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Abstract: While the surface of the Earth plays a key role in weather forecasting through its interaction
with the atmosphere, in ensemble numerical weather predictions the uncertainty on the surface is
only represented with perturbations in the parameterisations representing the surface processes.
Data representing the surface, such as the land cover, are not perturbed. As fully data-driven
forecasts without parameterisations are growing in importance, sampling the uncertainty on the
land cover data brings a new way of making ensemble forecasts. Our work describes a method
of generating ensemble land cover maps for numerical weather prediction. The target land cover
map has the ECOCLIMAP-SG labels used in the SURFEX surface model and therefore is expected
to have all relevant labels for surface-atmosphere interactions. The method translates the ESA
WorldCover map to ECOCLIMAP-SG labels and resolution using auto-encoders. The land cover
ensemble members are obtained by sampling the land cover probabilities in the output of the neural
network. This paper builds upon the work done in a companion paper describing the high-resolution
version of ECOCLIMAP-SG, called ECOCLIMAP-SG+, used for the training and evaluation of the
neural network. The output map presented here, called ECOCLIMAP-SG-ML, improves upon the
ECOCLIMAP-SG map in terms of resolution (from 300 m to 60 m), overall accuracy (from 0.41 to
0.63), and the ability to produce ensemble members.

Keywords: land cover land use; machine learning; meteorology

1. Introduction

Numerical weather prediction (NWP) is one of the most impactful physical sciences,
and its improvement over the last few decades is mostly related to the increase in reso-
lution of the atmospheric models [1]. Resolution gains are still ongoing because of their
valuable ability to represent high-impact events, such as heavy convective precipitation [2],
flow-induced pollution over complex terrain [3], and urban heat islands [4]. Sub-kilometer
resolution is highly beneficial for representing such events. Consequently, because atmo-
spheric models rely on accurate data about the Earth’s surface, the resolution of these
databases should also be increased [5].

Many atmospheric models, such as AROME [6] or HARMONIE-AROME [7,8], use
the external surface model SURFEX [9]. The latest physiography database used in SURFEX
is ECOCLIMAP-SG1 (or ECOSG thereafter). SURFEX estimates the surface fluxes for each
atmospheric grid cell (sub-kilometer) by averaging the contributions from four types of
surface: nature, urban, lake, and sea [10]. It relies on the assumption that the surface
types are known at a much finer resolution than the atmospheric model. Yet the current
resolution of the ECOSG land cover map is approximately 300 m, which is not suitable for
sub-kilometer-scale weather forecasting.

Artificial intelligence (AI) and machine learning (ML) have proven useful in increasing
the resolution of land cover maps, with many of the latest land cover maps including some
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element of machine learning in the production process. For example, ESA WorldCover [11]
uses gradient boosting, S2GLC [12] and ELC10 [13] use random forests, and ELULC [14]
uses a multi-layer perceptron. In all of these examples, the machine learning methods
are rather simple, and the greatest care is put on the feature engineering. Authors from
that community usually have a remote sensing background, and their focus is mostly
on the quality of the maps that they produce. Conversely, some other work, mostly
stemming from the release of ML-ready datasets, such as BigEarthNet [15] or SEN12MS [16],
design advanced deep learning architectures to perform land cover segmentation [17] or
classification [18], while the feature engineering is not the main focus. Authors from that
community usually have an AI background, and their focus is mostly on the performance of
the architecture that they design. Ref. [19] has yet another approach that takes advantage
of both existing land cover maps and modern AI architectures. Their main idea is to
translate land cover maps: one-to-one [19] or n-to-n [20]. A very attractive feature of map
translation is to bypass the remote sensing feature engineering. Indeed, remote sensing
data can be complicated to process or have unequal coverage, which is even more critical
when a training dataset has to be constructed. In [19] they use a truncated convolutional
U-Net trained with a Dice loss to translate one land cover map to another. The difference in
resolution between the two maps is dealt with thanks to the truncation of the U-Net, which
makes it difficult to reuse the method with other maps. In [20] they use one convolutional
auto-encoder per map, trained to minimise a combination of losses. This ensures that the
latent space is common to all maps, which enables n-to-n map translation and proved
to be more efficient than one-to-one translation. The n-to-n map translation [20] is the
approach that is followed in this paper, as it is the most successful method to perform
map translation.

Uncertainty quantification in meteorology is a long-standing problem that led to
the development of ensemble prediction systems (EPS). In EPS, the uncertainty of the
forecast is estimated by running multiple forecasts with perturbations instead of a single
forecast [21,22]. The perturbations introduced in EPS are carefully constructed to represent
the full range of physically coherent possible states of the atmosphere. They account
for the uncertainty on the initial state and for the uncertainty on the model itself. The
uncertainty at the surface is represented by the physical parameterisations representing the
interaction processes with the atmosphere. However, the recently introduced data-driven
forecasts do not have physical parameterisations and therefore cannot be perturbed in
this way [23,24]. To our knowledge, surface fields, such as land cover, have never been
perturbed in EPS. Thanks to probability distributions given by AI output, we have a way
to create an ensemble of land cover maps and, therefore, account for the uncertainty in
land cover.

This work aims to provide a land cover map with the same labels as ECOSG but
at a finer resolution. As part two of a two-part publication, it builds upon the work
of [25], which already produced a high-resolution version of ECOSG with uncertainty
quantification, called ECOCLIMAP-SG+ (or ECOSG+ thereafter). In ECOSG+, 40 land
cover maps were merged to refine ECOSG where better data were available. However,
where no better data were available, the original ECOSG labels were kept. Moreover,
the land cover maps used to produce ECOSG+ have various resolutions and geographical
coverage. Thus, the quality of ECOSG+ is spatially heterogeneous, which is depicted by
the quality score map produced along side the land cover map. In this work, we aim to
enhance the quality of ECOSG+ by replacing the labels with a machine learning estimation
where quality is poor. Moreover, as the neural network actually provides a probability
distribution of labels for each pixel, it is possible to use it as an estimation of the land
cover uncertainty. This is carried out in this work by producing an ensemble of 6 land
cover maps.

In Section 2, we introduce the data that are used to train the AI model, assess them,
and produce the final map. In Section 3, we give details on the AI model, the training
strategy, and the evaluation method. In Section 4, we provide the results of the evaluation,
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both quantitative and qualitative. In Section 5, we focus on the known limitation of this
work and make suggestions for future research. Finally, Section 6 concludes this work.

2. Data

This section introduces the data used in this study. As in the case of [20], we have not
used any remote sensing data but instead have prioritised higher level data, namely land
cover maps. The key features of the land cover maps used are briefly introduced, as are
details about the datasets used in the training, testing, and validation processes.

2.1. Land Cover Maps

Details about the ECOCIMAP-SG, ECOCLIMAP-SG+, ESA WorldCover and other
land cover maps are described in the following subsections. Figure 1 shows the set of
land cover labels with their associated colors, consistent with the maps that are shown in
the manuscript.

Figure 1. Set of labels and colormaps of land cover labels for ESA WorldCover, ECOCLIMAP-SG
(primary and secondary) and ECOSG+ quality score.

2.1.1. ECOCLIMAP-SG

ECOCLIMAP Second Generation (ECOCLIMAP-SG or ECOSG hereafter) is a global
physiography database that was designed at Météo France to feed the SURFEX model [10].
One component of ECOSG is the land cover map, which has a spatial resolution of 300 m
and contains information about 33 land cover types. These labels are given in Figure 1 and
are challenging to estimate because they require refined information for multiple families
of land cover types. For example, there are three types of water bodies, six types of forest,
three types of crops, three types of grassland, and ten types of urban areas. ECOSG is the
baseline map that we aim to improve upon using AI methods.

2.1.2. ECOCLIMAP-SG+

ECOCLIMAP-SG+ (or ECOSG+) is the land cover produced by [25]. The labels are the
same as in ECOSG, but the resolution is 60 m. ECOSG+ was built by mixing many land
cover maps according to their speciality (e.g., crop maps were used to distinguish the crop
labels). The key ideas in the mixing method are:

• Specialist maps (i.e., maps with a focus on a specific land cover type, such as forest,
crops, or urban, for example) are more reliable than non-specialist maps;

• The more maps that agree with the land cover label at a given location, the more
confident we are of the label;
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• When no better information is available, the ECOSG label is kept.

The agreement-based decision tree that stems from these ideas produces a land cover
map mixing 40 maps. The full list of maps, as well as the details of the mixing method, can
be found in [25]. The geographical coverage of ECOSG+ is global, although the quality
is better over Europe because some of the maps used only cover Europe. A quality score
value, ranging from 0 (worst) to 1 (best), is provided for each pixel on the map. For quality
scores of 0.525 or less, the labels are taken from ECOSG. The ECOSG+ land cover map is
used as the ground truth in the training of the AI model. The quality score map is used
in the merging process for the production of the final map and to create the training and
testing datasets.

2.1.3. ESA WorldCover

ESA WorldCover is the latest global land cover map produced by the European Space
Agency. It has a spatial resolution of 10 m and a thematic resolution of 11 labels. We use
version v200 [11]. The overall accuracy of ESA WorldCover v200 is estimated to be 76.7%
according to the product validation report. Ref. [26] compare it with other 10-m resolution
global land cover maps and conclude that ESA WorldCover has better ability to resolve
detailed landscape elements. It is used as an input to the AI model.

2.1.4. Other Land Cover Maps Used

Because we started by reproducing the work of [20], we used the dataset that is
provided by the authors2. This dataset contains several land cover maps that are detailed
in the given reference. For this work, we used only the following land cover maps:

• OSO (Occupation des Sols Opérationelle), a 23-label, 10 m map covering France
mainland with an estimated accuracy >86% [27];

• CLC (CORINE Land Cover), a 43-label, 100 m map covering Europe with an estimated
accuracy >85% [28].

We also included the ECOSG, ECOSG+, and ESA WorldCover maps, which were not
included in the original dataset.

Additionally, the European Union’s Land Use/Cover Area Frame Survey (LUCAS)
was used as a reference dataset to evaluate the final map produced here. LUCAS [29] is
mainly an in situ survey designed to provide harmonized statistics on land cover across
the European Union. The LUCAS 2022 survey covers all European Union Member States
with observations at 400,000 selected points.

2.2. Training, Testing, and Validation Sets

This section describes the DS1 and DS2 datasets that were used in all the phases
of the training process described in Section 3.2. The datasets consist of a set of patches
of the land cover maps introduced in Section 2.1. The target domain for this study is
EURAT (longitudes: −32 to 42, latitudes: 20 to 72), which include all European countries,
the Mediterranean Sea and part of North Africa, the Middle East, and Russia.

First, we reproduced the training of [20] on DS1. This dataset covers only mainland
France and includes the OSO, CLC, ECOSG, ECOSG+, and ESA WorldCover land cover
maps. The patches (6 by 6 km in the EPSG:2154 projection) are identical to the ones used
in [20]. ECOSG, ECOSG+, and ESA WorldCover were re-projected and cut according to the
patch boundaries. The split between training, testing, and validation subsets is identical to
that used in [20]. The training dataset DS1 contains 16,691 patches.

Secondly, we extended the training to DS2. This dataset covers EURAT and includes
the ECOSG, ECOSG+ and ESA WorldCover land cover maps. To provide pixel-aligned
patches, these three maps were first interpolated to the ESA WorldCover grid (EPSG:4326,
resolution of 8.33× 10−5 degrees), and then ECOSG and ECOSG+ were up-scaled by factors
of 30 and 6, respectively. To ensure the training, testing, and validation datasets follow
the same distribution without overlapping, larger patches were created and split into four:
two of the sub-patches were in the training dataset, one in the testing dataset, and one in
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the validation dataset, as illustrated in Figure 2. Larger patches were created by randomly
sampling the EURAT domain. However, the patches were only kept if they satisfy a quality
criterion (at least 50% of the pixels having a quality score above 0.525) and a diversity
criterion (the most common label present must cover less than 90% of the pixels) in all
sub-patches. The locations of the selected random patches are shown in Figure 2. Note that,
despite the splitting process, there is a chance that parts of the patches in the training and
testing datasets overlap because of the random sampling. We kept the number of patches
less than 5000 to keep this chance low.

Figure 2. Locations of the 5000 patches in the DS2 dataset on the EURAT domain (a) and illustration
of the splitting procedure (b). The background map is from OpenStreetMap, with country name in
the local language.

3. Methods
3.1. Map Translation with Auto-Encoders

Map translation was first introduced by [19] as a convenient solution for updating
land cover maps more frequently. They illustrate this with a translation from OSO (updated
every year) to CLC (updated every 7 years). The main difficulty when comparing land
cover maps is to find a correspondence between the land cover labels in each map. For
example, the “shrubs” label in CLC and the “shrubs” label in OSO semantically match.
But sometimes the correspondence can only be made in one direction and not the other
(e.g., “coniferous” matches “forests” but not the other way around), or does not exist at all.
Moreover, the label definition only makes sense at the given resolution (e.g., “roads” is a
label that can have pixels only at very high resolution). Therefore, the authors argue that a
map translation should consider the change of labels and resolution as a joint problem. The
technical solution they propose is a truncated U-Net. They achieve a translation accuracy
of 81% from OSO to CLC. However, this approach has several limitations:

• It requires the training to be redone if changes are made to the input or the output map.
• It does not provide a “common ground” for both maps.
• It is supervised by the output map, with its inaccuracies.

To overcome these limitations, the follow-up work of [20] introduced n-to-n map
translation. Instead of a truncated U-Net, they suggested an auto-encoder architecture with
a shared latent space. This architecture is detailed in [20]—see Figure 3 therein—and is
unchanged in this work.
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Figure 3 illustrates the map translation process. In this study, the latent space has a
resolution of 600 × 600 pixels (approx. 10 m) and 50 channels. We instantiated an auto-
encoder for each map in the dataset. Then the auto-encoders were trained to minimize the
loss L = Lrec + Ltra + Lemb with:

• Lrec the reconstruction loss (cross-entropy loss to ensure the auto-encoder correctly
reproduces the original map),

• Ltra the translation loss (cross-entropy loss to penalize an incorrect translation),
• Lemb the embedding loss (mean squared error loss to ensure that the latent space is

shared across all maps).

Finally, the map translation is performed in inference mode by using the encoder of
ESA WorldCover and the decoder of ECOSG+. Note that “Map 1” and “Map 2” are used in
Figure 3 to highlight that every pair of maps is used in the training process.

Figure 3. Illustration of the map translation method. The top row represents the same geographical
region in Map 1 and Map 2. The size of the square accounts for the resolution (Map 1 has a higher
resolution than Map 2), and the number of stacked squares accounts for the number of labels (Map 1
has fewer labels than Map 2). The translation from Map 1 to Map 2 is made with auto-encoders
sharing the same latent space. The translation is performed by using the encoder from Map 1 and the
translator to Map 2. These auto-encoders are trained to minimize the loss L = Lrec + Ltra + Lemb with
the three components shown in the figure.

3.2. Training Strategy

The training of the auto-encoders was carried out in two phases: first, we reproduced
the training of [20] on the DS1 dataset, then we extended the training to the DS2 dataset.
Both datasets are described in Section 2.2. All of the training was performed on a single
Nvidia A100-80GB-PCIe GPU with a batch size of 16 patches and the use of 8 CPUs for
loading the data onto the GPU. We used Adam optimizers with a learning rate of 3 × 10−4

for all auto-encoders.
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The first phase of the training went on for 113 epochs (where convergence was reached)
and took approximately 12 days. The aim of this first phase was to reproduce the [20]
method, which takes advantage of the diversity of the maps used in the training (6 maps,
see Section 2.2) to build a meaningful latent space and a good starting point for the weights
of the auto-encoders.

The second phase lasted for 204 epochs and took approximately seven days. The aim
of this second phase was to fine-tune the auto-encoders trained in phase one to the specific
task that we want them to achieve: map translation from ESA WorldCover to ECOSG+.
The number of maps in this phase is more limited (3 maps, see Section 2.2), but the sampled
domain is much larger and more representative of EURAT. The weights used in the map
translation are the ones obtained after the two phases of training. Therefore, the total
computation cost for the training was approximately 450 GPU-hours.

3.3. Production of the Final Map: Merging Inference and ECOSG+

To produce the final map, the trained auto-encoders were used in inference mode to
translate from ESA WorldCover to ECOSG+. The final map is a combination of ECOSG+
and the inference results based on the quality score of ECOSG+ and the limitations of
the inference.

A diversity threshold is applied to the input of the inference, and the result is set to
“0. no data” when this is not matched. Indeed, the encoders capture a representation of
the land cover on a given patch and translate it into the latent space. The decoders turn
the information in the latent space into land cover probabilities. Therefore, without a rich
enough geographical context, the auto-encoders are unable to capture a representation of
the land cover and are likely to produce unrealistic covers. This is mostly the case over
sea or desert, which are also areas where the land cover uncertainty is low. To prevent
these artefacts from being in the final map, we set up an application limit based on the
diversity of labels in the input map. If more than 90% of a patch is covered by a single
label, the inference result is set to “0. no data”, to clearly indicate that we are outside the
application boundaries of the method. In that case, the final map takes its labels directly
from the ECOSG+ map.

A quality score threshold is used to determine if we use ECOSG+ or the inference
results in the final map. Where the quality score is high, we trust ECOSG+ enough to use
it as a reference for both training and testing (see Section 2.2). Therefore, the inference is
unlikely to bring any added value where the ECOSG+ quality score is high; it is better to
use ECOSG+ directly. Thus, the final map takes its labels from the inference results only if
the quality score is below a threshold Slim; otherwise, it takes them from ECOSG+.

To summarize, if we denote the ECOSG+ quality score by S, the ECOSG-ML map
by Mml , the inference result map by Mifr, and the ECOSG+ map by Msg+, we have the
following relationship for any geographical location x:

Mml(x) =

{
Mifr(x) if S(x) < Slim and Mifr(x) ̸= “0. no data”
Msg+(x) else

(1)

This formula strongly relates to Equation (12) in [25]. There, the quality score threshold
is called Smin and has been set to 0.525. Here, the choice of Slim is made to maximize the
agreement with the LUCAS land cover study. Note that if Slim = Smin, then for all x with
S(x) < Slim and Mifr(x) = “0. no data”, the returned labels will be taken from ECOSG+,
which takes them from ECOSG by construction. Therefore, applying the Equation (1) does
not replace all pixels of ECOSG. The higher Slim, the more likely it is to have ECOSG pixels
in ECOSG-ML.

3.4. Generation of an Ensemble Land Cover

With AI-generated land cover, it is possible to derive some uncertainty information
about the output land cover. The auto-encoder used for map translation does not output the



Land 2024, 13, 1875 8 of 19

land cover classes directly but instead outputs real-valued numbers (so-called logits) that
can be turned into land cover probabilities by applying the softmax function. By default,
the output map is the one with the labels with the highest probability for each pixel. This
is the output used in the control member (member 0), and when nothing is precised. But
if one is interested in the uncertainty on the land cover, such information can be derived
from the probability distribution of the labels.

The land cover members are generated by sampling the probability distribution of the
land cover with the cumulative distribution function (CDF) inversion method [30], which
consists of applying the inverse of the CDF to a uniform sample. Numerically, for each
pixel, the CDF is estimated by the cumulative sum of the probabilities. For a given sample,
u, drawn following a uniform law, the inverse of the CDF is estimated by finding the last
index where the CDF is below u. To ensure geographical coherence, the sample u is equal
for all the pixels of a given map. The values of u come from a uniform random draw
between 0 and 1. The value u = None corresponds to the control member, for which we
take the labels with the highest probability for each pixel. The same merging criteria is
applied to all members (see Section 3.3), which is equivalent to setting a probability of 1 on
the ECOSG+ label where the quality score is above the threshold Slim. As a consequence,
differences between members can only be observed where the quality score is below the
threshold Slim.

3.5. Evaluation Method

The evaluation of the map is two-fold. First, we need to check that the inference is
better than ECOSG. Second, we need to check that the final map is better than ECOSG
and ECOSG+.

First, to check that the inference is more accurate than ECOSG, we calculated the
confusion matrix of the inference results on the testing subset of the DS2 dataset described
in Section 2.2 and illustrated in Figure 2. For each of the 5000 patches, we performed the
inference and calculated the confusion matrix against ECOSG+, taken here as a reference.
ECOSG+ is an appropriate reference to validate the inference because it has the same
labels and resolution (which will not be the case with other references), its accuracy is high
enough (see [25]), and the construction of the testing set ensures that the selected ECOSG+
patches are trustworthy. Then, the confusion matrices for individual patches are summed
to give the final confusion matrix. The overall accuracy is calculated as the sum of the
diagonal cells in the confusion matrix divided by the sum of all cells. Because of strong
label imbalance, we choose to show the recall matrix, i.e., the confusion matrix divided
by the sum of the confusion matrix values in each row, and to remove all labels that are
not present in the testing dataset. In a recall matrix, all rows sum to 1, and each cell shows
the proportion of the reference label in that row predicted as the label in that column. We
compute the same recall matrix for ECOSG to provide the baseline. Note that the recall
matrices only evaluate the inference, which is different to ECOSG-ML because the merging
described in Section 3.3 has not been applied. The results of this evaluation are given in
Section 4.1 (Figure 4 and Table 1).

Second, to compare the final map (ECOSG-ML) to ECOSG and ECOSG+, we need
an external and trustworthy reference. As in [25], we choose LUCAS as this reference.
Despite its good quality and geographical coverage [29], LUCAS does not provide the full
set of ECOSG labels. Therefore, we used the same method as in [25], which defines a set
of primary labels and performs the comparison with LUCAS on the primary labels. The
translation from ECOSG labels (see Figure 1 therein) or from LUCAS (see Table A7 therein)
to the primary labels are the same as in [25]. As the confusion matrices of ECOSG+ and
ECOSG against LUCAS have already been discussed in [25], we focus here on the overall
accuracy. The overall accuracy was estimated for all members of ECOSG-ML and for
various threshold values of the quality score (Slim in Equation (1)). Similarly, the threshold
value Smin = 0.525 used in ECOSG+ (see Equation (12) therein) is changed here to be equal
to Slim, and the resulting ECOSG+ labels are compared to LUCAS. Therefore, for a given Slim
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value, in ECOSG+ pixels with a quality score below Slim are taken from ECOSG. In ECOSG-
ML, pixels with a quality score below Slim are taken from the inference, unless the diversity
criterion is not met. When the diversity criterion is not met, according to Equation (1),
pixels are taken from ECOSG+, which is equal to ECOSG. This way we can compare all
ECOSG-ML members to both ECOSG and ECOSG+ against LUCAS and see the influence
of the quality threshold. The results of this evaluation are given in Section 4.2 (Figure 5).

Finally, a qualitative evaluation is provided for both the ECOSG-ML control member
against other land cover maps (Figure 6) and the ECOSG-ML members against each other
(Figure 7). The patches selected for this qualitative evaluation are the same as in [25].

4. Results
4.1. Evaluation of the Inference Against ECOSG+

Figure 4 shows the recall matrices (Section 3.5 explains how they are computed) for
ECOSG (left) and the inference results (right). Note that we evaluate the inference results,
which differ from ECOSG-ML because the merging described in Section 3.3 has not been
applied. This choice is justified in Section 3.5. In the figure and text, we use “prediction”
to refer to the labels to be evaluated (namely, ECOSG on the left, inference on the right),
and we use “reference” to refer to the labels that we trust (namely, ECOSG+ for both). In
both recall matrices, the reference labels are on the y-axis and the predicted labels are on
the x-axis. For any row r and column c, the color of the cell at the intersection (r, c) depicts
the percentage of pixels with label r in the reference that are predicted to have label c.
Labels not present in the reference have been removed from the matrix. Primary labels (see
Figure 1 for the definition) are highlighted by dashed-lined red squares. In the upper-right
corner, the overall accuracy of the prediction is indicated.

Figure 4. Recall matrices for (left) ECOSG (right) the inference results. Primary labels are identified
in red dashed squares. The reference is ECOSG+ in each case.

The main positive features are the improved overall accuracy and the reduced misclas-
sifications across primary labels. First, the overall accuracy reaches 0.63 for the inference
while it is 0.41 for ECOSG, which is a satisfactory difference. For example, the overall
accuracy of ESA WorldCover v100 (2020) is estimated to be 0.744 and that of v200 (2021) to



Land 2024, 13, 1875 10 of 19

be 0.767 [11]. Second, the misclassifications occur more frequently within the same primary
label for the inference results. For example, the prediction of the label “19. winter C3 crop”
is scattered across many labels in ECOSG, including labels outside the “crops” primary
label. In the inference results, off-diagonal pixels are also strongly colored, indicating
misclassifications of the crop label, but these misclassifications are mostly inside the “crops”
primary label. When the confusion matrices are calculated for primary labels (see Table 1 ),
the overall accuracy of the inference results is 0.831 (and 0.583 for ECOSG), which confirms
this visual examination.

The main negative features are the high number of misclassifications and some mis-
classification patterns that can lead to obviously wrong covers. Firstly, even though the
number of misclassifications is lower in the inference results than in ECOSG, more than
one third of the pixels are misclassified, which can have a significant impact on the weather
forecast if they occur in critical regions (e.g., coastal or urban areas). Secondly, some mis-
classifications visible on these matrices are likely to lead to obviously wrong covers. For
example, within the “Water” primary label, misclassifications are visible in the inference
results between “2. lakes” and “1. sea and oceans” labels or “2. lakes” and “3. rivers”, while
this is not the case in ECOSG. Such misclassifications are problematic because they can lead
to lake pixels being surrounded by sea pixels, which is obviously wrong. In the context
of weather forecasting, dedicated physical parameterisations are used to estimate fluxes
above lakes (e.g., FLAKE, [31]). Therefore, such misclassifications could incorrectly trigger
these parameterisations, wasting computing resources or providing incoherent fluxes.

Table 1 provides F1-scores for each label, primary and secondary. The F1-score is the
harmonic mean of the precision (or user accuracy) and recall (or producer accuracy) [32].
The producer’s accuracy quantifies how often real features on the ground are correctly
shown on the map. The user accuracy quantifies how often the class on the map will
actually be present on the ground. The F1-score balances both. It ranges between 0 (no
correct classification) and 1 (perfect classification). It was estimated with the same data as
in Figure 4; therefore, we refer to Section 3.5 for the methodology. Bold font indicates the
best score for each label. All primary labels have a better score in the inference. Among
the 33 secondary labels, 2 are not present in the testing dataset (“11. tropical broadleaf
evergreen”, “9. tropical broadleaf deciduous”), 2 are not predicted in any prediction
(“14. boreal needleleaf deciduous” and “30. LCZ7: lightweight low-rise”), 24 are best
predicted with the inference, and 5 are best predicted with ECOSG. The support column
highlights the strong label imbalance. We can see in the table that the variation of the
scores is sometimes significant. For example, the score for “16. boreal grassland” is 0.6 for
the inference while it is only 0.06 for ECOSG, which shows a significant improvement in
the prediction of this type of grass. However, despite a higher value with the inference,
the F1-score is still low for some labels. For example, the labels “33. LCZ10: heavy industry”
and “27. LCZ4: open high-rise” have an F1-score of 0.01 and 0.027, respectively. Some labels
are never predicted by the inference (“18. tropical grassland” and “24. LCZ1: compact
high-rise”) or almost never (“20. summer C3 crops”), despite being present in the testing
dataset. These are associated with low support, which probably plays a role in the lack
of performance.

In summary, the map translation output is closer to the higher quality ECOSG+
than ECOSG is for most labels. Therefore, replacing ECOSG by the inference results
leads to an improvement overall. However, for some labels, ECOSG performs better
(e.g., “20. summer C3 crops”) or the score is still low, which highlights limitations in the
map translation method.
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Table 1. F1-scores for each primary and secondary label. The best score for each line is highlighted in
bold font. The rightmost column shows the support for each label; when it is lower than 1%, the total
number of pixels is shown. Otherwise the percentage is shown (with %). For some labels, not present
in the testing set (support is 0) or never predicted, the score is undefined (dash).

Primary Label Inference ECOSG Secondary Label Inference ECOSG Support

Water 0.9149 0.4402
1. sea and oceans 0.8185 0.5937 2%
2. lakes 0.7615 0.305 3%
3. rivers 0.3268 0.0812 140,570

Bare 0.8767 0.6892 4. bare land 0.645 0.4758 1%
5. bare rock 0.7874 0.0242 1%

Snow 0.7018 0.4119 6. permanent snow 0.7018 0.4119 83,305

Forest 0.8806 0.6206

7. boreal broadleaf deciduous 0.311 0.3506 397,158
8. temperate broadleaf deciduous 0.6397 0.4017 14%
9. tropical broadleaf deciduous - - 0
10. temperate broadleaf evergreen 0.016 0.0808 25,087
11. tropical broadleaf evergreen - - 0
12. boreal needleleaf evergreen 0.7628 0.6183 12%
13. temperate needleleaf evergreen 0.5098 0.2372 7%
14. boreal needleleaf deciduous - - 41,558

Shrubs 0.0855 0.0509 15. shrubs 0.0855 0.0509 228,646

Grass 0.6983 0.428
16. boreal grassland 0.5956 0.0574 1%
17. temperate grassland 0.6848 0.4222 10%
18. tropical grassland - 0.0072 597

Crops 0.8513 0.6773
19. winter C3 crops 0.7021 0.5265 25%
20. summer C3 crops 0.0 0.1015 3%
21. C4 crops 0.2624 0.1984 8%

Flooded 0.5621 0.2335 22. flooded trees 0.0118 - 53,089
23. flooded grassland 0.5478 0.2293 1%

Urban 0.7543 0.3387

24. LCZ1: compact high-rise - 0.0284 8955
25. LCZ2: compact midrise 0.3257 0.1207 53,105
26. LCZ3: compact low-rise 0.0697 0.0683 33,709
27. LCZ4: open high-rise 0.0272 - 9746
28. LCZ5: open midrise 0.282 0.0676 139,875
29: LCZ6: open low-rise 0.6833 0.0781 1%
30: LCZ7: lightweight low-rise - - 38
31: LCZ8: large low-rise 0.4995 0.103 254,488
32: LCZ9: sparsely built 0.434 0.1319 3%
33: LCZ10: heavy industry 0.0998 0.0881 10,641

Overall accuracy 0.831 0.583 Overall accuracy 0.634 0.411 50M

4.2. Evaluation of ECOSG-ML Against LUCAS

Figure 5 was obtained as described in Section 3.5. It shows the evolution of the overall
accuracy against LUCAS obtained for different threshold values in the merging process
(see Section 3.3). The coloured dashed lines each correspond to a member of ECOSG-ML,
and they are identified by the value u used in the inversion of the CDF (see Section 3.4,
the value u = None corresponds to the control member). The black solid line corresponds
to ECOSG+ when we take different values for the threshold Smin (see Equation (12) in [25]).
The black dotted line corresponds to ECOSG (which is flat because it does not depend on
any quality threshold).

All members have better overall accuracy than ECOSG+ and ECOSG for all quality
threshold values. It confirms that replacing ECOSG by the inference improves the quality
of the map. ECOSG+ and all ECOSG-ML members show a two-stage dependency on the
quality thresholds. For thresholds below 0.3, the overall accuracy is stable for ECOSG+ and
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increases for all ECOSG-ML members as the threshold increases. For thresholds above 0.3,
the overall accuracy decreases as the threshold increases. For ECOSG+, this is explained by
the direct effect of the threshold: as Smin increases, more pixels will be taken from ECOSG,
therefore the score converges to the one of ECOSG. For ECOSG-ML, the overall accuracy
decreases as Slim increases, but the rate of decrease is not as high as for ECOSG+, and it is
different for each member. This behaviour can be explained by the fact that increasing Slim
results in more pixels being taken from the inference. If the inference is out of its application
domain (i.e., the diversity criterion is not met), the labels are taken from ECOSG+, which is
equal to ECOSG in that case. Therefore, the decrease is explained by the greater proportion
of ECOSG pixels as Slim increases, but the decrease is not as high as with ECOSG+ because
the inference results, when applicable, improve upon ECOSG. Moreover, the spread of the
members logically increases as the number of pixels taken from the inference increases.

The maximum overall accuracy is obtained for all members with Slim = 0.3. Therefore,
the maps exported in the archive associated with this paper use this value for the quality
threshold. The results provided in the qualitative evaluations were done with the initial
value of Slim = 0.525, as this was used in [25].

Figure 5. Overall accuracy with LUCAS as the reference for different threshold values and all
ECOSG-ML members.

4.3. Qualitative Evaluation of the Final Map

Figure 6 shows five geographical areas that exemplify the content of the land cover
maps. These are the same areas as in [25]. Each row represents one of these geographical
areas and is identified on the left-hand side by a toponym, the country it is in, and the
longitude-latitude coordinates of the central point. The first row is the Snaefell glacier in
Iceland. The second row is centred on Nanterre, France, in the north-western part of the
Paris urban area. The third row is the small islands of Kihdinluoto in the south-west of Fin-
land. The fourth row is a rural part of Portugal, around the small town of Pinhel. The fifth
and last row is the oasis town of El Menia, in the Sahara desert (Algeria). The geographical
areas have been chosen to display a large variety of landscapes and identified weaknesses
in land cover mapping (heterogeneous urban areas, complex sea coast, underestimation of
small towns, or poorly studied areas). We refer to [25], Section 3.1.3 therein, for the more
detailed argument. All patches are 0.0833º in size, which represents approximately 8 km at
low latitudes.
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Figure 6. Examples of patches at various locations (rows) on ESA WorldCover, ECOSG, ECOSG+,
ECOSG-ML, and the ECOSG+ quality score (columns) maps. All patches are of size 0.0833◦ in
EPSG:4326. The coordinates given on the left-hand side are the longitude-latitude coordinates of the
central point of each patch. The colorbars are given in Figure 1.

Each column represents a different land cover map introduced in Section 2.1. The first
column is ESA WorldCover, the source map in the map translation. The second column is
ECOSG, currently used in NWP, and the baseline to improve upon. The third column is
ECOSG+, the target of the map in the map translation. The fourth column is ECOSG-ML,
the control member after merging. The fifth and last column is the map of the ECOSG+
quality score, used to select the training and testing patches (see Section 2.2) and to produce
the final map (see Section 3.3). The colorbars are given in Figure 1.

The main focus of this figure is to visualize the qualitative improvement of ECOSG-ML
over ECOSG and ECOSG+. The ESA WorldCover and quality score maps are shown for
the insight they bring on the map differences. In comparison with ECOSG, ECOSG-ML
clearly has a better resolution in each case displayed here. The details that are visible in
ECOSG-ML match those in ESA WorldCover, which is satisfying because the resolution of
ESA WorldCover (approx. 10 m) is high enough to validate the smallest scales of ECOSG-
ML. Note that the improvement in resolution is also very clear between ECOSG and
ECOSG+, as already demonstrated in [25]. However, we can still see some low-resolution
areas, for example, on the eastern edge of the Snaefell glacier (first row), the surroundings
of Pinhel (forth row), and almost all of the El Menia area (last row). According to the
ECOSG+ map-building methodology, this is the result of discrepancies between the maps
that provide data in these areas. Such discrepancies are captured as uncertainty in the
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land cover and tracked with low quality scores. As a result, the low resolution areas in
ECOSG+ match those with low quality scores (red or grey color in the fifth column). When
the quality flag is low and as long as the inference can be applied, we are within the criteria
that were outlined in Section 3.3 to use the inference results in ECOSG-ML. Therefore,
the differences between ECOSG+ and ECOSG-ML are concentrated on low-quality flag
areas. One can see that the low-resolution areas are replaced by more realistic patterns,
which is a qualitative improvement. Moreover, the added details match those visible in
ESA WorldCover (e.g., the lake on the south-east of the Snaefell glacier or the lake and
town in El Menia).

4.4. Demonstration of Ensemble Land Cover Generation

As described in Section 3.4, the inference provides land cover class probabilities that
enable ensemble generation when sampling those probabilities. Figure 7 shows examples
of such ensembles. The first two rows are also in Figure 6 (as rows 4 and 5, see text there for
description), and the columns show different members. The other rows in Figure 6 have a
higher quality score; there are only minor differences between the members of the ensemble.
Therefore, we choose to show three other locations to better illustrate the variability across
the different members. The third row is near the town of Iziaslav, surrounded by croplands
in the west of Ukraine. The fourth row is near the town of El Hichria, in central Tunisia. The
fifth row shows mountainous terrain near Masmullar, in south of Spain. The first column in
Figure 7 is the same as the fourth column in Figure 6 and is obtained by picking the highest
probability label for each pixel. The next five columns of Figure 7 are obtained with CDF
inversion with the random value u given at the top. The last column shows the ECOSG+
quality score with a transition value of 0.3 (instead of 0.525 in Figure 6).

Figure 7. Example of a land cover ensemble. The patches (rows) are the same as in Figure 6 but the
columns show the 5 land cover members derived from the land cover probabilities from the output
of the map translation.

Globally and qualitatively, the generated members look realistic, despite visible dis-
crepancies. According to the ensemble generation methodology, the discrepancies concen-
trate on where the ECOSG+ quality score is low. Following the outcome of the comparison
with LUCAS, the quality score threshold is set to 0.3 (red in the 6th column means below
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0.3, green means above). Therefore, the high-quality features are equal across all members
(e.g., the desert and crop circles in Elmenia, the town of Pinhel, the lake of Iziaslav). Some
features are also common to all members despite having very low quality scores (e.g., the
lake in Elmenia), which means that the inference output gives a very high probability on
the given labels. Some other features are noticeably different from one member to another
(e.g., the type of crop around Iziaslav, the extension of the town of Pinhel, the type of
soil in El Hichria), which shows that other labels have significant probability, although it
is not maximum. In some examples, artificially straight transitions are visible (e.g., in
Iziaslav). These are the results of the patch-wise construction of ECOSG-ML for running
the inference.

These examples show that it is possible to generate ensemble land cover maps with
inference output. This could lead to an additional way of accounting for the uncertainty in
land cover in the weather forecast. However, these examples only provide a qualitative
evaluation of the generated ensemble. Further studies are necessary to quantitatively assess
how representative of the uncertainty on the land cover the ensemble is.

5. Discussion

This section includes a critical discussion on the results and emphasizes known limita-
tions to help with future improvements of the map.

5.1. Limitations

ECOSG-ML is currently evaluated as a static map, at continental level (with ECOSG+
and LUCAS as references) and local level (qualitative evaluation). This section focuses on
the known limitations of the ECOSG-ML dataset. These are summarized in three categories:

1. Obviously wrong classifications. Some pixels may show inconsistent land cover
(e.g., lake or river pixels surrounded by sea pixels, or permanent snow at low alti-
tude or latitude). These might be due to insufficient input data (e.g., for lakes, ESA
WorldCover only shows “water”). This might lead to incorrect triggering of surface
parameterisations, but further studies are necessary to assess their impact on the final
weather forecast.

2. Default secondary labels. For some primary labels (e.g., “Crops” or “Forest”), a de-
fault secondary label is predicted almost all the time (“19. winter C3 crops” for
“Crops”, “8. temperate broadleaf deciduous” or “12. boreal needleleaf evergreen” for
“Forest”), as visible in Figure 4. This results in correct primary label classification but
incorrect secondary label classification.

3. Too simple ensemble construction. With the current method of generating the
members, u is the same everywhere on the map. As a result, all locations are modified
in the same way, as if the uncertainty varies the same way everywhere, which may
not be valid. Moreover, only a qualitative evaluation of the ensemble is made here.
In particular, the representativity of the ensemble to the land cover uncertainty is
not established.

5.2. Potential Directions for Improvement

This section discusses steps that could be taken to improve the ECOSG-ML land
cover maps. These steps mainly suggest solutions to the limitations identified in the
previous section.

• Enrich input information. Many of the current limitations are due to a lack of input in-
formation. The addition of informative variables like elevation or a position encoding
would certainly help the network to better detect some labels (such as “6. permanent
snow” or the bioclimatic classification). Such complementary information can be
added as input to the auto-encoder or in the latent space (therefore as input to the
decoder). For example, despite the limitations of ECOSG, it certainly contains valuable
information to distinguish some secondary labels. After being projected in the latent
space, the information from any land cover has the same resolution and channels,
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which makes the combination easier. Additionally, any improvements in ECOSG+
will be directly beneficial to ECOSG-ML in both the training and evaluation.

• Better loss function. The current loss is unaware of class similarities (classes are more
similar within the same primary label, for example) and is unweighted. It is possible
to use class-weighted cross-entropy to address class imbalance, or focal loss to focus
more on hard-to-classify examples, or even similarity-aware loss functions that could
prioritize minimizing errors within related class groups (e.g., within the same primary
label). Stratified sampling could also be used to create more balanced datasets. We
suggest making a third phase of training on a DS3 dataset created with stratified
sampling. The role of each component in the loss has not been investigated yet. In our
experience, Lemb never exceeds 6% of the overall loss but has a different dynamic (an
increase then a slow and smooth decrease) than that of the other components (noisier
decreases). The role it plays in the training process could be further explored with an
ablation study.

• Better input for CDF inversion. In this work, we used a single random number for all
pixels and patches. This is better than to make a random draw for each pixel because
the latter reduces correlation with geographical proximity, and is technically very
simple. However, this is not entirely satisfactory because all locations are modified
in the same way. A suggestion for future developments is to use a 2-dimensional
stochastic process with appropriate properties to generate the members.

Alternative encoder and decoder architectures were also tested during the creation
of ECOSG-ML. We tried symmetric architectures for the encoder and the decoder with
a mix of convolutional and attention layers, and we tried to reduce the resolution of the
latent space. The results were marginally better (overall accuracy of 0.64 against ECOSG+)
with attention layers and a 200 × 200 latent space, but qualitatively not as satisfying,
with smoother landscape features compared to the original architecture. Comparatively,
training on DS1 and DS2 leads to an overall accuracy of 0.63, while training only on DS1
gives an overall accuracy of 0.49. Therefore, our impression at that stage is that improving
the input data gives better results than improving the ML method. However, the tests we
did with alternative ML methods are clearly not sufficient to support such a claim. The
tested architectures are openly shared along with the rest of the code.

5.3. Prospects for Future Use

This section gives prospects for further use of the ECOSG-ML maps, regardless of the
limitations and potential improvements discussed in the previous sections.

• Update other components of physiography. To be used in NWP, the whole physiog-
raphy database must be updated to be consistent with the land cover maps. Other
components include Leaf Area Index (LAI), albedo, lake parameters, and tree height.
In ECOSG, these components are present but stored in a way that is highly dependent
on the land cover map (LAI and tree height are only stored for pixels with vegetation
or trees, etc.). Therefore, despite a priori compatibility, as ECOSG is already used in
NWP, it can be complicated to reuse the values of ECOSG. Moveover, the values for the
other components might be outdated since ECOSG is a static database. Consequently,
we recommend using up-to-date, high-quality sources for these other components as
much as possible. Over Europe, Copernicus products3 are available. Machine learning
can also help to provide up-to-date and fit-for-purpose datasets for these components,
such as in e.g., [33].

• Assess benefit of new maps in NWP. Once an updated physiography database is
available, the potential benefit of this update will need to be evaluated. In particular,
the resolution of ECOSG-ML also allows sub-kilometer NWP experiments to be carried
out, for which the influence of the physiography is expected to be large.

• Assess benefit of ensemble land cover maps in physics-driven and data-driven
ensemble forecasts. Besides the remaining questions about the representativity of
the ensemble, there are open questions on the opportunities for using ensemble land
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covers in EPS. The effect of using a different land cover for each forecast member is
unknown and is, in our opinion, an interesting question.

6. Conclusions

This article describes the ECOCLIMAP-SG-ML dataset, which builds upon the
ECOCLIMAP-SG+ dataset, presented in a companion article. To produce the ECOCLIMAP-
SG-ML dataset, we leverage the quality score provided with the ECOCLIMAP-SG+ dataset
and map translation with AI. The AI translates ESA WorldCover v200 to ECOSG+ with
convolutional auto-encoders and provides a probability distribution of land cover labels,
which is exploited to create an ensemble of six land cover maps. The AI is first evaluated
alone against a high-quality subset of ECOSG+. Then the final map, which is a composite
of ECOSG+ and the AI inference, is evaluated against LUCAS.

The inference alone has better F1-scores than ECOCLIMAP-SG for all primary labels
and 24 of the 33 secondary labels. The overall accuracy of the inference is estimated to
be 0.63, while that for ECOCLIMAP-SG is estimated to be 0.41. Therefore, the inference
outperforms ECOCLIMAP-SG when compared to the testing subset of ECOSG+. The com-
parison to LUCAS shows that all members of ECOCLIMAP-SG-ML have a better overall
accuracy than ECOCLIMAP-SG and ECOCLIMAP-SG+ for all quality score thresholds.
The quality threshold Slim in Equation (1) is set to 0.3 because it gives the maximum overall
accuracy against LUCAS. The qualitative evaluation of ECOCLIMAP-SG-ML on a limited
set of patches is also satisfying for the control member compared to ECOCLIMAP-SG and
ECOCLIMAP-SG+, and for the ensemble variability.

However, several limitations have been identified, such as default secondary labels
for some primary labels, obvious misclassifications, and unchecked representativity of the
ensemble. We suspect these limitations are mainly due to the information provided to the
AI, which can be extended in future work by including elevation and/or position encoding.
The latent space of the auto-encoders allows for the possibility to include information from
multiple land cover maps. Finally, the next step to make use of ECOCLIMAP-SG-ML in
NWP is to update the other components of the physiography database and to assess the
benefits of both the higher resolution and the ensemble component.
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Abbreviations
The following abbreviations are used in this manuscript:

DS1 Dataset for phase 1 of the training (France mainland, 5 maps)
DS2 Dataset for phase 2 of the training (EURAT, 3 maps)
ECOSG ECOCLIMAP-SG: a physiography database currently used in NWP
ECOSG+ ECOCLIMAP-SG+: the land cover map created by [25], used as a reference
ECOSG-ML ECOCLIMAP-SG-ML: the ensemble land cover map described in this manuscript
EPS Ensemble Prediction Systems
EURAT Europe-Atlantic domain (longitudes: −32 to 42, latitudes: 20 to 72)
NWP Numerical Weather Prediction

Notes
1 The ECOCLIMAP-SG wiki: https://opensource.umr-cnrm.fr/projects/ecoclimap-sg/wiki (accessed on 4 November 2024).
2 MLULC [20] Zenodo archive: https://doi.org/10.5281/zenodo.5843595 (accessed on 4 November 2024).
3 Copernicus products. Leaf area index: https://land.copernicus.eu/en/products/vegetation/high-resolution-leaf-area-index

(accessed on 4 November 2024); Albedo: https://www.copernicus.eu/en/global-land-surface-albedo (accessed on 4 Novem-
ber 2024); Building height: https://land.copernicus.eu/api/en/products/urban-atlas/building-height-2012 (accessed on 4
November 2024).
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