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Abstract: A number of studies have shown that, in hedonic models, the structural attributes of
real property have a greater influence on price than external attributes related to location and the
immediate neighbourhood. This makes it necessary to include detailed information about structural
attributes when predicting prices using regression models and machine learning algorithms and
makes it difficult to study the influence of external attributes. In our study of asking prices on the
primary residential market in Warsaw (Poland), we used a methodology we developed to determine
price indices aggregated to micro-markets, which we further treated as a dependent variable. The
analysed database consisted of 10,135 records relating to 2444 residential developments existing
as offers on the market at the end of each quarter in the period 2017–2021. Based on these data,
aggregated price level indices were determined for 503 micro-markets in which primary market offers
were documented. Using the analysed example, we showed that it is possible to predict the value of
aggregated price indices based only on aggregated external attributes—location and neighbourhood.
Depending on the model, we obtained an R2 value of 75.8% to 82.9% for the prediction in the set of
control observations excluded from building the model.

Keywords: asking prices; data aggregation; external attributes; hedonic models; linear regressions;
machine learning

1. Introduction

The influence of an apartment’s neighbourhood on its price has been proven many
times [1–5]. Understanding what affects market price allows prices to be modelled more
effectively [6]. Such models are successfully created based on hedonic methods, with
their concept based on the assumption that the value of certain goods is determined
by a certain set of attributes (characteristics) [7]. Each of these attributes is assigned a
certain utility, where the value of a good is a function of the sub-utilities of the individual
characteristics [1,3,4,8–10]. Hedonic models of real property prices are used both to predict
prices and to determine the strength of the impact of individual real property attributes
on prices [11]. In a formal sense, hedonic models take the form of econometric models
in which the value of the good is the dependent variable (p), and groups of attributes of
the good (for example: S, L, N, . . .) are groups (vectors) of independent variables with a
relationship between them [4,12] (f): p = f(S, L, N, . . .) + ε.

In the case of the housing market, groups of attributes can be divided into structural
(internal) and external attributes [13]. Internal attributes are variables describing the
structural characteristics of houses or apartments (S), while external attributes are variables
describing place—location (L) and neighbourhood (N) [3,13–21].

Recent literature has analysed issues related to external attributes concerning, among
other things, (1) the correct determination of spatial relationships for location attributes (L)
and (2) the correct definition of a neighbourhood in terms of neighbourhood attributes (N).
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The values of location and neighbourhood attributes are mainly determined on the basis of
spatial data, using spatial analyses in geographic information systems (GIS). The method
used when determining accessibility is crucial for the location attributes group [18–20], as
well as the method to define a neighbourhood [21]. The size of the reference units or the
boundary distance adopted defines the geographical scale of the analysis. Hedonic models
are sensitive to changes in geographical scale [22]. All this means that a single attribute
describing the location or neighbourhood of a real property (for example, the availability
of green space) can be expressed through attribute values defined in various ways.

In hedonic models, internal attributes affect the coefficient of determination (R2)
to a greater extent than external attributes [13,17,23]. This makes it difficult to analyse
the impact of external attributes, because even within one construction project (in the
same location) internal (structural) attributes will differ. An additional difficulty when
determining the impact of external attributes on housing prices is the phenomenon of the
spatial autocorrelation of property values [24–26]. Under market conditions, the effect of
nearby housing prices on the price of housing entering the market is assumed. One way to
account for spatial autocorrelation and to decrease the negative impact of data heterogeneity
on model validity is to define sub-markets and work out model prices separately for each
of these sub-markets [2,27,28]. However, it may be difficult in the case of primary market
analysis due to the insufficient number of observations within a sub-market.

For appropriately small units, referred to here as micro-markets, external attributes
(location and neighbourhood) can be considered similar. In our research, we have assumed
that each micro-market can be characterised by an average price level. Instead of consider-
ing the prices per square metre of individual apartments, which are so strongly influenced
by internal (structural) attributes, we analysed the average price levels of the micro-markets.
This allowed us to include only a group of external attributes (location and neighbourhood)
in the hedonic models we built. We obtained the average price levels through a two-stage
aggregation: (1) asking prices for each residential development and (2) upon determin-
ing the price indices at the end of each quarter for small spatial units (micro-markets).
Larger housing projects executed by developers are generally divided into stages. One
stage is a single development, a single construction project, carried out on the basis of a
single building permit. We used the boundaries of cadastral sections as the boundaries
of micro-markets. A cadastral section is an area unit of the country’s division created for
the purposes of the land and building register (real property cadastre) (Regulation of the
Minister of Development, Labour and Technology of 27 July 2021 on the land and building
register). These small spatial units are clearly separated from each other by facilities such as
streets, railways, rivers and escarpments. They are recognisable, distinctive and internally
coherent, thus fitting into Lynch’s proposed definition of a “district”, in the context of the
elements of the city structure [29]. Aggregated offers to cadastral sections are therefore
similar to each other in terms of neighbourhood (N) and location (L) characteristics. With
this in mind, we treat these units as individual observations.

In our research, we analysed asking prices from the primary market for apartments in
Warsaw offered for sale at the end of each quarter (Q) over a five-year period (2017–2021).
Between 1Q17 and 4Q21, the average asking price per square metre of new apartments in
Warsaw increased by almost 65%. The price variability over time in hedonic models is taken
into account by introducing the attribute of time as an independent variable (categorical
or dummy variable) into the model [3,13,30–32]. Another solution is to determine price
indices. An empirical study showed that the highest R2 in the developed hedonic model is
obtained for price indices based on the aggregation of house prices in quarterly periods [33].
In our study, we eliminated the trend of rising prices by relating the observed prices per
m2 of apartment for each development to the average quarterly price calculated for the
entire market.

In our study, we test various regression models, including both OLS linear regression
and ML algorithms. However, our analyses do not aim to compare and evaluate them, but
to demonstrate that, when aggregated to micro-markets (cadastral sections), asking price
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indicators can be modelled efficiently while taking into account only external attributes
(location and environment) determined by spatial relationships, while ignoring informa-
tion on internal attributes (structural characteristics of individual apartments). This can
serve as important support for projecting asking prices for newly marketed residential
developments (allowing for appropriate asking prices accepted by potential buyers), with
limited access to information on the structural characteristics of individual apartments.

This study is unique and innovative in that (1) the observations constituting the de-
pendent (explanatory) variable in the linear regression models and models based on ML
algorithms are, in our study, aggregated indicators of asking prices to small, internally
consistent, spatial units (micro-markets) defining the average level of achievable prices;
(2) we only analyse asking prices from the primary market for apartments; and (3) our
research provides support for forecasting the price, which allows us to propose an appropri-
ate price level, acceptable to potential buyers, for newly marketed residential developments
based only on external attributes (location and environment).

2. Literature Review

In the case of the housing market, groups of attributes can be divided into structural
(internal) and external attributes [13]. Internal attributes describing the structural character-
istics of an apartment include fit-out standard, area, layout, number and height of rooms,
floor on which the apartment is located, presence of a balcony or loggia, orientation and
view from windows [14,34–36].

External attributes are variables describing place: neighbourhood (N) and location
(L) [3,13–17]. Neighbourhood attributes (N) describe the quality of the environment [37,38].
Some studies have focused on environmental aspects such as noise or air pollution [4,13,37],
as well as on environmental quality expressed by the proportion of open space, parks, sur-
face water and forests [21]. Variables describing the immediate neighbourhood (N) define
its perception, state of development, density of services and environmental characteristics
such as noise and air pollution levels, proportion of greenery and open areas. Variables
describing location (L) are expressed through spatial relationships (proximity, accessibility)
of important facilities for residents, related to meeting their needs. Location attributes
describe the location of a building in relation to the city centre (CBD, bona fide city centre)
and local centres [2,37,39]), determine the accessibility of public transport [18,30,36], basic
services such as schools, shops and recreational areas (surface water, parks, forests and
sports facilities) [18,31,40]. Herat and Maier (2010) conducted a systematic literature review
on location attributes [41].

The values of external attributes are mainly determined on the basis of spatial data, us-
ing spatial analyses in geographic information systems (GIS). The method used when deter-
mining accessibility is crucial for the location attributes group [18–20] as well as the method to
define a neighbourhood [21], with two approaches typically used: (1) tessellation—a complete
and separate division of an area into adjacent reference units, and (2) buffering—determining
a neighbourhood around each location defined by a boundary distance (Euclidean or
grid). The tessellation can be done into geometric units, such as hexagons [18] or units
related to administrative division, such as census tracts or other defined boundaries [42].
Neighbourhoods defined by a buffer around each location can be determined by Euclidean
distance [21,32] or network distance calculated along roads or pedestrian routes [43,44].
The size of the reference units or the boundary distance adopted defines the geographical
scale of the analysis. Hedonic models are sensitive to changes in geographical scale [22].
To avoid problems regarding analyses’ sensitivity they may be conducted on different
geographical scales, representing both the immediate neighbourhood in the walking access
zone as well as the wider neighbourhood [18,21,40]. For example, the neighbourhood of
each transaction in buffer zones with a radius of 100 m and 1 km [21], in squares with a
certain side length, as well as in neighbouring squares and second-degree neighbours [40]
or in hexagons with edge lengths of 66 m and 174 m, respectively [18]. All this means
that a single attribute describing the location or neighbourhood of a real property (for
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example, the availability of green space) can be expressed through attribute values defined
in various ways.

Hedonic models often take the form of regression models. Depending on the version
of the regression model adopted, a number of conditions must be met. For example, the
frequently used OLS (Ordinary Least Squares) linear regression is a parametric method
requiring the explicit modelling of nonlinearities and interactions, including low-model
multicollinearity, a nonsignificant spatial autocorrelation of standard residuals and a nor-
mal distribution of residuals [21]. The way the independent variables are defined and
selected is crucial here [21,45]. The occurrence of the spatial autocorrelation of regres-
sion residuals is considered one of the tools for verifying the validity of the hedonic
model [1,46]. Regression analysis can also be performed using machine-learning (ML)
algorithms [47] in which patterns of data relationships are detected from a training data
set. Algorithms include Random Forest regression or the eXtreme Gradient Boosting algo-
rithm (XGBoost) [18,21,47–51]. ML algorithms can easily deal with nonlinear relations [36].
ML-Regression algorithms are used to estimate housing prices because of their ability
to learn nonlinear relationships between incoming and outgoing variables, which may
correspond more closely to the real situation than linear models [36]. In the literature, the
advantage of estimating housing prices using ML-Regression algorithms over traditionally
used linear models is usually demonstrated (for example: in an analysis of house trans-
action data from Onondaga County, NY, USA [21]; for real property data in the district
of Gangnam, South Korea [31]; for real property data from the city of Ljubljana [52]; for
data from Lisbon [53]; for transactions for apartments in Nicosia District, Cyprus [54]; for a
database of housing (asking) prices in Alicante City, Spain [36]). On the other hand, with
the use of ML algorithms for mass appraisal of real estate, some problems are indicated,
such as the lack of transparency of models and poor repetition of results using machine
learning techniques [54,55]. Like the OLS model, ML algorithms allow the significance
of the influence of individual independent variables to be assessed [9,26]. Recently, the
aggregation of Shapley values for computing feature importance was used [55].

3. Materials and Methods
3.1. The Aggregated Price Level Indices

In our research, we used a database of asking prices on the primary market in Warsaw.
In this database, the data are immediately aggregated to entire residential developments
(Sjq). Large residential investments are divided into smaller developments, and in many
cases a single development means a single building. A single residential development
constitutes a single record in the extracted asking price database. Each residential devel-
opment remaining on offer at the end of any quarter in the period 2017–2021 is described
by the following data: (1) longitude and latitude, (2) number of apartments remaining on
offer, (3) total number of apartments, (4) average price per square metre of apartments on
offer and (5) quality segment to which the residential development is assigned. A single
record thus contains pre-aggregated data for each j-th development remaining on sale at
the end of a given q-th quarter. For information on asking prices, aggregation consists of
determining weighted average prices of apartments available for sale at the end of each
q-th quarter, where averages are prices per square metre in individual apartments (pi), and
the weights are the usable floor area of these apartments (ai) (Equation (1), Figure 1).

Pjq =
∑i ai pi

∑i ai
; f or i : diϵSjq, (1)

where Pjq is the weighted average price per square metre of the j-th residential development
at the end of q-th quarter, ai is the area of the i-th apartment expressed in square metres, pi
is the price per square metre of the i-th apartment, di is the i-th apartment and Sjq is the
j-th development at the end of the q-th quarter.
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Figure 1. Procedure illustration of the Pjq calculation (own elaboration).

The obtained database consisted of records relating to residential developments that
remained on offer at the end of a quarter during the period 2017–2021. The number of
records exceeded the number of developments. The reason for this is that the commer-
cialisation process of a residential development is stretched out over time. In the vast
majority of cases, residential developments remained on offer for more than one quarter.
The aggregation of data in the asking price database was the first stage of aggregation. The
price data for individual apartments were aggregated to the entire residential development.
In the second stage, there was an aggregation of the developments then located within the
boundaries of one cadastral section (Figure 2). The cadastral sections were then treated as
single observations. We assumed that the entire area of the cadastral section, analogous
to Lynch’s definition of an internally coherent district [29], is characterised by the same
attributes of location and neighbourhood.
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In the analysed period, average prices in Warsaw increased by approximately 65%.
As the aggregation to cadastral sections involved data from many quarters, before the
second stage of aggregation (to cadastral sections), the price growth trend was eliminated
by determining price level indices IND

(
Pjq

)
. Price level indices were calculated by relating

the average price of a residential development remaining for sale at the end of the q-th
quarter

(
Pjq

)
to the weighted average, calculated for the entire market (the city of Warsaw)

for the same q-th quarter ( Pq
)
. The weightings, however, were the number of apartments
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remaining for sale at the end of the q-th quarter in the j-th development (cjq) (Equation (2),
Figures 3 and 4).

IND
(

Pjq
)
=

Pjq

Pq
; where : Pq =

∑
j

Pjqcjq

∑
j

cjq
, (2)

where IND
(

Pjq
)

is the price level index: the indexed price per square metre of an apartment
in the j-th development at the end of the q-th quarter, Pq is the weighted arithmetic average
calculated for the given q-th quarter for the whole market; cjq is the number of apartments
remaining at the j-th development at the end of the q-th quarter.
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)
.

The aggregated price level indices for each cadastral section PCAreak were calculated as a
weighted geometric mean, taking the number of available apartments as weightings cjq
(Equation (3), Figure 5). This avoided overly large price impacts of developments with
individual apartments that were subject to discounts.

PCAreak = exp

∑
q

∑
j

cjqln
[
IND

(
Pjq

)]
∑
q

∑
j

cjq

 ; f or j : Sjq ∈ CAreak, (3)

where PCAreak is the price level index aggregated to the k-th cadastral section, IND
(

Pjq
)

is the price level index for the j-th development at the end of the q-th quarter, cjq is the
number of apartments at the j-th development remaining for sale at the end of the q-th
quarter and Sjq ∈ CAreak is such a development that is located in the k-th cadastral section.
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The price level indices aggregated to the cadastral section PCAreak were logarithmised,
transforming the distribution of the values of the dependent variable to be closer to normal.
These values ultimately constituted the set of dependent (explanatory) values. For a set of
observations on real property prices, a right-skewed value distribution is a fairly common
phenomenon, and prices in the literature are generally transformed using the natural
logarithm [3,38,39,56,57]. The data, prepared in this manner, formed the basis for further
analyses. The set of observations, processed as described above, constituted the values of
the explanatory (dependent) variable in the regression models. The two-stage aggregation
described above yielded a set of observations consisting of N = 503 cadastral sections.

3.2. Attribute Determination

Information on topographic objects was obtained from the Topographic Objects
Database (BDOT10k)—a vector database containing the spatial locations of topographic
features along with basic descriptions of their properties. The content and level of detail of
the BDOT10k database generally correspond to a traditional topographic map at the scale
of 1:10,000. BDOT10k contains information concerning networks of watercourses, roads
and railways and utility lines, land cover, protected areas, administrative units, buildings,
structures and equipment, land development complexes and other objects. The boundaries
of cadastral sections were obtained from the National Register of Boundaries (PRG)—an
official reference database providing the basis for other spatial information systems, using
data concerning the country’s administrative units. Information on the noise level was
determined based on the acoustic map of Warsaw, available on the city’s mapping service
(https://mapa.um.warszawa.pl/ (accessed on 6 April 2024)). The map shows noise levels
in urban space, depending on the noise source. In our study, we used daytime road noise
data. The district ranking values were obtained from the study by Statistics Poland [58]. In
the Statistics Poland study, the districts were compared among themselves using a number
of indicators. The result of the comparison was expressed in the form of a quantitative
evaluation index.

External attributes are divided into two main categories: location attributes (L) and
neighbourhood attributes (N). Location attributes relate to the location in relation to the city
centre and local centres, as well as the accessibility of public transport and basic services
expressed in terms of distance. Neighbourhood attributes describe the availability of daily
needs services, the quality of space and the state of the environment. Regarding the idea of
a 15-min city, it is important that a variety of services should be available within the distance
of a 15-min walk, including grocery shops, banks and ATMs, restaurants, places of work,
sports, recreation and leisure, as well as health, education and cultural services [59,60].

Within a certain group, attribute series were defined. An attribute series is composed
of attributes describing the same real property characteristic but determined (a) using
a different spatial analysis model, and (b) determined for a different neighbourhood
granularity. An example that illustrates the process well is the variables from the social
services group concerning the availability of educational facilities. The accessibility of
kindergartens, primary schools and secondary schools was calculated using three methods:
(1) by calculating the average distance in a straight line to the k nearest facilities, (2) by
calculating the number of facilities per unit area and (3) by calculating the relative kernel
density for a given type of facility. In our study, we assumed attribute values aggregated to

https://mapa.um.warszawa.pl/
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three degrees of granularity: (1) cadastral sections, (2) cadastral sections and contiguous
first-order cadastral sections and (3) cadastral sections, contiguous first-order cadastral
sections and contiguous second-order cadastral sections (Figure 6).
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Figure 6. Three degrees of granulation delineating the neighbourhoods adopted for the analyses
(own elaboration).

A similar solution of several degrees of granularity can be found, for instance, in [26,28],
but they use regular geometric units. In our study, values determined based on a first-order
or second-order adjacency relationship were always assigned to the cadastral section record.
Attribute values were determined using spatial analysis in GIS software (ArcGIS Pro 3.2.1
ESRI), while various methods were used to determine them, including the distance from
the weighted centroid of the cadastral section to the nearest object, the average distance
from the weighted centroid of the cadastral section to k nearest objects, the density of
objects per square km, the number of objects in the unit, the percentage shares of area/type
in the unit, the average values of the attribute in the unit, in the case of the distance from
the city centre, the network distances along the roads, the travel time by public transport
with and without congestion during rush hours.

Variables that characterise entire development rather than the single product (apart-
ment) are also analysed. These include the number of apartments in a building [31,36,40].
Attributes describing the characteristics of the development combine both structural at-
tributes (S) and neighbourhood attributes (N) related to the prestige and character of the
built environment; in our study, we referred to them as semi-structural attributes. We de-
termined two variables that are semi-structural attributes. The first is the average number
of apartments in new residential buildings. As this value relates to the entire micro-market
(cadastral section), we consider it a characteristic of the built environment rather than
a structural variable. The second variable derived from the structural variables relates
to the prestige of the neighbourhood in a broad sense. The database of asking prices on
the primary market in Warsaw contains data on quality segments to which particular
developments are assigned. The values of the prestige variables were determined, taking
into account the composition of the quality segments in a given spatial unit. The method
of determining the values of these variables is described in Appendix B. In the conducted
analyses, we performed calculations with and without semi-structural attributes. Similarly,
variables related to neighbourhood prestige have been used [37,38].

For the groups of location attributes (L), based mainly on distance relationships, the
reference for the spatial analyses was the housing weighted centroids (Figure 7) designated
within each cadastral section. The weightings were determined as the total area of each
residential building located within the cadastral section, calculated as the product of the
number of storeys and the area of the building’s footprint.

As a result, for each issue, we obtained a series of attributes, differing in the way they
were determined and the degree of aggregation of values.
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We divided the external attributes into two categories: location (L) and neighbourhood
(N). The attributes were also divided into groups: location in the city structure, public
transport and individual transport, buildings, commercial services, social services, nui-
sances, greenery and recreation, as well as prestige. Each group included several to a dozen
attributes, for which values were then calculated for the previously adopted degrees of
granularity. For infrequent sites, such as theatres, some of the methods of determining
values returned a value of 0 for many cadastral sections. Those methods that returned val-
ues equal to 0 for more than 25% of the cadastral sections after calculating attribute values
were abandoned. Once the attribute values had been calculated, they were analysed for the
value of the coefficient of determination R2 for the correlation with the dependent variable.
After the initial selection of attributes, the distributions of their values were analysed, the
coefficient of skewness was assessed and the method of normalisation was selected. One
of four types of normalisations was used: natural logarithm, exponential function (exp),
arcsine function or Box–Cox transformation, depending on the observed distribution of
values of the attribute in question. Table A1 in Appendix A lists the attributes determined,
the category they have been assigned to (location/neighbourhood), the group, how they
were determined, the degree of granularity and the R2 coefficient for the correlation with
the dependent variable.

Since in OLS linear regression models the explanatory (independent) variables should
not be mutually collinear, a second stage of attribute selection was necessary. The following
rationales were followed: (1) obtaining a set of non-redundant variables, (2) guaranteeing
a high level of explained variance (R2), (3) meeting, if possible, the other diagnostic tests
of OLS analysis and (4) establishing variables representing all attribute groups. For this
purpose, we used the Exploratory Regression tool in ArcGIS Pro 10.3.1, which analyses the
diagnostics of OLS models with increasing number of variables. In addition, correlation
coefficients between pairs of variables were analysed. Finally, two sets of attributes were
selected for further analysis, allowing the analysis of two OLS models: OLS_I—for a set of
variables including semi-structural attributes, and OLS_II—without variables representing
semi-structural attributes (see Table A2 in Appendix C).

All the variables obtained after the initial selection stage, representing groups of
attributes, were accepted into ML-Regression models. Analyses were performed for models
containing variables from the structurally derived attribute group and for models without
these variables. In addition, ML models were analysed for the set of variables adopted for
the linear regression models OLS_I and OLS_II.

In our study, we tested ML-Regression models: the Random Forest regression algo-
rithm [61] and the Extreme Gradient Boosting (XGBoost) regression algorithm [48]. The
aim of the tests was to verify the effectiveness of ML-Regression methods for predicting
aggregate price indices based on external attributes only, related to the location and neigh-
bourhood of certain stages of housing developments. For the Random Forest (RF) model,
we carried out an optimisation (tuning) of hyperparameters using Random Search (Robust)
to optimize R2. Random Search (Robust) is a stratified random sampling algorithm used to
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select the search points. Each search is run 10 times using a different random seed. The
result of each search is the median best run determined by the R2 value. Optimising the
hyperparameters of the model reduces variability in their prediction accuracy [62,63]. Some
papers have offered a detailed description of hyperparameters, including [55,64].

3.3. Model Evaluation

The models’ results underwent a two-stage evaluation: (1) an internal evaluation of
the model carried out on the basis of diagnostics with the data used to build the models
(adopting the ML nomenclature—on the basis of the training dataset) and (2) an external
evaluation of the model (prediction) carried out on the basis of diagnostics using data
excluded from model building—based on the control dataset. For each of the eighteen
districts of Warsaw, a control dataset representing approximately 10% of the observations
was selected from the cadastral sections in which new apartments were offered in the
period 2017–2021. For the internal evaluation of the OLS model, the following was adopted:
Adjusted R-Squared (R2), AICc—corrected Akaike Information Criteria [65], JB (Jarque–
Bera) test for normality of regression residuals [66], a studentised Breusch–Pagan p-value
(BP) [67], Variance Inflation Factor (VIF) and the autocorrelation of standardised residuals:
Global Moran’s I p-value (SA). The best model returns the highest possible R2 value, the
lowest possible AICc value, a VIF value less than 7.5 and statistically insignificant (p > 0.05)
JB, BP and SA scores. The internal evaluation of the OLS models allowed the selection of
a set of attributes generating the best results. Two OLS models were adopted for further
analysis: OLS_I containing variables representing semi-structural attributes, and OLS_II
without these variables—see Table A2 in Appendix C.

The following values were taken for the internal evaluation of the ML-Regression
algorithms: R2, RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error)
determined on the basis of k-fold cross-validation and Global Moran’s I p-value (SA) of
standardised residuals. In addition, error values for “out of the bag” (OOB) observations
are given for the Random Forest model. In the Random Forest ensemble algorithm, the
model is created using a bagging technique. In this technique, there is a random sampling
of observations with repetitions. Some of the observations are not used in any of the
individual trees—these observations are considered “out of the bag” (OOB). The OOB
data are used to estimate the mean square error of the Random Forest predictions and to
assess the significance of the variables [67]. The prediction of values in the control set was
used, and R2 and RMSE were determined [68] for the external evaluation of the OLS model
and ML-Regression models. The formulae of the diagnostic measures are summarised in
Table 1.

Table 1. Diagnostic measures adopted.

Diagnostic Measures Equations

Root Mean Square Error (RMSE) RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2

Mean Absolute Percentage Error (MAPE) MAPE =
1
n

n
∑

i=1

∣∣∣∣ yi − ŷi
yi

∣∣∣∣
R-Square (R2) R2 = 1 − ∑n

i=1(yi−ŷi)
2

∑n
i=1(yi−y)2

Adjusted R-Square (adjR2) adjR2 = 1 −
[
(1−R2)(n−1)

n−k−1

]
Where: yi is the observed value; ŷi is predicted value; y is the average value of the observed; n is the number of
observations; k is the number of independent variables (attributes) in the model.

3.4. The Study Area

The study area was within the administrative boundaries of Warsaw (Figure 8). War-
saw covers an area of approximately 517 km2, with approximately 23.9% of its area con-
sisting of residential areas. In 2021, Warsaw had 1,863,056 residents who lived in a hous-
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ing stock of 1,046,864 housing units. The housing stock in Warsaw has continued to
increase in recent years, as evidenced, for example, by the fact that 107,431 housing units
(apartments and houses) were put into use between 2017 and 2021. The vast majority of
these—95.6%—were constructed by developers. In this period, developers built 98,424 new
apartments.
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4. Results
4.1. Aggregated Average Price Indices

The average value of the housing projects price indices IND
(

Pjq
)

was 1.0298, median:
0.9097, IQR: 0.3401. The outlier observations were developments whose price level indices
IND

(
Pjq

)
> 1.63, meaning that the weighted average prices of apartments in a given

development were 1.63 times higher than the weighted average price for the entire market.
Outlier values accounted for 748 records out of 10,135 (7.38%) (Figure 9b). After rejecting
the outlier observations, aggregate price level indices PCAreak were determined (Figure 10).
In Figure 10, the values of the aggregated price level index PCAreak > 1.00 indicate values
above the average for the entire market (city), and values below the PCAreak < 1.00 indicate
values below the average. The spatial distribution of values PCAreak deviates from a random
distribution, showing significant spatial autocorrelation (for Moran’s I, the pseudo-p value
is 0.001 for 999 permutations) (Figure 11). Clusters of high values of aggregate price level
indices PCAreak are observed in the city centre and along metro lines, particularly the M1
line in a north–south direction. The location on the left bank part of the city also seems to
be significant. On the right bank, clusters of low values of the aggregate price level index
are observed in districts farther from the city centre PCAreak . It seems, therefore, that the
attributes related to the accessibility of the city centre (distance from the centre, accessibility
of metro stations, distances to facilities located mainly in the centre) will have a significant
impact on the analysed values of the aggregated price level indices.
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4.2. Regression Models Results

The dataset was divided into a training set (451 observations, 90%) and a control set
(52 observations, 10%). The cadastral sections of the control set were randomly selected
from each district of the city. Figure A1 in Appendix D shows their location.

Analyses were carried out using ArcGIS Pro 10.3.1 software. The analysis was carried
out in two variants: (1) MODEL OLS_I—for selected variables including semi-structural at-
tributes; (2) MODEL OLS_II—for selected variables without semi-structural attributes. The
variables used in the OLS_I and OLS_II models are summarised in Table A2 in Appendix C.
The obtained diagnostic results are presented in Table 2.

Table 2. Diagnostic results of OLS linear regression models for the training data from 451 cadastral
sections.

Diagnostic Values OLS_I OLS_II

Number of variables 19 18
Multiple R-Squared (R2) 0.794 0.782

Adjusted R-Squared (adjR2) 0.785 0.773
Akaike’s Information Criterion (AiCc) −626.00 −602.74

Jarque–Bera Statistic (JB) 1 0.0000 0.0000
Autocorrelation of standardized residuals 2: Moran’s I 0.002 0.001

MSE 0.013 0.014
RMSE 0.115 0.118
MAPE 2.102 2.382

1 Prob(>chi-squared), (2) degrees of freedom; 2 pseudo-p value for 999 permutations.

Table 2 shows that, for both linear regression models, a high coefficient of determi-
nation R2 was obtained, but the residuals obtained do not have a normal distribution
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(statistically significant Jarque–Bera Statistic (JB) value) and are not randomly distributed in
geographical space (statistically significant spatial autocorrelation). Due to the collinearity
of the variable values, the set was reduced from 66 variables to 19 for OLS_I and 18 for
OLS_II. The inclusion of semi-structural variables in the OLS_I linear regression model
increased the amount of explained variance (increase in R2 and adjR2) and reduced model
uncertainty (reduction in MSE, RMSE and MAPE errors).

The prediction results for the 52 cadastral sections of the control set in the OLS_I
and OLS_II models are shown in Table 3. In the OLS_I model, the prediction was based
on 18 selected external attributes (location L and neighbourhood N), with the addition
of one semi-structural attribute (prestige_f2). In the OLS_II model, the prediction was
based on 18 external attributes without a semi-structural one. For the aggregated price
level coefficients PCAreak , a properly selected set of external attributes allowed 84.1% and
82.9% of the variance to be explained, respectively. In districts where no investment
stages were recorded in the analysed period, prediction is possible according to the OLS_II
model, while if asking prices of developments are already recorded in the database, it is
possible to determine semi-structural attributes and make predictions using the OLS_I
model, characterised by a higher R2 coefficient and lower uncertainty of the result (lower
RMSE, MAPE).

Table 3. OLS model diagnostics for the prediction of aggregate price level coefficients PCAreak in the
52 cadastral sections of the control set.

Diagnostic Values OLS_I OLS_II

Multiple R-Squared (R2) 0.8413 0.8287
Adjusted R-Squared (adjR2) 0.8249 0.7353

MSE 0.0089 0.0098
RMSE 0.0946 0.0992
MAPE 0.6847 0.8711

Analyses were carried out using ArcGIS Pro 10.3.1 software, and model variants
were analysed using the following algorithms: Random Forest regression (RF-Regression)
with hyperparameter optimisation and XGBoost-Regression. A summary of the models
is presented in Table 4. The diagnostic results for the test data, determined using the
k-folds method, of the RF-Regression and XGBoost-Regression models are presented in
Tables 5 and 6, respectively.

Table 4. Analysed ML-Regression models.

Attributes RF-Regression XGBoost-Regression

All attributes (66) MODEL10 MODEL20
All attributes excluding semi-structural (61) MODEL11 MODEL21

OLS_I attributes (19) MODEL12 MODEL22
OLS_II attributes (18) MODEL13 MODEL23

Table 5. Random Forest regression model diagnostics. Predictions for the test data (excluded from
model training) compared to the observed values for those test features.

Diagnostic Values MODEL10 MODEL11 MODEL12 MODEL13

OOB: Errors 0.014 0.016 0.016 0.017
OOB: % of variation explained 78.324 74.457 75.143 73.686

R2 0.867 0.793 0.825 0.829
MAE 0.076 0.090 0.078 0.088

MAPE 1.743 3.466 1.803 0.834
RMSE 0.099 0.131 0.100 0.110

stResid SA (p value) 0.910 0.069 0.456 0.636
stResid SA (pseudo p value for 999 permutations) 0.443 0.046 0.213 0.282



Land 2024, 13, 1881 15 of 29

Table 6. XGBoost regression model diagnostics. Predictions for the test data (excluded from model
training) compared to the observed values for those test features.

Diagnostic Values MODEL20 MODEL21 MODEL22 MODEL23

R2 0.831 0.801 0.711 0.753
MAE 0.089 0.095 0.086 0.107

MAPE 0.861 2.015 1.223 1.089
RMSE 0.116 0.119 0.123 0.136

stResid SA (p value) 0.946 0.291 0.676 0.654
stResid SA (pseudo p value for 999 permutations) 0.447 0.116 0.298 0.113

In addition, for the ML-Regression models, predictions were performed for 52 control
set cadastral sections in the same manner as for the OLS models. The diagnostics of
the obtained control results for the models using the RF-Regression algorithm and the
XGBoost-Regression algorithm are set out in Tables 7 and 8, respectively.

Table 7. External diagnostics of Random Forest regression models for the prediction of aggregate
price level coefficients PCAreak in 52 control set cadastral sections.

Diagnostic Values MODEL10 MODEL11 MODEL12 MODEL13

R2 0.801 0.743 0.787 0.758
MSE 0.011 0.014 0.012 0.014

RMSE 0.106 0.120 0.110 0.117
MAPE 1.134 1.022 1.153 1.581

Table 8. External diagnostics of XGBoost regression models for the prediction of aggregate price level
coefficients PCAreak in 52 control set cadastral sections.

Diagnostic Values MODEL20 MODEL21 MODEL22 MODEL23

R2 0.785 0.739 0.760 0.762
MSE 0.012 0.015 0.014 0.013

RMSE 0.110 0.121 0.116 0.116
MAPE 1.536 1.309 1.234 1.191

Upon comparing the prediction results of the aggregate price level coefficients PCAreak
obtained in the test set (451 cadastral sections) for linear regression models (Table 2) and
for ML-Regression models (Tables 5 and 6), it can be observed that, with the exception of
MODEL22 and MODEL23 (XGBoost algorithm, with a small number of attributes), the ML
models provided higher values of the coefficient of determination R2 than the OLS linear
regression models. The OLS models achieved R2 of 79.4% and 78.2%, respectively, while
the RF-Regression models achieved R2 values of 79.3–86.7%. However, for predictions in
the control set (52 cadastral sections excluded from model building), the OLS linear regres-
sion models were the ones that performed better: they achieved R2 = 82.9% (OLS_II) and
R2 = 84.1% (OLS_I) of variance, while the RF-Regression models achieved R2 = 74.3–80.1%
and the XGBoost-Regression models achieved R2 = 73.9–78.5%. In the control set, pre-
dictions using OLS linear regression also showed lower uncertainty (lower RMSE and
MAPE values) compared to the ML models: RF-Regression (MODEL10–MODEL13) and
XGBoost-Regression (MODEL20–MODEL23).

4.3. Attributes/Variables Results

In the majority of the analysed models, the inclusion of semi-structural variables
improved the predictions in both the test and control datasets. For the OLS linear regression
models, the inclusion of semi-structural variables increased the R2 by 1.2% for the z-
prediction in the test and control datasets, while reducing the RMSE and MAPE uncertainty
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values. The results achieved for ML models are less explicit, especially for the XGBoost-
Regression models. Figure 12 compares the R2 values obtained by each model for prediction
in the test and control sets.
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The TOP-10 most relevant attributes were selected for each model analysed (Table 9).
The main goal is to demonstrate that if the so-called semi-structural attributes are included
in the model, they are highly ranked for both the linear and ML models. Table 9 presents a
summary of the TOP-10 attributes for the OLS and Random Forest regression models.

Table 9. A list of TOP-10 attributes for OLS and Random Forest regression models.

Models Including Semi-Structural Attributes

MODEL OLS_I (19 attributes) MODEL12 (RF) (19 attributes) MODEL10 (RF) (66 attributes)

prestige_f2 prestige_f2 bank_krnl2_dist
metro_2nd_closest museum_MeanDist4 prestige_mid1

noise1_dist bank_MeanDist7 prestige_mid2
tennis_MeanDist7 MF2_share_builtUp prestige_f1

elementary_MeanDist7 theatre prestige_f2
sport_MeanDist7 noise1_dist pharmacy_krnl2_dist

theatre metro_2nd_closest bank_MeanDist7
MF2_share_builtUp tennis_MeanDist7 highschool_krnl2_dist

district_rank sport_MeanDist7 tennis_MeanDist7
retail_krnl2 city_center_time_public MeanCountDwellings_ca

Models Excluding Semi-Structural Attributes

MODEL OLS_II (18 attributes) MODEL13 (RF) (18 attributes) MODEL11 (RF) (61 attributes)

bank_MeanDist7 bank_MeanDist7 bank_krnl2_dist
tennis_MeanDist7 MF2_share_builtUp city_center_dist_roads

noise1_dist noise1_dist tennis_MeanDist7
district_rank metro_2nd_closest bank_MeanDist7

metro_2nd_closest tennis_MeanDist7 museum_MeanDist4
theatre city_center_time_public metro_3rd_closest

park2_area theatre MF2_share_builtUp
city_center_time_public district_rank park_meanDist_ca
elementary_MeanDist7 landmarks_MeanDist7 SF2_share_builtUp

MF2_share_builtUp elementary_MeanDist7 landmarks_krnl2_dist
bank_MeanDist7 bank_MeanDist7 bank_krnl2_dist
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Table 9 shows that, if semi-structural attributes are included, they are very significant.
The variable prestige_f2 came first in the MODEL OLS_I and MODEL12 rankings. If all the
variables were taken into account (MODEL10), all five semi-structural attributes were in
the TOP-10 of the relevance ranking, with quite an apparent advantage of prestige_mid
over prestige_f and with the medium granularity of reference units (1st order adj.) over
low granularity (2nd order adj.). For models excluding semi-structural attributes in the
TOP-10, the most relevant attributes were:

1. Attributes related to the location of banks (in each of the three models, this was the
most significant variable; more banking service points are located in the city centre and
in local centres; in the OLS linear regression models, the attribute “bank_MeanDist7”—
determined as the average distance to the seven closest banking service points—was
considered; when all 61 attributes were considered in MODEL11, the most significant
attribute was bank_krnl2_dist, i.e., the relative kernel density calculated for banks
within the second grade cadastral section neighbours divided by distance to the
city centre);

2. Attributes related to facilities such as museums, theatres and historical buildings that
are mainly found in the city centre;

3. Attributes related to the accessibility of the city centre: city_center_time_public,
i.e., travel time to the centre by public transport, and, with all variables included,
city_center_dist_roads, i.e., distance to the centre calculated by roads;

4. Attributes related to the accessibility of public transport, i.e., metro_2nd_closest and,
in the model for all attributes, metro_3rd_closest—defining the distance to the second
and third nearest metro stations respectively—these distances are small when metro
stations occur close to each other, such is the case for intersecting metro lines (transfer
convenience) or for densely distributed metro stations (central districts);

5. Attributes related to the accessibility of sport and recreation in the neighbourhood,
i.e., park2_area (parks area share in the second-grade cadastral area neighbour’s area)
in the OLS_II model and in MODEL11: park_meanDist_ca (average distance to the
closest park in the cadastral area) and tennis_MeanDist7 (average distance to the
closest tennis courts);

6. Attributes describing neighbourhood quality: MF2_share_builtUp, SF2_share_builtUp
(percentage of MF multifamily and SF single-family development designated at
low granularity (second-order adjacency to the cadastral area), noise1_dist (average
minimum level of daytime traffic noise within the first-grade cadastral area neighbours
divided by the distance to the city centre) and district_rank (composite index of
districts ranking determined by Statistics Poland), though the latter two were in the
TOP-10 only for models based on 18 attributes selected for OLS_II;

7. Attributes determining the availability of elementary schools in the neighbourhood,
i.e., elementary_MeanDist7 (average distance to the nearest elementary schools),
though, like noise1_dist and district_rank, the attribute elementary_MeanDist7 was
not in the TOP 10 for the model including more variables.

In summary, for the location variables (L), the most relevant attributes were those
describing the relationship (directly or indirectly) between the cadastral section’s location
to the city centre or local centres and the possibilities of reaching the centre—public trans-
port commuting time or distances to the nearest metro stations. On the other hand, for
the neighbourhood variables (N), the most relevant attributes were those describing the
structure of development in the larger neighbourhood (second-order adjacency) and those
related to the availability of parks and tennis courts. Additionally, the average noise level
in the medium granulation (first-order adjacency) and the availability of primary schools
were significant in the models with 18 variables selected.

5. Discussion

In hedonic models, prices or price indices are analysed on a non-aggregate basis.
This requires the inclusion of real property structural variables. In a number of studies
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(e.g., [13,17,23]), location and neighbourhood variables showed negligible significance
in the regression models created (both linear OLS and regression using ML algorithms)
compared to the significance of structural variables. The analysis of location (L) and
neighbourhood (N) variables, therefore, required searching for transactions with similar
structural variables, differing only in external attributes. However, when analysing asking
prices, this is difficult due to the smaller number of new properties on the market compared
to the number of properties traded on the secondary market. In our research, we used
price level indicators aggregated to micro-markets (cadastral sections). We showed that,
on the basis of only the external attributes, namely location (L) and neighbourhood (N),
it is possible to create models to predict these values. We obtained models with an R2 of
71.1–86.7%, depending on the tools and algorithms used, with a prediction uncertainty
RMSE of 0.099–0.136 for the test data, and with an R2 of 73.9–84.1% and an RMSE of
0.095–0.121 for the prediction in the control dataset. To the best of our knowledge, no
analysis has yet been carried out on prediction models for aggregate price level indicators
on the primary market.

When comparing the results for housing price prediction, examples of R2 values
can be given. For instance, Ref. [47] developed a model based mainly on structural
attributes and one location attribute, taking into account commuting time to the city
centre for a Random Forest regression model for a housing price database in Hong Kong
covering more than 90,000 records over 18 years, and obtained R2 = 90.3%. In an analysis of
apartment transaction data from the period of 2006 to 2017 in the district of Gangnam (South
Korea) [31], achieved for RF-Regression R2 = 97.6%, and for OLS regression R2 = 72.6%.
Ref. [65], in an analysis of a random sample of 200 houses in Christchurch, New Zealand,
obtained for a hedonic price model for out-of-sample forecast evaluation R2 = 38.1–75.0%,
and for the neural network model R2 = 69.1–90.0%. In an analysis of dwelling prices using
Ordinary Least Squares Regression and Geographically Weighted Regression in Poznań,
Poland, Ref. [69] obtained R2 = 54.9%. In most of these studies, the authors point out the
better results achieved with ML algorithms. In our study, concerning aggregate price level
indices, for test data diagnosed with the k-folds method, ML models also performed better.
On the other hand, OLS models, developed for carefully selected attributes, performed
better for predictions in the control set, containing observations completely excluded from
the model development stage.

On the basis of incomplete information about the structural attributes—the number
of residential units in the development and to which of the four quality segments it was
assigned—we determined the attributes referred to as semi-structural, namely the prestige
and MeanCountDwellings. The attributes prestige_mid and prestige_f were calculated
on the basis of assigning the development to a quality segment, which in turn is derived
from the structural variables, among other things. A detailed description of the deter-
mination of the prestige_mid and prestige_f variables is provided in Appendix B. These
variables showed a high correlation with aggregate price level indices (R2: 62.8–65.7%). In
a study [36], the number of apartments in a building was among the top 20 characteristics
with the highest impact on prices, both using the Random Forest algorithm and linear
regression. Similarly, in a study [31], the number of apartments in a building was the second
most significant characteristic of the apartments analysed. In our study, we included a
semi-structural attribute indicating the average number of apartments in new residential
buildings located in the neighbourhood of a given cadastral section (MeanCountDwellings).
This variable did not show a high correlation with the aggregate price level index analysed
(R2 = 7.5%). It should be noted that the way this variable is captured is quite different.
We use an averaged value aggregated to the cadastral section. It does not characterise
a single building, and we treat it as a neighbourhood attribute—indicating the direction
of the developments in the neighbourhood. Other relevant structural variables include
apartment area, type and age of development. However, when considering the area of
the apartment, in our research, we had data aggregated to whole housing developments;
when considering the type of development, we only analysed apartments in multifamily
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buildings; and for the age of the building, we used data from the primary market, so some
housing developments were still under construction.

6. Conclusions

The inclusion of semi-structural variables improved the prediction results in both the
test set and the control set for the OLS models and for most of the ML models developed.
These variables are also highly ranked in terms of their significance. If there are no new
housing projects in a certain area, adjacent first-order cadastral sections and adjacent second-
order cadastral sections within the analysed time period, no information is available for the
determination of semi-structural attribute values. In the developed OLS linear regression
models, not including semi-structural variables resulted in a small difference in R2 (1.2%),
while in models using the Random Forest (RF) algorithm, the difference in R2 was 5.8%
for models developed with all attributes and 2.9% for models developed using selected
attributes from OLS models. The prediction of aggregate asking price levels in the cadastral
sections for which information to determine semi-structural attributes is missing is less
certain, but still the level of explained variance for the prediction of the control set is
about 75% for the ML models and over 82% in the OLS linear regression model. In the
diagnostics of the models for the control set prediction, observations that were completely
excluded from the model building process performed in favour of the OLS linear regression
models. However, creating an OLS linear regression model that meets the assumptions
is difficult due to collinearity occurring between many variables. By restricting the set
to significant variables that have a VIF < 7.5 (i.e., to avoid increasing the variance with
collinearity), there is a risk of omitting key variables. This led to flawed results when
maximising R2: the deviations did not have a normal distribution and there was spatial
autocorrelation of the standardised deviations. Many studies [70–72] have shown that there
are interdependencies between attributes belonging to groups such as greenery, location in
the city structure and transport accessibility, and that their impact on real property prices
is complex. This nonlinear nature of the relationship has been demonstrated on several
occasions [73]. This phenomenon seems to be of particular relevance for the variables
belonging to the location (L) and neighbourhood (N) attributes determined using GIS
spatial analyses, which naturally exhibit relationships in geographical space. The use of
ML algorithms allowed the lack of linearity to be taken into account. The standardised
deviations obtained in the regression models based on ML regression had a random
distribution over the area of analysis (no statistically significant spatial autocorrelation).
However, for predictions in the control set, the results of the ML algorithms were subject to
greater uncertainty.

The developed methodology can serve as the basis for developing predictive aggregate
price level indices. These indices can be used to determine the level of asking prices in
newly marketed developments. The accurate determination of price indices will allow
development companies to pre-plan their budgets for new residential developments and
site selection. It also allows the analysis of the impact of location (L) and neighbourhood
(N) variables, without the need to include complex information on structural variables for
which there is no detailed information available in the asking price database used.

Our research has some shortcomings. The aim of this paper was not to delve deeply
into ML methods, nor was it to prove that ML methods outperform linear regression. We
wanted to prove that external attributes (themselves) allow us to assess the price levels
for the micro market. To do so, we decided to use different methods: linear regression
and two ML methods (Random Forest and XGBoost—both available in ArcGIS Pro 3.3.1,
which we used). We have not compared the various methods for tuning hyperparameters
(such as grid search, random search, or Bayesian optimization). We have not explored
spatial thresholds and heterogeneity of accessibility’s impact on aggregate price indices. All
these shortcomings indicate potential further directions of our research. Moreover, further
research should focus on the application of moving window technique analysis (which
can provide independence from a priori defined micro-markets), more detailed analysis of
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the impact of individual groups of location (L) and environment (N) attributes at a wider
range of granularity, and the ongoing verification of selected models based on incoming
data from the primary property market.
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Appendix A. Variables Selected for Analysis After Initial Selection

Table A1. Variables selected for analysis after initial selection.

Name PL Name EN Category Group Determination Method Granulation R2

park1_pow park1_area neighbourhood green area
Parks area share in 1st

grade neighbour
cadastral areas

Contiguity—
1st order 14.3

park2_pow park2_area neighbourhood green area
Parks area share in 2nd

grade neighbour
cadastral areas

Contiguity—
2nd order 27.1

zielen0_pow green0_area neighbourhood green area Greenery area share in
cadastral area Cadastral area 10.3

zielen1_pow green1_area neighbourhood green area
Greenery area share in 1st

grade neighbour
cadastral areas

Contiguity—
1st order 16.9

zielen2_pow green2_area neighbourhood green area
Greenery area share in 2nd

grade neighbour
cadastral areas

Contiguity—
2nd order 20.7

OBR2_park_las
_zadrz_liczba green2_count neighbourhood green area

Numer of greenery spots
in 2nd grade neighbour

cadastral areas

Contiguity—
2nd order 11.5

INTENS_Zabud density neighbourhood buildings Buildings density Cadastral area 35.6

zabytki_krnl2 landmarks_krnl2 neighbourhood buildings

Relative kernel density
calculated for monuments

within 2nd grade
neighbour cadastral areas
divided by distance to the

city center

Contiguity—
2nd order 54.2

https://www.geoportal.gov.pl/
https://bdl.stat.gov.pl/bdl
https://bdl.stat.gov.pl/bdl
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Table A1. Cont.

Name PL Name EN Category Group Determination Method Granulation R2

BUBDshare builtup_share neighbourhood buildings
Built-up area share in 2nd

grade neighbour
cadastral areas

Cadastral area 18.8

OSR OSR neighbourhood buildings
Spacemate component

value (spare outdoor space
per person)

Cadastral area 24.0

MW2_udział
_obreb

multifam_
share_ca neighbourhood buildings

Multifamily bult-up area
share within 2nd grade

neighbour cadastral areas

Contiguity—
2nd order 37.7

MW2_udział_
zabudowa

multifam_
share_be neighbourhood buildings

Multifamily bult-up area
share within 2nd grade

neighbour cadastral
built-up areas

Contiguity—
2nd order 43.3

MN2_udział_
zabudowa

singlefam_
share_be neighbourhood buildings

Single-family bult-up area
share within 2nd grade

neighbour cadastral
built-up areas

Contiguity—
2nd order 45.8

Clm * total_no_units * neighbourhood buildings

Average number of
dwellings in new
developments in

cadastral area

Cadastral area 7.5

przedsz_krnl2 kindergarten
_krnl2 neighbourhood community

services

Relative kernel density
calculated for

kindergartens within 2nd
grade cadastral area

neighbours

Contiguity—
2nd order 30.4

podst_krnl2 elementary_krnl2 neighbourhood community
services

Relative kernel density
calculated for elementary
schools within 2nd grade
cadastral area neighbours

Contiguity—
2nd order 49.2

sredn_krnl2 highschool_krnl2 neighbourhood community
services

Relative kernel density
calculated for high schools
within 2nd grade cadastral

area neighbours divided
by distance to the

city center

Contiguity—
2nd order 56.6

eduindex2 eduindex2 neighbourhood community
services

Index calculated using
number of different school

facilities and number of
types of schools

Contiguity—
2nd order 34.9

przedsz2_pow kindergarten2
_area neighbourhood community

services

Number of kindergartens
within 2nd grade cadastral

area neighbours divided
by area

Contiguity—
2nd order 18.5

podst2_pow elementary2_area neighbourhood community
services

Number of elementary
schools within 2nd grade
cadastral area neighbours

divided by area

Contiguity—
2nd order 33.1

eduindex2_pow eduindex2_area neighbourhood community
services

Index calculated using
number of different school

facilities and number of
types of schools divided

by area

Contiguity—
2nd order 39.0
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Table A1. Cont.

Name PL Name EN Category Group Determination Method Granulation R2

zdrowie_krnl2 healthcare_krnl2 neighbourhood community
services

Relative kernel density
calculated for healthcare

facilities within 2nd grade
cadastral area neighbours
divided by distance to the

city center

Contiguity—
2nd order 55.8

apteka_krnl2 pharmacy_krnl2 neighbourhood community
services

Relative kernel density
calculated for pharmacies

within 2nd grade cadastral
area neighbours divided

by distance to the
city center

Contiguity—
2nd order 54.7

bank_krnl2 bank_krnl2 neighbourhood commercial
services

Relative kernel density
calculated for banks within
2nd grade cadastral area
neighbours divided by

distance to the city center

Contiguity—
2nd order 59.6

poczta_krnl2 postoffice_krnl2 neighbourhood commercial
services

Relative kernel density
calculated for post offices

within 2nd grade cadastral
area neighbours divided

by distance to the
city center

Contiguity—
2nd order 54.7

rest_krnl2 restaurant_krnl2 neighbourhood commercial
services

Relative kernel density
calculated for restaurants

within 2nd grade cadastral
area neighbours divided

by distance to the
city center

Contiguity—
2nd order 53.4

ph_norm retail_krnl2 neighbourhood commercial
services

Relative kernel density
calculated for retail within

2nd grade cadastral
area neighbours

Contiguity—
2nd order 27.7

halas1_dist noise1_dist neighbourhood disadvantages

Average minimum level of
day-time traffic noise

within 1st grade cadastral
area neighbours divided
by distance to city centre

Contiguity—
1st order 49.5

dzielnica_
rankingGUS district_rank neighbourhood prestige Statistics Poland

districts ranking Cadastral area 17.6

seg_mid1 * prestige_mid1 * neighbourhood prestige
Prestige index calculated
within 1st grade cadastral

area neighbours

Contiguity—
1st order 62.8

seg_mid2 * prestige_mid2 * neighbourhood prestige
Prestige index calculated

within 2nd grade cadastral
area neighbours

Contiguity—
2nd order 65.3

prestiz_f1 * prestige_f1 * neighbourhood prestige
Prestige index calculated
within 1st grade cadastral

area neighbours

Contiguity—
1st order 64.0

prestiz_f2 * prestige_f2 * neighbourhood prestige
Prestige index calculated

within 2nd grade cadastral
area neighbours

Contiguity—
2nd order 65.7
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Table A1. Cont.

Name PL Name EN Category Group Determination Method Granulation R2

przystanki_
index_1 stop_index1 neighbourhood public

transport

Average distance to public
transport stop divided by
average distance to them
within 1st grade cadastral

area neighbours

Contiguity—
1st order 21.4

przystanki_
gestosc_1 stops_density1 neighbourhood public

transport

Number of public
transportation stops
divided by 1st grade

cadastral area
neighbours area

Contiguity—
1st order 26.2

MEAN_Kernel1_
Przyst_OBR

MEAN_Kernel1_
BusStop_dist neighbourhood public

transport

Relative kernel density
calculated for public

transportation stops within
1st grade cadastral

area neighbours

Contiguity—
1st order 35.5

ParkMeanOBR park_mean_ca location green area Average distance to closest
park in cadastral area Distance 35.6

zabytki_srednio7 landmarks_dist location buildings Average distance to
closest monuments Distance 22.8

przedsz_srednio7 kindergartens_dist location community
services

Average distance to closest
kindergarden facilities Distance 17.5

podst_srednio7 elementary_dist location community
services

Average distance to closest
elementary school facilities Distance 41.9

sredn_srednio7 highschool_dist location community
services

Average distance to closest
high school facilities Distance 54.4

muzeum museum location community
services

Distance to
closest museum Distance 41.1

teatr theatre location community
services Distance to closest theatre Distance 46.8

zdrowie_srednio7 healthcare_dist location community
services

Average distance to closest
healthcare facilities Distance 37.7

apteka_srednio7 pharmacy_dist location community
services

Average distance to
closest pharmacies Distance 40.0

muzeum_
mediana4 museum_median location community

services
Average distance to

closest museums Distance 54.3

teatr_srednio7 theatre_dist location community
services

Average distance to
closest theatres Distance 54.0

bank_srednio7 bank_dist location commercial
services

Average distance to closest
bank facilities Distance 52.3

poczta_srednio7 postoffice_dist location commercial
services

Average distance to closest
post office facilities Distance 49.7

transformatory transformers location disadvantages Distance to closest energy
transformers facility Distance 7.6

slupy_7najb transmission_dist location disadvantages Distance to seventh closest
transmission tower Distance 0.7

slupy_7sredn transmission_dist location disadvantages Average distance to closest
transmission towers Distance 0.9

scieki sewage_dist location disadvantages Distance to closest sewege
treatment plant facility Distance 7.7
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Table A1. Cont.

Name PL Name EN Category Group Determination Method Granulation R2

zajezdnie busdepot_dist location disadvantages Distance to closest
bus/tram depot Distance 23.3

autostrady highway_dist location transport Distance to
closest highway Distance 15.7

plac_sportowy
_srednio7 sport_dist location recreation

facilities
Average distance to closest

sport facilities Distance 29.6

plac_gier_i_zabaw
_srednio7 playground_dist location recreation

facilities
Average distance to closest

playground facilities Distance 15.0

korty_tenisowe
_srednio7 tennis_dist location recreation

facilities
Average distance to closest

tennis courts Distance 30.1

ODL_kmDr city_center_dist_roads location location in the
city

Distance to city centre
measured along roads Distance 58.6

poziom1 local_center_dist location location in the
city Distance to local centre Distance 6.0

metro_min2 metro_2nd_closest location public
transport

Distance to second closest
metro station Distance 49.1

stacja_min2 railway_2nd_closest location public
transport

Distance to second closest
railway station (either

metro or suburban)
Distance 21.1

przyst_mediana7 stops_median location public
transport

Average distance to closest
public transportation stops Distance 16.0

MEAN_Kernel1
_Przyst_OBR

MEAN_Kernel1
_BusStop_dist neighbourhood public

transport

Relative kernel density
calculated for public

transportation stops within
1st grade cadastral

area neighbours

Contiguity—
1st order 35.5

czas_Kom city_center_time_publiclocation public
transport

Commuting time to
city centre Distance 54.6

metro3 metro_3rd_closest location public
transport

Distance to third closest
metro station Distance 51.8

stacja3 railway_3rd_closest location public
transport

Distance to third closest
railway station (either

metro or suburban)
Distance 29.6

* Variables that we refer to as semi-structural attributes are marked in grey.

Appendix B. The Method of Determination of Prestige Indexes

In the analysed database, investment stages are assigned to one of four quality seg-
ments: 1, 2, 3 and 4. Segment 1 includes the most luxurious residential developments,
usually intimate, located in quiet, peaceful neighbourhoods or slightly larger, located in
the most prestigious locations. They have additional services such as an in-house gym
or concierge, and the façade and common areas are finished using the best materials.
Sometimes turnkey finishing of such an apartment is on offer. Segment 4 can be called
popular; these are investments always sold in a developer’s state, thus requiring financial
outlays from the buyer to finish the apartments. The façade and common areas are finished
using cheap, readily available materials. The values of the variables were calculated with
reference to the surface reference unit formed by the following:

• Cadastral sections and 1st order contiguous cadastral sections (prestige_f1, pres-
tige_mid1);

• Cadastral sections, 1st order contiguous cadastral districts and 2nd order contiguous
cadastral sections (prestige_f2, prestige_mid2).
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They were calculated as follows:
Variables: prestige_mid. This is the share of the total number of apartments contained

in housing developments assigned to one of the two middle-quality segments (lower-
middle and upper-middle) in the total number of apartments contained in the new housing
developments included in the database analysed (Equation (A1)).

prestigemid =
ck(seg2 + seg3)

ck(seg1 + seg2 + seg3 + seg4)
, (A1)

where ck is the total number of apartments in the development stages in k of this surface
reference unit; and ck(seg1), ck(seg2), ck(seg3), ck(seg4) are the number of apartments in
the development stages in k—this surface reference unit, allocated to segment 1, segment 2,
segment 3 and segment 4, respectively.

Variables: prestige_f is calculated as follows (Equation (A2)):

i f Ck(seg1) > 0, than prestige f = 3 + Ck(seg1)+Ck(seg2)
Ck

,

i f Ck(seg1) = 0 AND Ck(seg2) > 0 than prestige f = 2 + Ck(seg2)+Ck(seg3)
Ck

,

i f Ck(seg1) = 0 AND Ck(seg2) = 0 AND Ck(seg3) > 0 than prestige f = 1 + Ck(seg3)
Ck

,
i f Ck(seg1) = 0 AND Ck(seg2) = 0 AND Ck(seg3) = 0 AND Ck(seg4) > 0 than prestige f = 1,

(A2)

where Ck is the total number of apartments in the development stages in k of this surface
reference unit; and Ck(seg1), Ck(seg2), Ck(seg3), Ck(seg4) are the number of apartments
in the development stages in k—this surface reference unit, allocated to segment 1, segment
2, segment 3 and segment 4, respectively.

If the unit has investment stages belonging to segment 1, the variable prestige_f takes
values from 3 to 4. If the highest segment is segment 2, the variable prestige_f takes values
from 2 to 3. If the highest segment is segment 3, the variable prestige_f takes values from 1
to 2. If the unit has only investment stages assigned to segment 4, the variable prestige_f
takes the value 1.

Appendix C. Variables Selected for OLS_I and OLS_II Models

Table A2. List of variables selected to create OLS_I and OLS_II models.

OLS_I OLS_II

BANK_MEANDIST BANK_MEANDIST
LOCAL_CENTER_DIST LOCAL_CENTER_DIST

STOP_INDEX1 STOP_INDEX1
METRO_2ND_CLOSEST METRO_2ND_CLOSEST

CITY_CENTER_TIME_PUBLIC CITY_CENTER_TIME_PUBLIC
ELEMENTARY_MEANDIST7 ELEMENTARY_MEANDIST7

NOISE1_DIST NOISE1_DIST
SEWAGE_DIST SEWAGE_DIST

THEATRE THEATRE
MUSEUM_MEANDIST4 PARK2_AREA

PARK2_AREA GREEN2_AREA
GREEN2_AREA SPORT_MEANDIST7

SPORT_MEANDIST7 TENNIS_MEANDIST7
TENNIS_MEANDIST7 LANDMARKS_MEANDIST7

LANDMARKS_MEANDIST7 DISTRICT_RANK
DISTRICT_RANK MF2_SHARE_BUILTUP

MF2_SHARE_BUILTUP RETAIL_KRNL2
RETAIL_KRNL2 HIGHWAY_DIST
PRESTIGE_F2 *

* semi-structural variable.
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