CrossRef]
54. Wakiyama, Y.; Onda, Y.; Mizugaki, S.; Asai, H.; Hiramatsu, S. Soil erosion rates on forested mountain hillslopes estimated using

137Cs and 210Pbex. Geoderma 2010, 159, 39–52. [CrossRef]
55. Juan, J.; Dongdong, L.; YuanHang, F.; Pu, L. Combined effects of moss colonization and rock fragment coverage on sediment

losses, flow hydraulics and surface microtopography of carbonate-derived laterite from karst mountainous lands. CATENA 2023,
229, 107202. [CrossRef]

56. Mushi, C.; Ndomba, P.; Trigg, M.; Tshimanga, R.; Mtalo, F. Assessment of basin-scale soil erosion within the Congo River Basin: A
review. CATENA 2019, 178, 64–76. [CrossRef]

57. Wen, X.; Deng, X. Current soil erosion assessment in the Loess Plateau of China: A mini-review. J. Clean. Prod. 2020, 276, 123091.
[CrossRef]

58. Li, Y.; Bai, X.; Zhou, Y.; Qin, L.; Tian, X.; Tian, Y.; Li, P. Spatial–Temporal Evolution of Soil Erosion in a Typical Mountainous Karst
Basin in SW China, Based on GIS and RUSLE. Arab. J. Sci. Eng. Sect. B Eng. 2015, 41, 209–221. [CrossRef]

59. Yang, X.; Sun, W.; Li, P.; Mu, X.; Gao, P.; Zhao, G. Reduced sediment transport in the Chinese Loess Plateau due to climate change
and human activities. Sci. Total Environ. 2018, 642, 591–600. [CrossRef] [PubMed]

60. Zhang, G.; Shen, R.; Luo, R.; Cao, Y.; Zhang, X. Effects of sediment load on hydraulics of overland flow on steep slopes. Earth Surf.
Process. Landf. 2010, 35, 1811–1819. [CrossRef]

https://doi.org/10.1007/s11629-022-7458-7
https://doi.org/10.1071/SR9960139
https://doi.org/10.13031/2013.30576
https://doi.org/10.13031/2013.31192
https://doi.org/10.1007/s12524-019-01097-0
https://doi.org/10.1016/j.catena.2022.106703
https://doi.org/10.1016/j.ejrs.2021.10.001
https://doi.org/10.3390/land12071267
https://link.cnki.net/doi/10.27048/d.cnki.ggzsu.2023.001274
https://www.guizhou.gov.cn/home/gzyw/202109/t20210913_70337228.html
https://doi.org/10.1080/02626660209492905
https://doi.org/10.1016/j.catena.2021.105588
https://link.cnki.net/doi/10.27162/d.cnki.gjlin.2019.000616
https://link.cnki.net/doi/10.27162/d.cnki.gjlin.2019.000616
https://link.cnki.net/doi/10.27048/d.cnki.ggzsu.2023.001161
https://doi.org/10.1016/j.catena.2006.02.005
https://doi.org/10.1016/j.aqpro.2015.02.126
https://doi.org/10.1016/j.geoderma.2010.06.012
https://doi.org/10.1016/j.catena.2023.107202
https://doi.org/10.1016/j.catena.2019.02.030
https://doi.org/10.1016/j.jclepro.2020.123091
https://doi.org/10.1007/s13369-015-1742-6
https://doi.org/10.1016/j.scitotenv.2018.06.061
https://www.ncbi.nlm.nih.gov/pubmed/29909326
https://doi.org/10.1002/esp.2019


Land 2024, 13, 1841 25 of 25

61. Wang, H.; Gao, J.; Hou, W. Quantitative attribution analysis of soil erosion in different geomorphological types in karst areas:
Based on the geodetector method. J. Geogr. Sci. 2019, 29, 271–286. [CrossRef]

62. Santhanam, H.; Majumdar, R. Quantification of green-blue ratios, impervious surface area and pace of urbanisation for sustainable
management of urban lake—Land zones in India—A case study from Bengaluru city. J. Urban Manag. 2022, 11, 310–320. [CrossRef]

63. Li, R.; Wu, Q.; Zhang, J.; Wen, Y.; Li, Q. Effects of Land Use Change of Sloping Farmland on Characteristic of Soil Erosion
Resistance in Typical Karst Mountainous Areas of Southwestern China. Pol. J. Environ. Stud. 2019, 28, 2707–2716. [CrossRef]

64. Niu, L.; Shao, Q. Soil Conservation Service Spatiotemporal Variability and Its Driving Mechanism on the Guizhou Plateau, China.
Remote Sens. 2020, 12, 2187. [CrossRef]

65. Chen, M.; Gao, J.Y.; Chen, H.L.; Jing, J.; Li, R. Elevation, bedrock exposure, land use, interbedded limestone and clastic rock,
and vegetation coverage dominate the spatiotemporal variability of soil erosion in karst basin. J. Mt. Sci. 2023, 20, 2519–2535.
[CrossRef]

66. Ma, Y.; Zuo, L.; Gao, J.; Liu, Q.; Liu, L. The karst NDVI correlation with climate and its BAS-BP prediction based on multiple
factors. Ecol. Indic. 2021, 132, 108254. [CrossRef]

67. Xu, Y.; Dai, Q.Y.; Lu, Y.G.; Zhao, C.; Huang, W.T.; Xu, M.; Feng, Y.X. Identification of ecologically sensitive zones affected by
climate change and anthropogenic activities in Southwest China through a NDVI-based spatial-temporal model. Ecol. Indic. 2024,
158, 111482. [CrossRef]

68. Xu, X.; Yan, Y.; Dai, Q.; Yi, X.; Hu, Z.; Cen, L. Spatial and temporal dynamics of rainfall erosivity in the karst region of southwest
China: Interannual and seasonal changes. CATENA 2023, 221, 106763. [CrossRef]

69. Lian, Y.; You, G.J.Y.; Lin, K.; Jiang, Z.; Zhang, C.; Qin, X. Characteristics of climate change in southwest China karst region and
their potential environmental impacts. Environ. Earth Sci. 2014, 74, 937–944. [CrossRef]

70. Liu, Z.; Zhang, Y. Vegetation cover change and its response to human activities in the southwestern karst region of China.
Front. Ecol. Evol. 2024, 12, 1326601. [CrossRef]

71. He, X.; Zhou, J.; Zhang, X.; Tang, K. Soil erosion response to climatic change and human activity during the Quaternary on the
Loess Plateau, China. Reg. Environ. Change 2006, 6, 62–70. [CrossRef]

72. Sysoev, A. Sensitivity Analysis of Mathematical Models. Computation 2023, 11, 159. [CrossRef]
73. Ouyang, W.; Hao, F.; Skidmore, A.K.; Toxopeus, A. Soil erosion and sediment yield and their relationships with vegetation cover

in upper stream of the Yellow River. Sci. Total Environ. 2010, 409, 396–403. [CrossRef] [PubMed]
74. Xu, J.; Zhang, Y.; Huang, C.; Zeng, L.; Teng, M.; Wang, P.; Xiao, W. Forest restoration shows uneven impacts on soil erosion, net

primary productivity and livelihoods of local households. Ecol. Indic. 2021, 134, 108462. [CrossRef]
75. Fonseca, M.R.S.; Uagoda, R.E.S.; Chaves, H.M.L. Runoff, soil loss, and water balance in a restored Karst area of the Brazilian

Savanna. CATENA 2022, 222, 106878. [CrossRef]
76. Liang, P.; Wang, X.; Xu, Q.; Zhang, J.; Fang, R.; Fu, Z.; Chen, H. Lithology-mediated soil erodibility characteristics after vegetation

restoration in the karst region of Southwest China. Land Degrad. Dev. 2023, 35, 1070–1086. [CrossRef]
77. Jiang, Y.; Li, L.; Groves, C.; Yuan, D.; Kambesis, P. Relationships between rocky desertification and spatial pattern of land use in

typical karst area, Southwest China. Environ. Earth Sci. 2009, 59, 881–890. [CrossRef]
78. Yan, Y.; Dai, Q.; Yang, Y.; Lan, X. Effects of vegetation restoration types on soil erosion reduction of a shallow karst fissure soil

system in the degraded karst areas of Southwestern China. Land Degrad. Dev. 2023, 34, 2241–2255. [CrossRef]
79. Liu, M.; Han, G. Assessing soil degradation under land-use change: Insight from soil erosion and soil aggregate stability in a

small karst catchment in southwest China. PeerJ 2020, 8, e8908. [CrossRef] [PubMed]
80. Liu, Y.; Fang, H.; Huang, Z.; Leite, P.A.; Liu, Y.; López-Vicente, M.; Zhao, J.; Shi, Z.; Wu, G. Shrub encroachment increases soil

erosion risk in hillside alpine meadows of the Qinghai-Tibetan Plateau, NW China. CATENA 2022, 222, 106842. [CrossRef]
81. Fattet, M.; Fu, Y.; Ghestem, M.; Ma, W.; Foulonneau, M.; Nespoulous, J.; Bissonnais, Y.L.; Stokes, A. Effects of vegetation type on

soil resistance to erosion: Relationship between aggregate stability and shear strength. CATENA 2011, 87, 60–69. [CrossRef]
82. Leite, P.A.M.; Wilcox, B.P.; McInnes, K.J. Woody plant encroachment enhances soil infiltrability of a semiarid karst savanna.

Environ. Res. Commun. 2020, 2, 115005. [CrossRef]
83. Zeng, F.; Jiang, Z.; Shen, L.; Chen, W.; Yang, Q.; Zhang, C. Assessment of multiple and interacting modes of soil loss in the karst

critical zone, Southwest China (SWC). Geomorphology 2018, 322, 97–106. [CrossRef]
84. Fan, C.; Zhao, L.; Hou, R.; Fang, Q.; Zhang, J. Quantitative analysis of rainwater redistribution and soil loss at the surface and

belowground on karst slopes at the microplot scale. CATENA 2023, 227, 107113. [CrossRef]
85. Feng, S.; Wu, L.; Liang, B.; Wang, H.; Liu, H.; Zhu, C.; Li, S. Forestation does not necessarily reduce soil erosion in a karst

watershed in southwestern China. Prog. Phys. Geogr. Earth Environ. 2020, 45, 82–97. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11442-019-1596-z
https://doi.org/10.1016/j.jum.2022.03.001
https://doi.org/10.15244/pjoes/94288
https://doi.org/10.3390/rs12142187
https://doi.org/10.1007/s11629-023-7963-3
https://doi.org/10.1016/j.ecolind.2021.108254
https://doi.org/10.1016/j.ecolind.2023.111482
https://doi.org/10.1016/j.catena.2022.106763
https://doi.org/10.1007/s12665-014-3847-8
https://doi.org/10.3389/fevo.2024.1326601
https://doi.org/10.1007/s10113-005-0004-7
https://doi.org/10.3390/computation11080159
https://doi.org/10.1016/j.scitotenv.2010.10.020
https://www.ncbi.nlm.nih.gov/pubmed/21071065
https://doi.org/10.1016/j.ecolind.2021.108462
https://doi.org/10.1016/j.catena.2022.106878
https://doi.org/10.1002/ldr.4972
https://doi.org/10.1007/s12665-009-0083-8
https://doi.org/10.1002/ldr.4603
https://doi.org/10.7717/peerj.8908
https://www.ncbi.nlm.nih.gov/pubmed/32292656
https://doi.org/10.1016/j.catena.2022.106842
https://doi.org/10.1016/j.catena.2011.05.006
https://doi.org/10.1088/2515-7620/abc92f
https://doi.org/10.1016/j.geomorph.2018.08.043
https://doi.org/10.1016/j.catena.2023.107113
https://doi.org/10.1177/0309133320958613

	Introduction 
	Study Area and Methods 
	Study Area 
	Data Sources 
	Research Methods 
	RUSEL Model 
	QAM Model 
	Nash–Sutcliffe Efficiency (NSE) 


	Results and Analyses 
	The Total Soil Erosion Characteristics 
	Characteristics of Natural Soil Erosion Change (NaSE) 
	Characteristics of Anthropogenic Soil Erosion (ASE) 
	Soil Erosion Contribution and Soil Erosion Type 

	Discussion 
	Natural Soil Erosion 
	Anthropogenic Soil Erosion 
	Total Soil Erosion 
	Type of Soil Erosion 
	The Relationship Between Vegetation and Soil Erosion on Different Land Types 
	Deficiencies and Prospects 

	Conclusions 
	References

