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Abstract: Water ecosystem services (WESs) are intrinsically associated with the livelihood of urban
residents and are frequently disrupted by human activities. Land use and landscape patterns are key
driving factors of alterations in WESs. However, existing research primarily quantifies single-factor
influences and often overlooks the interactions between these factors. This study addresses this
gap by employing a multi-model coupling approach, integrating the Patch-generating Land Use
Simulation (PLUS), Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model,
and Geographical Detector (GD) models alongside various indicators to analyse the evolution of
land use, landscape patterns and WESs in the Greater Bay Area from 2000 to 2020, and to simulate
spatio-temporal change patterns in different scenarios from 2030 to 2050. Additionally, this study
examines the multi-factorial interactions between land use, landscape patterns, and WESs. The results
indicate that (1) urbanisation steadily increased, leading to intensified landscape fragmentation, and
water yield (WY) and total phosphorus (TP) consistently increased, while total nitrogen (TN) in water
gradually decreased; (2) urban areas exerted the most significant impact on WY in the Greater Bay
Area while Patch density (PD) had a stronger influence on WY, and Shannon’s diversity index (SHDI)
had the most pronounced effect on TN and TP; (3) the interaction between any two land-use types or
landscape indices exerted a greater impact on WESs compared with the impact of individual factors
alone. The interaction between urban areas and cropland substantially influenced WY (q = 0.634)
and most strongly affected TN and TP in water (q = 0.74 and 0.73, respectively). SHDI and PD had
the most significant impact on WY in the economic development scenario (q = 0.19) and exhibited
the greatest influence on the TN and TP levels in the ecological priority scenario (q = 0.12 and 0.15,
respectively). Our findings can provide theoretical and technical support for the integrated scientific
planning of regional water ecosystems and the development of comprehensive land use policies in
the future.

Keywords: water ecosystem services; interaction impact; PLUS-InVEST-GD; multi-scenario simulation;
landscape patterns

1. Introduction

Water ecosystem services (WESs) play a vital role in maintaining ecological balance,
promoting ecosystem health and stability and providing essential services such as wa-
ter yield (WY) and water purification (WP), which are indispensable for the sustainable
development of human society [1,2]. However, the on-going processes of urbanisation
and industrialisation have considerably impaired these services, posing a serious threat to
human well-being and public health [3,4]. Existing studies indicate that water ecosystems
are already experiencing significant degradation [5]. This degradation has resulted in a
diminished capacity for WY and WP, thereby jeopardising the safety of drinking water
supplies [3]. Given these challenges, the urgency of research on WESs is evident.

Land 2024, 13, 1927. https://doi.org/10.3390/land13111927 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land13111927
https://doi.org/10.3390/land13111927
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://doi.org/10.3390/land13111927
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land13111927?type=check_update&version=1


Land 2024, 13, 1927 2 of 25

Over the past decades, the outward expansion of urban areas has directly led to a
substantial reduction in water areas and severe degradation of the water ecosystem [6–8].
The contraction of water areas has diminished the capacity of the water ecosystem to supply
essential services, severely impacting socio-economic and ecological environments [9,10].
In China, the continued expansion of urban areas and the consequent reduction in natural
vegetation cover have led to decreased soil permeability, accelerated rainwater runoff
and increased flood flows [11,12]. Consequently, research on the impacts of land-use
change on WESs in urban agglomerations is essential. Landscape patterns considerably
influence WESs, primarily owing to their role in controlling the flow of organisms and
materials between landscapes [13,14]. Landscape fragmentation and connectivity have
been further exacerbated by land-use changes, and these changes profoundly impact the
level of WESs. The landscape patterns are often quantified via the landscape index method,
and previous research has predominantly examined the effects of single factors on WESs
using models such as geographically weighted regression, linear regression, and spatial
econometrics [15–17]. For instance, Zhang et al. [17] explored the driving mechanisms
involved in WESs in the Jianghuai region using the MGWR model, finding that SHDI
exhibited significant positive and negative correlations with WESs, with PD exhibiting
the strongest negative impact on WY. The interactions between ecosystem drivers and
their impacts are also being investigated. Chen et al. [18] analysed the interactive effects
of various land-use type pairs on the remote sensing-based desertification index (RSDI)
in northern China from 2000 to 2018. Wu et al. [19] examined the influence of land cover
on habitat quality in the Greater Bay Area (GBA) from 2000 to 2020, with a focus on
the interactions between contributing factors. However, most of these studies focus on
the single-factor effect or the interaction between factors in other ecological indicators,
overlooking the comprehensive impact of interactions among multiple factors on WESs in
the future.

Sustainable development of water ecosystems will face considerable challenges owing
to national and social policies, highlighting the urgent need for modelling future WES
scenarios [20,21]. Typically, these scenario simulations integrate land-use prediction models
with ecohydrological models. Liu et al. [22] introduced the future land-use simulation
(FLUS) model, while Liang et al. [23] developed the patch-scale land-use simulation (PLUS)
model. The PLUS model employed the Random Forest Classification (RFC) algorithm
to examine the relationship between multiple land-use expansions and multiple drivers.
Meanwhile, the PLUS model can simulate more effective and realistic land use as well
as landscape patterns by establishing a CA model based on multiple types of random
patch seeds (CARS) [23,24]. In ecological modelling, the Integrated Valuation of Ecosystem
Services and Trade-offs (InVEST) model, developed by Stanford University, The Nature
Conservancy and WWF, has been widely utilised. For instance, Wang et al. [25] used the
PLUS-InVEST model to simulate the Han River Basin in 2050, revealing continued urban
expansion and forest decline under a natural development scenario. The geodetector (GD)
model is widely applied to analyse the influence of non-linear interactions between various
factors on a target variable. Compared with previous studies, this study creates the PLUS-
InVEST-GD research framework. This innovative framework is specifically designed to
quantitatively evaluate the complex interactions between land use and landscape patterns,
and their subsequent impact on WESs. By adopting this integrated approach, the study aims
to provide deeper insights and more reliable data to inform the sustainable development of
the WESs.

As one of China’s fastest-growing economic regions and a demonstration site for
high-quality development, the GBA boasts the largest land area and population among
the world’s major bay areas. WESs are critical to the economic development of urban
agglomerations and the well-being of residents, particularly in terms of regional WY
and WP. However, the land use and landscape patterns of urban agglomerations vary
considerably over time and space during different development periods and, currently,
limited research has been conducted on how their interactions will impact WESs in future
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scenarios. This study proposes a multi-model coupling approach to quantitatively assess
the effects of multi-driver interactions on WESs. The PLUS, InVEST, and GD models were
integrated with various indicators to analyse and simulate the spatio-temporal changes
in land use, landscape patterns, and WESs in the GBA in different scenarios from 2000 to
2050. Subsequently, the complex mechanisms underlying the interactions between land
use, landscape patterns and WESs were explored. The main contributions of our research
include (1) a multi-model coupled approach created to study the mechanisms driving WESs
by land use and landscape patterns; and (2) an exploration of the interactive effects of land
use and landscape patterns on WESs. These findings significantly address existing gaps in
the literature regarding WESs.

2. Materials and Methods
2.1. Study Area

The GBA is located in the south of China (111◦21′–115◦25′ E, 21◦34′–24◦23′ N), which
comprises the nine cities of Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan,
Zhongshan, Jiangmen, and Zhaoqing in Guangdong Province as well as the two special
administrative regions of Hong Kong and Macao, with a total land area of 56,000 km2

(Figure 1). The region experiences a subtropical humid monsoon climate, with an average
annual temperature of 21–22 ◦C and annual precipitation ranges from 1600 to 2000 mm.
By 2023, the economic output of the GBA surpassed 14 trillion yuan and its permanent
population reached 86 million, making it one of the most open and economically vibrant
regions in China. However, rapid urbanisation, continued expansion of urban areas
and reduction in ecological land, including water, have considerably impacted the water
ecosystem. Therefore, studying the WESs in the GBA is necessary and urgent.
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2.2. Data Source

As can be seen from Table 1, the land-use data for 2000, 2010, and 2020 were obtained
from the China Multi-Period Land Use Remote-Sensing Monitoring Dataset provided by
the Chinese Academy of Sciences. This dataset primarily utilises Landsat remote-sensing
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images from the United States as its main information sources. The national-scale, multi-
period land-use/land-cover thematic database of China was constructed through manual
visual interpretation. To meet the research requirements, 25 secondary land-use classifi-
cations were reclassified and consolidated into six primary categories: cropland, forest,
grassland, water, urban, and unused land. Additionally, we analysed 15 key drivers that
considerably influence land-use change and WESs, including 10 socio-economic factors
and 5 natural factors. The socio-economic factors include population, GDP and eight
infrastructural characteristics (highways, railways, primary roads, secondary roads, tertiary
roads, high-speed rail, buildings, and rivers), while the natural factors comprise temper-
ature, precipitation, soil type, elevation and evapotranspiration. These driver data were
resampled to new data with a resolution of 30 m. The data preprocessing work of this
study is based on ArcGIS 10.7, including resampling and data registration.

Table 1. Data source in the study.

Data Type Data Name Resolution Data Source

natural data

land use 1000 m Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciencessoil type 1000 m

precipitation 1000 m
WorldClimv2.1temperature 1000 m

evapotranspiration 1000 m National Tibetan Plateau Scientific Data Center
DEM 30 m Geospatial data cloud

socio-economic data

population 1000 m Data Center for Resources and Environmental
Sciences, Chinese Academy of SciencesGDP 1000 m

distance to primary, secondary
and tertiary roads

30 m National Center for Basic Geographic
Information

distance to the highway
distance to the building
distance to the railroad

distance to the river

2.3. Simulation Analysis of Land Use and Landscape Pattern
2.3.1. PLUS Model

The PLUS model is a cellular automaton (CA) framework designed to simulate patch-
scale land-use/land-cover changes. This model integrates rule mining based on land ex-
pansion analysis and a multi-type random seed mechanism, enabling the identification of
driving factors behind land expansion and the prediction of patch-level land use–landscape
evolution. The PLUS model comprises two primary modules, namely the land expan-
sion analysis strategy (LEAS) and the CA model with multi-class random patch seeds
(CARS) [23].

The LEAS module extracts areas of land-use expansion between two historical periods
and samples the expanded regions. Utilising the random forest classification algorithm, it
identifies and quantifies the driving factors of various land-use expansions to determine
the development probabilities of different land-use types [22,23,26].

The CARS module employs multi-variate random seed generation and a threshold
reduction mechanism to simulate land-use changes based on the rules derived from the
LEAS module, constrained by neighbourhood weights and a transfer matrix. Neighbour-
hood weight quantifies the difficulty of land-use conversion and is calculated using the
following:

Ωt
i,k =

con(ct−1
i = k)

n × n − 1
× wk (1)

where Wk is the domain weight parameter, n × n represents the cell size, and con(ct−1
i = k)

denotes the total number of grid cells occupied by land-use type kkk at the end of the cell
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iteration. Additionally, the domain weight of the instantaneous block type k at spatial unit i
is expressed as Ωt

i,k. The domain weight ranges from 0 to 1, where a higher value indicates
greater expansion potential.

To analyse the future development trends of the GBA, this study integrates the current
state of the region, economic development, and ecological red lines to construct three
scenarios: the natural development scenario (NDS), the economic development scenario
(EDS), and the ecological priority scenario (EPS). These scenarios simulate land-use changes
in the GBA from 2030 to 2050. The scenarios are defined [19,27] as follows:

(1) The NDS assumes that land use in the GBA will follow natural development trends,
meaning that, in the absence of significant policy interventions or external shocks, land use
will continue to evolve according to historical patterns. Future land use under the NDS is
predicted using Markov chain analysis based on historical land-use data from 2000 to 2010.

(2) The EDS reflects the transformation of land use due to rapid economic and urban
growth in the region. In this scenario, the conversion of urban areas to other land uses is
prohibited, while the probability of cropland, forest, grassland, water, and unused land to
urban areas is increased by 20%.

(3) The EPS prioritises ecological protection in line with the Spatial Plan of Guangdong
Province (2020–2035) and the ‘dual carbon’ target set in 2020. In this scenario, the probability
of converting urban areas to cropland, forest, grassland, and water is increased by 30%,
while conversions from these land uses to urban areas are prohibited.

2.3.2. Landscape Indices

In this study, landscape indices were calculated using FRAGSTATS 4.2, a widely recog-
nised tool for landscape index analysis [28–30]. We selected 13 landscape indices (Table 2)
that encompass area, shape, aggregation, and dispersion; these indicators comprehensively
characterise landscape heterogeneity, complexity, structure, and fragmentation [30]. The
moving window method was employed to calculate the landscape indices, which captures
detailed characteristics and spatial variations in landscape patterns and allows for the
analysis of temporal changes in the landscape [31]. After extensive testing, a window size
of 1000 m × 1000 m was used to calculate the landscape pattern indices for the GBA.

Table 2. Landscape indices.

Type Landscape Indices

Area-edge
Edge density (ED)

Largest patch index (LPI)
Total edge (TE)

Shape Perimeter-area fractal represents dimension (PAFRAC)

Aggregation
Aggregation index (AI)

Contagion index (CONTAG)
Landscape shape index (LSI)

Subdivision

Number of patches (NP)
Patch density (PD)

Splitting Index (SPLIT)
Landscape division index (DIVISION)

Diversity Shannon’s diversity index (SHDI)
Shannon’s evenness index (SHEI)

2.4. WESs Assessment

WESs are categorised into two primary components: WY and WP. WY involves the
quantitative estimation of runoff, calculated on a grid unit basis, and considers factors such
as spatial variations in soil permeability and the evapotranspiration rates of different land-
use types. WP refers to the capacity of the ecosystem to capture non-point source pollutants
and mitigate water pollution through the functions of vegetation and soil. Total nitrogen
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(TN) and total phosphorus (TP) were chosen as indicators to assess the effectiveness of water
quality purification. To quantitatively evaluate changes in WESs, the InVEST model was
employed to compute these services for the GBA. In this paper, normal yearly precipitation
and evapotranspiration during the study period has been mentioned in the Section 2.2, and
the biophysical parameters used in this study were referred to related papers [32,33].

2.4.1. WY Capacity Assessment

WY is calculated using the WY module of the InVEST model, which is based on the
Budyko curve and the principle of water balance [34]. The annual WY is determined using
the following:

WYxj =

(
1 −

AETxj

PREx

)
× PREx (2)

where WYxj represents the WY for land-use type j, AETxj denotes the actual evapotranspi-
ration for land-use type j, and PREx indicates the annual rainfall for the x year.

2.4.2. WP Capacity Assessment

TN and TP are calculated using the nitrogen delivery ratio module of the InVEST
model. This module estimates the TN to rivers based on land use and associated nitrogen
and phosphorus load rates. TP is used as an indicator of water quality. The output of
nitrogen and phosphorus is negatively correlated with the level of WP. The primary formula
for these calculations is as follows:

ALVx = HSSX ·polx (3)

where ALVx represents the TN and TP of the pixel, HSSX is the nutrient output coefficient
for nitrogen and phosphorus at the pixel level, and polx denotes the hydrologic sensitivity
fraction of the pixel x.

2.5. Geographic Detector
2.5.1. Factor Detection

The GD model is a statistical method used to identify spatial heterogeneity and its
determinants, elucidating the impact of an independent variable X on a dependent variable
Y. For this study, we employed factor detectors to analyse the landscape indices of water
ecological services. The formula is as follows:

q = 1 − 1
Nσ2 ∑L

h=1 Nhσ2
h (4)

where q represents the explanatory power of the landscape index, h = 1, 2, 3, . . ., and L
denotes the classification or stratification of the landscape index. N and σ2 are the total
sample size and variance, respectively, while Nh and σ2

h represent the sample size and
variance for the h layer, respectively.

2.5.2. Interaction Detection

GD can evaluate the interaction between two different influence factors X1 and X2,
determining whether their interaction enhances or diminishes the explanatory power of the
dependent variable Y. This evaluation is typically performed by calculating the q values for
each factor individually, denoted as q(X1) and q(X2), and for their interactive combination,
denoted as q(X1 ∩ X2). By comparing these q values, five types of interactions can be iden-
tified: (a) When q(X1 ∩ X2) = q(X1) + q(X2), the interaction is considered independent.
(b) When q(X1 ∩ X2) < Min [q(X1), q(X2)], the interaction results in non-linear weak-
ening. (c) When Min [q(X1), q(X2)] < q(X1 ∩ X2) < Max [q(X1), q(X2)], the interaction
shows single-factor non-linear weakening. (d) When q(X1 ∩ X2) > q(X1) + q(X2), the
interaction leads to non-linear enhancement. (e) When q(X1 ∩ X2) > Max [q(X1), q(X2)],
the interaction results in two-factor enhancement.
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GD is a suite of statistical methods that detect spatial dissimilarities and reveal the
underlying driving forces. GD is adept at analysing numerical data and identifying the
interactive effects of two factors on a dependent variable. It uniquely discerns whether
these factors have multiplicative interactions, a capability unmatched by other spatial
interaction tools. Land use, landscape patterns, and WESs are all spatially quantified,
providing an ideal context for applying GD to explore their interrelationships. In this study,
we employed the GD method, facilitated by the geodetector data package in R, which
primarily utilises the factor_detector and interaction_detector functions. The independent
variables consist of categorical data of land use and landscape pattern indices, while the
dependent variables encompass WY, TN, and TP.

3. Results
3.1. Changes in Land Use and Landscape Pattern During 2000–2050
3.1.1. Historical Land Use Analysis

The GBA underwent significant land-use transformation between 2000 and 2020
(Figures 2–4), marked by a substantial increase in urban areas and a pronounced decline in
forest, cropland and water. The period can be divided into two distinct phases: 2000–2010
and 2010–2020. During the first phase, rapid urban expansion and significant water loss
were predominant, whereas other land-use types experienced relatively minor reductions.
As shown in Table 3, regions such as Jiangmen and Zhongshan experienced substantial
water loss, primarily converted into urban areas and cropland. In the second phase, the
pace of land-use change slowed. Urban areas continued to expand, albeit at a reduced rate
of 99.39 km2·a−1. Meanwhile, water decreased at a rate of 4.44 km2·a−1, while grasslands
began to recover at a rate of 8.6 km2·a−1. The central part of the GBA, being more economi-
cally developed than the other regions, experienced the most significant urban expansion.
Throughout the period, the total area of artificial surfaces increased by 2916.56 km2, un-
derscoring the accelerated urbanisation in the GBA. This expansion led to the continuous
encroachment of artificial surfaces into water and other ecological land types, resulting in a
significant loss of the natural environment.

Table 3. Land-use change from 2000 to 2020 (km2).

Land Use Types
Year

2000 2010 2020

Cropland 14,439.94 12,632.43 12,092.92
Forest 30,607.81 30,021.74 29,674.57

Grassland 1221.88 1096.62 1182.57
Water 4384.05 4057.09 4012.72
Urban 4456.31 7314.19 8308.04

Unused land 23.43 11.36 6.54

3.1.2. Multi-Scenario Land-Use Change Modelling

Utilising land-use data between 2000 and 2010, the land use in 2020 was simulated
using the LEAS and CARS modules within the PLUS model. The kappa coefficient of the
simulation results when compared with actual land use in 2020 was 0.815, indicating that
the PLUS model effectively captures spatial landscape changes and meets the requirements
for predicting land use in this study. Consequently, based on the 2020 land-use data, land
use was simulated in three scenarios for 2030–2050. The evolution of land use in these
scenarios reveals distinct characteristics, as each scenario prioritises different environmental
control objectives. The simulation results are presented in Figure 2.

The findings (Figures 3 and 4) indicate that urban land expands in the NDS and EDS,
leading to a reduction in water and other land-use types. Additionally, urban expansion is
slower in the NDS than in the EDS, where the rapid development and expansion of urban
areas disrupt the balance of land types. Conversely, in the EPS, water area increases for the
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first time, particularly in the western and north-eastern parts of the GBA, suggesting that
the eco-green development policy enables better retention of water area.

3.1.3. Changes in Landscape Pattern at the Class Level

Table 4 demonstrates the changes in landscape indices at the class level for the period
2000–2020 in the GBA. In the first decade, forest patches exhibited the largest increase and
decrease in NP (15.94%) and PAFRAC (−1.49%), respectively. Cropland patches exhibited
the largest increases in SPLIT (87.96%), NP (22.69%), and PD (22.34%), with the largest
decrease in LPI (−24.68%). Urban patches exhibited the largest increase in LPI (503.5%)
and the largest decrease in SPLIT (−94.23%). Water patches showed the largest increase
in SPLIT (31.17%) and the largest decrease in LPI (−12.76%). In the latter decade, forest
patches demonstrated the largest increase and decrease in NP (19.64%) and SPLIT (−9.44%),
respectively. Cropland patches exhibited the largest increase in SPLIT (57.96%) and the
largest decreases in LPI (−33.61%), NP (−18.24%), and PD (−18.18%). Urban patches
showed the largest increase in SPLIT (18.66%) and the largest decreases in NP (−17.82%)
and PD (−17.77%). Water patches demonstrated the largest increase in LPI (10.12%) and
the largest decreases in NP (−20.7%) and PD (−20.67%). Overall, the 2000–2010 period
showed an increase in the agglomeration and less fragmentation of urban patches and
an increase in the dispersion and fragmentation of forest, grassland, water, and cropland
patches. The 2010–2020 period exhibited a decrease in the complexity and an increase in
the dispersion of urban patches, a decrease in the fragmentation and an increase in the
complexity of forest, grassland, and water patches and a decrease in the fragmentation of
cropland patches, which were more discrete in their distribution.
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Table 4. Rate of change (%) in the landscape index at the class level from 2000 to 2020.

Land Use Type Year NP PD LPI TE ED LSI PAFRAC DIVISION SPLIT AI

Forest
2000–2010 15.94 15.55 −0.96 −1.03 −1.37 −0.23 −1.49 0.06 1.57 −0.01
2010–2020 −19.64 −19.57 −5.21 −1.44 −1.36 −0.63 2.28 0.38 9.44 0.00

Cropland 2000–2010 22.69 22.34 −24.68 −5.01 −5.34 1.48 −0.73 0.06 87.96 −0.43
2010–2020 −18.24 −18.18 −33.61 −5.03 −4.95 −2.95 2.86 0.03 57.96 0.04

Grassland
2000–2010 4.53 4.10 −0.81 −5.32 −5.65 −0.27 −0.74 0.00 27.81 −0.46
2010–2020 −4.80 −4.72 0.41 4.92 5.01 1.24 0.63 0.00 −14.60 0.22

Urban
2000–2010 −8.54 −8.85 503.5 20.98 20.57 −6.04 0.29 −0.12 −94.23 1.63
2010–2020 −17.82 −17.77 −12.85 −10.49 −10.41 −14.98 −2.38 0.02 18.66 0.87

Water
2000–2010 3.81 3.48 −12.76 −2.27 −2.60 0.80 0.23 0.04 31.17 −0.24
2010–2020 −20.70 −20.67 10.12 0.69 0.78 1.79 2.49 −0.02 −17.41 −0.22

Other
2000–2010 −10.77 −16.67 −50.00 −36.24 −36.58 −4.57 −2.31 0.00 310.52 −2.43
2010–2020 −24.14 −20.00 −81.82 −19.92 −19.50 0.71 6.33 0.00 516.25 −3.44

It is demonstrated the changes in landscape indices at the class level in the GBA over
the 2030–2050 period (Table A1). In the EDS, forest and grassland patches show the largest
increase in PD (101.09% and 26.71%, respectively) and the largest decrease in LPI (−1.38%
and −12.5%, respectively). Cropland and water patches exhibit the largest increase is in
SPLIT (69.5% and 160.48%, respectively) and the largest decrease is in LPI (−17.28% and
−43.66%, respectively). Urban patches show the largest increase in ED (26.97%) and the
largest decrease in SPLIT (−39.09%). In the EPS, cropland patches demonstrate the largest
increase in PD (135.79%) and the largest decrease in LPI (−14.06%). Grassland patches
show the largest increase in LPI (38.41%) and the largest decrease in SPLIT (−35.54%).
Water patches exhibit the largest increases in ED (5.43%) and the largest decreases in SPLIT
(3.45%). Forest patches exhibit the largest decreases in SPLIT (−26.61%) and PD (−15.94%).
In the NDS, forest, cropland, grassland, water, and urban patches show the largest increases
in NP and PD and a continuous decrease in SPLIT and AI. Comparing the three scenarios,
the EDS and NDS indicate an increase in patch fragmentation, a decrease in agglomeration
and an increase in complexity for all land-use types. Conversely, the EPS shows a decrease
in fragmentation and an increase in agglomeration for forest and urban patches and an
initial increase in fragmentation followed by an increase in agglomeration for water patches.

3.1.4. Changes in Landscape Pattern at the Landscape Level

The most significant increases at the landscape level in the GBA from 2000 to 2010
were observed in NP (5.65%) and PD (5.29%), while the most significant decrease was
observed in CONTAG (by 1.88%) (Table A2). During the 2010–2020 period, the most
substantial increase was recorded in SPLIT at 9.19%, while the most significant decreases
were observed in NP and PD, declining by 17.6% and 17.53%, respectively. Other indices
exhibited reductions in the following order: LPI (−5.21%), TE (−3.55%), ED (−3.47%), and
LSI (−3.28%). Landscape diversity and fragmentation increased, while connectivity and
complexity declined from 2000 to 2010. Conversely, landscape diversity and dispersion
increased, accompanied by reductions in landscape fragmentation from 2010 to 2020.

As shown in Table 5, the most significant increase at the landscape level in the GBA
in the EDS from 2030 to 2050 occurred in PD, with a rise of 26.99%, and a slight decrease
in SPLIT by 2.1%. In the EPS, the largest increase at the landscape level was observed in
NP and PD, with an increase of 19.23%, accompanied by a significant decrease in SPLIT
of 25.43%. In the NDS, NP, and PD showed the most substantial increase (by 77.22%),
while SPLIT demonstrated the largest decrease (by 15.91%). Overall, all three scenarios
demonstrate an increase in patch fragmentation and complexity, an increase in aggregation
and a decrease in diversity at the landscape level.
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Table 5. Rate of change (%) in the landscape index at the landscape level from 2030 to 2050.

Landscape
Indices

EDS EPS NDS

2030–2040 2040–2050 2030–2050 2030–2040 2040–2050 2030–2050 2030–2040 2040–2050 2030–2050

NP 17.32 8.24 26.99 13.52 5.03 19.23 61.43 9.78 77.22
PD 17.32 8.24 26.99 13.52 5.03 19.23 61.43 9.78 77.22
LPI −0.55 −0.83 −1.38 1.22 0.76 1.98 0.79 5.35 6.18
TE 8.70 7.92 17.31 4.56 0.08 4.64 45.94 8.04 57.68
ED 8.70 7.92 17.31 4.56 0.08 4.64 45.94 8.04 57.68
LSI 8.53 7.78 16.98 4.45 0.07 4.53 45.17 7.95 56.71

PAFRAC 1.63 1.38 3.03 1.03 0.21 1.25 5.77 0.94 6.76
CONTAG −0.75 −0.90 −1.64 −0.03 0.25 0.22 −6.26 −1.37 −7.55
DIVISION −0.10 0.01 −0.09 −0.24 −1.75 −1.99 −0.35 −0.54 −0.88

SPLIT −2.37 0.27 −2.10 −3.99 −22.33 −25.43 −6.84 −9.74 −15.91
SHDI −0.25 −0.33 −0.58 −0.63 −0.42 −1.04 −0.24 −0.25 −0.49
SHEI −0.26 −0.32 −0.58 −0.63 −0.42 −1.05 −0.25 −0.25 −0.50

AI −0.73 −0.73 −1.46 −0.32 −0.01 −0.32 −4.52 −1.21 −5.67

3.1.5. Analysis of Spatial and Temporal Variations in Landscape Indices Under a
Moving Window

Our testing revealed that a window size of 1000 m yields a more stable landscape
index and accurately reflects the spatial information patterns. Five landscape indices
were selected to analyse the temporal and spatial changes in the landscape pattern of the
GBA (Figures A1 and A2). CONTAG, SHDI, and PD exhibited an increase followed by
a decrease from 2000 to 2020, with high values primarily concentrated in the central and
southern regions. Conversely, LSI, AI, and ED showed modest increases, with high values
predominantly observed in Zhaoqing in the north-west, as well as in southern Guangzhou
and northern Huizhou. The central core areas of Guangzhou, Foshan and Dongguan within
Shenzhen generally showed decreases in AI and LSI and increases in CONTAG, ED and
PD from 2030 to 2050. In 2050, the EPS exhibited higher values of AI and SHDI and lower
values of PD and ED compared to the other two scenarios. By contrast, the NDS and
EDS showed higher values of CONTAG and PD. Overall, the EPS demonstrated increased
aggregation and decreased fragmentation in the north-west and eastern regions, while the
EDS and NDS exhibited increased fragmentation, higher complexity and reduced diversity
in the central and southern regions.

3.2. Changes in WESs from 2000 to 2050

Table 6 and Figure 5 illustrate the temporal and spatial variations in WY and WP in
the GBA from 2000 to 2050. WY increased from 529.4 × 108 to 606.9 × 108 m3 between 2000
and 2010, marked by an expansion of high-value areas in the central region, a reduction in
high-value areas in the south-eastern region. TN decreased from 27,939 to 27,011 t, with a
reduction in TN in high-value areas in Guangzhou, Dongguan and Shenzhen. TP increased
from 2200.42 to 2280.44 t, with low-value areas expanding in Jiangmen and Zhuhai and
high-value areas growing in Foshan and Zhongshan. WY decreased from 606.9 × 108

to 530.5 × 108 m3 between 2010 and 2020, with a notable increase in low-value areas,
particularly in the western region of the GBA. TN decreased from 27,939 to 26,942.56 t,
with a decline in TN in high-value areas across the GBA, while TP increased from 2280.44
to 2350.38 t, with an increase in TP in high-value areas, particularly in the eastern region.
In the 2050 NDS, WY increases from 530.5 × 108 to 579.8 × 108 m3, with the increase in
WY in high-value areas primarily concentrated in the central region, while TP increases
from 2350.38 to 2390.39 t, with high-value areas exhibiting TP increase in Shenzhen and the
south-western region. In the 2050 EDS, WY increases from 530.5 × 108 to 584.5 × 108 m3,
with high-value areas exhibiting WY increase primarily in Jiangmen and the central part of
the GBA. TN decreases from 26,942.56 to 25,563.01 t, with a reduction in TN in high-value
areas across the GBA, particularly in Guangzhou. TP increases from 2350.38 to 2537.63 t,
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with a decrease in TP in low-value areas, particularly in Huizhou. In the 2050 EPS, WY
increases from 530.5 × 108 to 541.9 × 108 m3, with a decrease in WY in low-value areas,
particularly in Jiangmen. TN decreases from 26,942.56 to 21,541.79 t, with high-value areas
exhibiting diminishing TN in Guangzhou and Dongguan, while low-value areas exhibiting
increased TN in Zhaoqing. TP decreases from 2350.38 to 1920.83 t, with an overall reduction
in high-value areas across the GBA.

Table 6. Statistical table of changes in WESs from 2000 to 2050.

WESs 2000 2010 2020 2050 (NDS) 2050 (EDS) 2050 (EPS)

WY(×108 m3) 529.4 606.9 530.5 579.8 584.5 541.9
WN(t) 27,939.05 27,011.02 26,942.56 24,250.72 25,563.06 21,541.79
WP(t) 2200.42 2280.44 2350.38 2390.39 2537.63 1920.83
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3.3. Analysis of Single Factor Detection Results
3.3.1. Single-Factor Detection Results of Land Use Impact on WESs

A t-test with a significance level of 0.05 was conducted for WY and WP (Figure 6).
The results indicate that urban, forest, water, and cropland patches had a significant effect
on the spatial distribution of WY from 2000 to 2050 (p < 0.05). The effect of urban patches
on WY was significantly higher than those of the other land-use types, with a multi-year
average q-value of 0.48. The q-value first increased and then decreased from 2000 to 2020,
reaching approximately 0.5 or higher in 2050. Forest patches also considerably affected
the spatial distribution of WY, particularly in the NDS and EDS, where the q-mean value
exceeded 0.3. By contrast, the q-mean value for forest patches was 0.2 in the EPS. The
influence of water patches on WY ranged from 0.1 to 0.2, peaking at 0.25 in 2020. The
q-values for cropland and other land types were all less than 0.1, suggesting that water
patches were depleted in these areas due to evaporation or other processes. The effect of
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grassland patches on WY was minimal in the EPS and insignificant in the EDS and NDS.
At the same time, the results demonstrate that all land-use types significantly affected the
spatial distribution of TN and TP (p < 0.05). Cropland (with a multi-year average q-value
of 0.63) and forest patches (with a q-value of 0.4) were the land-use types with the greatest
effect on TN. Forest patches had the highest influence on TP, with a multi-year average
q-value of 0.5.
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3.3.2. Single-Factor Detection Results of Landscape Pattern Impact on WESs

Figure 7 illustrates the impact of different landscape pattern indices on WY and WP
from 2000 to 2050. First, a t-test at a significance level of 0.05 was conducted for WY. The
results reveal that the five landscape indices significantly affected the spatial distribution
of WY in 2000, 2010, and 2050 (p < 0.05) but not in 2020 (p > 0.05). Generally, the effects
of landscape indices on WY were modest, with the exception of the 2050 scenarios (EDS
and EPS), where the q-values for PD, LSI, and ED were notably high, approaching 0.04 to
0.1. Second, a t-test at a significance level of 0.05 was applied to WP. The results indicate
that all landscape indices significantly affected the spatial distributions of TN and TP
(p < 0.05). The influence of each landscape index on WP was generally below 0.1. SHDI
and CONTAG had the most significant impact on TN, with multi-year average p values
of 0.05 and 0.04, respectively. SHDI also had the greatest impact on TP, with a multi-year
average p value of 0.04.
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3.4. Analysis of Interaction Detection Results
3.4.1. Interaction Detection Results of Land Use Impact on WESs

The results of the interaction test of GD between land-use types and WY for the period
2000–2050 (Figure 8) indicate that the interaction effects of each pair of land-use types
on WY improved relative to the single land-use type and exhibited a somewhat regular
pattern over time. The q-values for interactions between land-use types from 2000 to
2050 were all below 0.5. Among these interactions, eight groups demonstrated two-way
enhancement, while seven groups exhibited non-linear enhancement. Between 2000 and
2010, the interaction between urban patches and cropland showed the highest q-values,
reaching 0.33 and 0.43, respectively. In 2020, the interaction between urban and water
patches exhibited the highest q-value, reaching 0.34. In 2050, the q-values for interactions
among the three scenarios showed significant enhancement. In the EDS, the q-values
for interactions between urban patches and the other five land-use types exceeded 0.6,
with seven groups showing non-linear enhancement. Notably, the interactions between
urban patches and cropland showed the highest q-value (0.68). In the EPS, the q-values
for interactions between urban patches and the other five land-use types were all above
0.5. Nine groups demonstrated dual-factor enhancement, and six groups showed non-
linear enhancement. Particularly, the interactions between urban, cropland and water
patches exhibited higher q-values. In the NDS, the q-values for interactions between urban
patches and the other five land-use types were above 0.6. Eight groups showed dual-
factor enhancement, and seven groups exhibited non-linear enhancement. Furthermore,
the interactions between urban patches and cropland showed the highest q-value (0.69).
These results indicate that interactions between urban patches and other land-use types
significantly increase the effect on WY.
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The results of the interaction test of GD between land-use types and WP for the period
2000–2050 (Figures 9 and 10) indicate that the interaction effects of each pair of land-use
types on WP improved compared to single land-use types and exhibited a somewhat
regular pattern over time. For TN, the interaction q-values between cropland and the other
five land-use types exceeded 0.5, with the highest values observed for cropland interacting
with urban areas, reaching 0.77, 0.76, 0.66, 0.76, 0.76, and 0.73. The interaction q-values
for forest and water exceeded 0.5, with values of 0.62, 0.58, 0.50, 0.52, 0.58, 0.52, and 0.58
for forest and 0.52, 0.53, 0.59, and 0.55 for water. These results indicate that the effect



Land 2024, 13, 1927 15 of 25

on TN is significantly enhanced when cropland interacts with other land-use types. For
TP, the dual-factor interaction q-values of forest and cropland with other land-use types
generally decreased over time. However, three pairs of interactions consistently showed
high q-values: cropland and urban areas, forest and water and forest and cropland. The
q-values for cropland and urban interactions and for forest and water interactions were all
above 0.6, while those for forest and cropland interactions were above 0.5. These results
indicate that the effect on TP is significantly greater when cropland interacts with urban
and when forest interacts with other land-use types.
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3.4.2. Interaction Detection Results of Landscape Pattern Impact on WESs

Figure 11 illustrates the results of the interaction test between the five aforementioned
landscape pattern indices and the GD of WY from 2000 to 2050. The results demonstrate that
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the interaction effect between pairs of landscape indices on WY was enhanced compared
to single landscape indices, exhibiting a somewhat consistent interaction pattern across
different periods. The interaction q-values of the landscape indices exhibited only minor
enhancements, all remaining below 0.024, with 10 groups showing a twofold enhancement
from 2000 to 2020. Between 2000 and 2010, the largest interaction q-values were observed for
SHDI and ED, reaching 0.022. In 2050, the interaction q-values were significantly enhanced
across the three scenarios. In the EDS, interactions between SHDI and ED and between
SHDI and LSI exhibited markedly high q-values of 0.213 and 0.212, respectively. Three
groups showed dual-factor enhancement, seven groups exhibited non-linear enhancement,
and seven interactions had q-values of ≥0.15. In the EPS, the q-values for interactions
between SHDI and PD, ED and LSI were 0.129, 0.123 and 0.123, respectively. These
interactions included one group with dual-factor enhancement, nine groups with non-linear
enhancement, and six interactions with q-values exceeding 0.1. In the NDS, interaction
results were less enhanced than the previous scenarios. One group showed dual-factor
enhancement, and nine groups exhibited non-linear enhancement. The highest q-value was
0.021 for the interaction between SHDI and ED, while the q-values for interactions between
SHDI and LSI and between PD and ED reached 0.019. The results indicate that the impact
of SHDI on WY was significantly enhanced when interacting with PD, ED, and LSI, with
the effect being most pronounced in the EDS.
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Figures 12 and 13 present the results of the interaction tests between the five landscape
pattern indices and WP from 2000 to 2050. The results indicate that the interaction effects
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significant interaction effects with the other four landscape indices, particularly with
CONTAG, PD, and ED, showing the highest q-values of 0.044, 0.052, 0.045, 0.087, 0.118, and
0.066. Notably, in the EPS, the interaction q-values of SHDI with the other four landscape
indices all exceeded 0.1, indicating a substantial improvement. These results demonstrate
that the interaction of SHDI with other landscape indices significantly enhances its effect on
TN and WP, with the most pronounced increase observed in the EPS. SHDI and CONTAG
consistently showed higher interaction q-values with the other indices for TP from 2000 to
2050. In the 2050 EDS and EPS, five interactions had q-values exceeding 0.1. These results
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indicate that interactions involving SHDI and CONTAG significantly enhance the effect on
WP, particularly in the EPS and EDS.
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4. Discussion
4.1. Land Use and Landscape Interactions on WES

Although previous studies have explored the impacts of changes in land use and
landscape patterns on WESs, most studies have been unifactorial, lacking the detection of
interactions between factors, particularly in future scenarios. Given that changes in WESs
are influenced by multiple factors [35,36], this study applied GD to identify and analyse
these interactions. The findings reveal that the effects of interactions between different
land-use types on WESs in the GBA were generally more significant than the effects of
individual indicators alone. Our results align more closely with those of Liang et al. [33],
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suggesting a similar trend in the data that interactions between urban and other land-use
types had a substantial impact on changes in WY. The most notable effects were observed
when urban areas interacted with cropland and water, resulting in improved WY owing to
the conversion of significant areas of cropland and water into urban areas. Furthermore,
interactions between cropland, forest, and other land-use types significantly influenced the
spatial distribution of TN and TP. Interactions with urban areas, in particular, had the most
pronounced effect, increasing TN and TP, which may contribute to the deterioration of
water quality [37]. Additionally, the interaction of the landscape pattern index, CONTAG,
with PD, and ED had the most significant impact on WY, highlighting that landscape
connectivity and the degree of patch fragmentation and complexity are critical for regional
WY [38]. The interaction between the SHDI and CONTAG had the most significant effect
on WP. The diversity and connectivity of the landscape promoted the export flow of N
and P, influencing the region’s WP [39]. In contrast, our findings are inconsistent with
the results of Zhang et al. [40], which may be attributed to different research scales and
variable definitions, that in urban areas with rapid urbanisation, the impact of urbanisation
indicators on WESs was not always significant while, in rural areas, urbanisation indicators
had a significantly negative impact. These differences highlight the complexities within the
field and suggest the need for further investigation to reconcile these divergent outcomes.

4.2. Effect of Land Use and Landscape on WESs in Multiple Scenarios

Our findings align with several previous studies that report significant effects of land
use and landscape pattern changes on WY [41–43] and WP [44,45]. Urban expansion in the
GBA was found to significantly influence changes in WY, particularly in the future NDS and
EDS. In these scenarios, large areas of cropland and forest were converted to urban areas,
resulting in a dramatic increase in hardened surfaces, which had the most pronounced
effect on WY. This increase in WY is primarily due to the hardened surfaces preventing
water infiltration, leading to more direct surface runoff [42]. By contrast, cropland, forest,
and grassland are restored in the EPS and the expansion of urban areas slows, resulting
in a lower overall impact on WY. The restoration of forest and grassland increases soil
moisture retention, leading to more significant changes in WY [46]. Cropland and forest had
the most substantial effects on TN and TP, particularly in the EPS and NDS. An increase
in cropland exhibited a stronger influence on water quality, aligning with studies that
suggest that increases in cropland and urban areas lead to decreased WP [47]. Moreover,
changes in landscape patterns were found to significantly impact WESs in different periods,
although such changes did not fundamentally alter dominant relationships [17]. The most
significant effects of PD, LSI, and ED on WY were observed in 2050. PD reflects landscape
fragmentation and heterogeneity, which play a critical role in WY [14,38]. This indicates
that the complexity of patch shapes also strongly influences regional WY. SHDI had the
most substantial impact on TN and TP, and it reflects landscape diversity and heterogeneity,
with patches characterised by higher SHDI composition reducing the impact of pollutants
on water quality [39]. This suggests that landscape pattern diversity plays a crucial role in
the degradation of TN and TP. CONTAG significantly affects WY, TN, and TP, as it responds
to patch connectivity. Enhanced connectivity promotes material transfer and ecological
processes, thereby increasing WY and TP [48].

4.3. Policies and Implications

The development policy in the EPS fosters favourable conditions for the restoration
of water. However, as urbanisation progresses, the trend of urban expansion remains irre-
versible, posing a significant threat to the sustainable development of the region [24,49,50].
Currently, the GBA faces challenges related to high rates of water resource development
and utilisation, regional water scarcity and widespread water quality issues. Based on the
findings of this study, the following policy recommendations are proposed:

(1) The GBA should strictly adhere to the three control lines—ecological protection
red lines, basic cropland, and urban development boundaries—in the national land-use
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spatial planning. This will protect water and forest from degradation, strictly control
the scale of urban expansion and reserve space for future urban development, thereby
mitigating the impact of urban expansion on WESs [51,52]. In rapidly urbanising areas
such as Guangzhou, Dongguan, and Foshan, WESs are particularly vulnerable, with WY
and WP capacity at risk of deterioration.

(2) The blue-green spatial pattern [53] should be optimised through the development
of green ecological infrastructure [54] within urban agglomerations. Efforts should be made
to prevent landscape fragmentation and reduce shape complexity while maintaining the
diversity and heterogeneity of landscapes. These measures will enhance WY, improve WP
capacity and strengthen regional WESs.

4.4. Limitations

Furthermore, this study acknowledges certain limitations inherent in the modelling
approaches employed. For instance, the PLUS model’s assumptions regarding the prob-
abilities of future land use transitions and the GD model’s determination of the sample
size both exert a degree of influence on the experimental outcomes. These considerations
necessitate further contemplation in subsequent research endeavours to bolster the validity
and reliability of the findings.

5. Conclusions

As a crucial component of the socio-economic-natural composite ecosystem [55–57],
water ecosystems play a vital role in identifying the factors affecting their service func-
tions and their interactions [47,48]. However, the interaction mechanism of land use and
landscape patterns on WESs remains unclear. In this study, a novel multi-model coupling
method was proposed, integrating the PLUS, InVEST, and GD models with various indi-
cators, to quantitatively assess the effects of historical and future multi-scenario land use
and landscape pattern interactions on WESs in the GBA from 2000 to 2050. The findings
are summarised as follows: (1) The GBA has been undergoing a rapid transformation of
land-use type, such as water and cropland, into urban areas, accompanied by increasing
patch fragmentation and decreasing diversity. WY showed a trend of initial increase, while
TN exhibited a steady annual decline and TP increased annually. (2) Urban areas have
the greatest impact on WY, while cropland and forest have the most significant influence
on TN and TP. Moreover, interactions between different land-use types exceed the effects
of individual factors. Furthermore, the interaction between urban areas and water has a
pronounced effect on WY, whereas the interaction between cropland and forest is most
significant for TN and TP. (3) PD, ED, and LSI exerted the most considerable influence on
WY, while SHDI and CONTAG most significantly affected WP. Notably, the interaction
between SHDI and PD had the greatest effect on WY, while the interaction between SHDI
and CONTAG had the most significant impact on WP. Overall, through the study of the
interactions between land use, landscape patterns, and WESs in different scenarios, we
evaluated the hydrological and ecological effects of landscape patterns and land use. This
study elucidates the underlying response mechanisms of WESs to shifts in landscape pat-
terns and land use, offering a more comprehensive perspective for enhancing future WES
levels. It is anticipated to significantly influence future land-use planning and landscape
pattern development in the GBA, serving as a valuable scientific reference.
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Appendix A

Table A1. Rate of change (%) in the landscape index at the class level from 2030 to 2050.

Land Use
Type Scenarios Year NP PD LPI TE ED LSI PAFRAC DIVISION SPLIT AI

Forest

EDS

2030–2040 66.32 66.31 −0.55 3.51 3.51 4.35 1.96 0.05 1.58 −0.19

2040–2050 20.91 20.91 −0.83 16.34 16.34 16.94 2.50 0.15 3.84 −0.67

2030–2050 101.09 101.09 −1.38 20.43 20.43 22.02 4.51 0.20 5.47 −0.85

EPS

2030–2040 −7.24 −7.24 1.22 4.42 4.42 3.48 0.73 −0.24 −4.19 −0.12

2040–2050 −9.37 −9.37 0.76 0.05 0.05 −0.52 0.10 −1.76 −23.40 0.05

2030–2050 −15.94 −15.94 1.98 4.47 4.47 2.95 0.83 −1.99 −26.61 −0.07

NDS

2030–2040 130.61 130.60 0.79 91.19 91.19 91.02 10.71 −0.07 −1.65 −3.97

2040–2050 10.87 10.87 5.35 7.60 7.60 8.41 0.90 −0.37 −8.33 −0.80

2030–2050 155.67 155.68 6.18 105.72 105.72 107.09 11.71 −0.45 −9.84 −4.73

Cropland

EDS

2030–2040 27.08 27.07 −15.64 8.89 8.89 12.86 1.39 0.00 40.33 −2.45

2040–2050 16.19 16.19 −1.94 −0.54 −0.54 2.27 0.66 0.01 20.79 −0.90

2030–2050 47.65 47.65 −17.28 8.30 8.30 15.42 2.06 0.01 69.50 −3.33

EPS

2030–2040 78.96 78.96 −7.25 5.27 5.26 8.93 0.99 0.01 35.57 −1.81

2040–2050 31.76 31.75 −7.35 −1.11 −1.11 1.55 0.03 0.00 19.97 −0.70

2030–2050 135.79 135.79 −14.06 4.09 4.09 10.62 1.02 0.01 62.64 −2.49

NDS

2030–2040 75.21 75.21 −7.15 43.60 43.60 48.84 5.78 0.00 16.44 −10.06

2040–2050 5.78 5.78 −11.12 5.41 5.41 8.41 0.73 0.01 26.11 −3.66

2030–2050 85.35 85.35 −17.48 51.36 51.36 61.35 6.54 0.01 46.84 −13.35

Grassland

EDS

2030–2040 16.61 16.62 −10.81 2.61 2.61 5.55 1.68 0.00 16.34 −1.37

2040–2050 8.66 8.66 −1.89 1.85 1.85 4.25 1.17 0.00 7.60 −1.17

2030–2050 26.71 26.72 −12.50 4.51 4.51 10.03 2.87 0.00 25.18 −2.52

EPS

2030–2040 10.93 10.92 6.87 5.44 5.45 4.21 0.44 0.00 −21.80 −0.99

2040–2050 8.11 8.11 29.52 5.82 5.82 3.76 0.41 0.00 −17.58 −0.60

2030–2050 19.93 19.92 38.41 11.58 11.58 8.13 0.85 0.00 −35.54 −1.59

NDS

2030–2040 76.39 76.39 19.13 46.34 46.34 55.58 8.67 0.00 17.80 −19.14

2040–2050 2.88 2.88 −31.82 −1.04 −1.04 2.34 0.50 0.00 39.59 −3.42

2030–2050 81.47 81.46 −18.77 44.81 44.81 59.22 9.21 0.00 64.43 −21.90

Urban

EDS

2030–2040 8.04 8.04 19.28 13.76 13.76 7.49 1.53 −0.22 −28.89 −0.25

2040–2050 3.03 3.03 6.01 11.61 11.61 7.06 1.20 −0.13 −14.34 −0.43

2030–2050 11.31 11.31 26.46 26.97 26.97 15.07 2.74 −0.35 −39.09 −0.67

EPS

2030–2040 −0.57 −0.55 0.00 0.01 0.01 0.01 0.50 0.00 0.00 0.00

2040–2050 −0.41 −0.39 0.00 0.02 0.02 0.02 0.56 0.00 0.00 0.00

2030–2050 −0.97 −0.94 0.00 0.03 0.03 0.03 1.06 0.00 0.00 0.00

NDS

2030–2040 27.65 27.65 17.52 22.45 22.45 15.21 2.72 −0.26 −39.21 −1.18

2040–2050 15.19 15.18 10.12 16.72 16.72 11.67 1.64 −0.12 −15.98 −1.05

2030–2050 47.04 47.04 29.41 42.93 42.93 28.65 4.41 −0.38 −48.92 −2.21
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Table A1. Cont.

Land Use
Type Scenarios Year NP PD LPI TE ED LSI PAFRAC DIVISION SPLIT AI

Water

EDS

2030–2040 19.64 19.64 −40.11 1.60 1.60 4.21 1.74 0.05 133.05 −0.81

2040–2050 8.03 8.02 −5.94 1.14 1.14 3.27 1.08 0.00 11.77 −0.68

2030–2050 29.24 29.24 −43.66 2.76 2.76 7.62 2.84 0.05 160.48 −1.48

EPS

2030–2040 6.21 6.21 2.26 5.14 5.14 3.27 0.65 0.00 −4.46 −0.19

2040–2050 −7.76 −7.76 −0.72 0.28 0.28 −0.83 −0.14 0.00 1.06 0.25

2030–2050 −2.03 −2.03 1.52 5.43 5.43 2.42 0.51 0.00 −3.45 0.05

NDS

2030–2040 44.37 44.37 1.38 17.34 17.34 19.02 4.02 −0.01 −2.27 −3.98

2040–2050 7.60 7.60 29.33 1.19 1.19 2.99 0.66 −0.02 −32.97 −1.16

2030–2050 −2.03 −2.03 1.52 5.43 5.43 2.42 0.51 0.00 −3.45 0.05

Other

EDS

2030–2040 55.06 51.72 0.00 −5.08 −4.97 8.45 3.52 0.00 64.67 −10.99

2040–2050 25.71 27.27 0.00 −14.69 −14.71 −6.44 −1.18 0.00 15.98 −1.76

2030–2050 94.94 93.10 0.00 −19.02 −18.94 1.47 2.30 0.00 90.99 −12.56

EPS

2030–2040 46.02 43.75 0.00 −10.93 −11.05 2.30 1.28 0.00 91.40 −9.52

2040–2050 12.06 13.04 0.00 −11.38 −11.44 −3.63 −0.67 0.00 21.82 −2.30

2030–2050 63.64 62.50 0.00 −21.06 −21.22 −1.41 0.60 0.00 133.16 −11.60

NDS

2030–2040 52.66 51.61 0.00 −6.82 −6.92 8.44 3.55 0.00 78.83 −12.30

2040–2050 43.41 42.55 0.00 −7.66 −7.77 0.22 0.36 0.00 6.72 −5.00

2030–2050 118.93 116.13 0.00 −13.96 −14.15 8.68 3.92 0.00 90.84 −16.69

Table A2. Rate of change (%) in the landscape index at the landscape level from 2000 to 2020.

Landscape Indices 2000–2010 2010–2020 2000–2020

NP 5.65 −17.60 −12.95
PD 5.29 −17.53 −13.17
LPI −0.96 −5.21 −6.12
TE 0.01 −3.55 −3.55
ED −0.34 −3.47 −3.80
LSI −0.20 −3.28 −3.47

PAFRAC −0.67 1.84 1.17
CONTAG −1.88 −0.41 −2.28
DIVISION 0.05 0.40 0.45

SPLIT 1.10 9.19 10.39
SHDI 3.51 1.15 4.70
SHEI 3.51 1.15 4.70

AI 0.01 0.12 0.13
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