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Abstract: Stormwater resource utilization is an important function of coupled grey–green infras-
tructure (CGGI) that has received little research focus, especially in multi-objective optimization
studies. Given the complex water problems in areas with contamination-induced water shortages, it is
important to incorporate more objectives into optimization systems. Therefore, this study integrated
economic performance, hydrological recovery, water quality protection, and stormwater resource
utilization into an optimization framework based on the non-dominant sorting genetic algorithm III
(NSGA-III). A sponge city pilot area with contamination-induced water shortages in the Yangtze River
Delta was considered, optimizing four objectives under different future multi-dimensional scenarios.
The results showed a time series and scenarios composed of shared socioeconomic pathways and
representative concentration pathways (SSP-RCP scenarios) which, together, affected future climate
change and the benefits of a CGGI. In the near and middle periods, the SSP126 scenario had the
greatest influence on stormwater management, whereas, in the far period, the SSP585 scenario had
the greatest influence. The far period had the greatest influence under three SSP-RCP scenarios.
Under the combined influence of SSP-RCP scenarios and a time series, the SSP585-F scenario had
the greatest impact. Specific costs could be used to achieve different and no stormwater-resource
utilization effects through different configurations of the CGGI. This provided various construction
ideas regarding CGGIs for areas with contamination-induced water shortages.

Keywords: coupled grey–green infrastructure; NSGA-III; climate change; multi-objective optimization;
stormwater resource utilization; contamination-induced water shortages

1. Introduction

In recent decades, because of the dual impacts of urbanization and climate change,
water-related problems such as urban waterlogging, runoff pollution, and water shortages
have become increasingly serious [1,2]. Accelerated urbanization has gradually replaced
permeable surfaces with impermeable surfaces, making it difficult for stormwater to in-
filtrate the ground. As a result, large amounts of surface runoff are generated, leading to
waterlogging, water pollution, and the loss of water resources [3,4]. Furthermore, increased
precipitation and drought events caused by climate change have intensified the frequency
and severity of urban water problems [5,6]. Therefore, it is crucial to develop effective
stormwater management strategies [7].

The complexity of urban water problems means that stormwater management must
solve multi-objective problems. Therefore, researchers have developed various strate-
gies such as green infrastructure (GI) [8], grey infrastructure (GREI) [9], and the coupled
grey–green infrastructure (CGGI) [10] based on site characteristics and stormwater man-
agement demands [11,12]. GI is a type of natural system that handles stormwater runoff [8],
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consisting of small-scale bioretention facilities, green roofs, permeable pavements, and
large-scale natural spaces (such as forests, rivers, and parks). GI, emphasizing source
and decentralization control, can restore the natural hydrological state of cities by effec-
tively promoting stormwater infiltration, removing runoff pollutants, and recharging more
groundwater [13]. GREI is a type of artificial measure used for urban drainage and flood
control, including pipe networks, deep tunnels, storage tanks, and pump stations [9]. GREI
is the main stormwater engineering measure in cities and can play roles of rapid drainage
and flood storage when stormwater becomes an issue. GI and GREI have their own ad-
vantages and disadvantages; for example, GI is more ecologically friendly and sustainable
than GREI [14] and GREI has a more powerful drainage capacity and better reliability
and stability than GI [15]. CGGI refers to the system that couples GI and GREI in order
to achieve complementary advantages [10]. CGGI combines the strengths of both infras-
tuctures, effectively enhancing diversity and maximization of stormwater management
benefits [16]. Among these strategies, CGGI has become a mainstream trend [17] and has
been widely used in the practises of low-impact development, best management practises,
and sponge cities [15].

Given that the coupling advantages of CGGI can solve multi-objective problems, pol-
icymakers are increasingly concerned with configuration schemes that can achieve the
maximum benefits at minimal cost and effective trade-offs between multiple objectives [18].
Intelligent optimization algorithms can automatically determine the optimum schemes to
effectively solve multi-objective optimization problems by setting explicit optimization
objectives, decision variables, and constraints [19]. Common intelligent optimization algo-
rithms include simulated annealing, ant colony optimization, particle swarm optimization,
the genetic algorithm, and so on [20]. Researchers have developed various multi-objective
optimization frameworks that combined intelligent optimization algorithms with stormwa-
ter management models to explore the optimal CGGI [21–23]. Currently, the most widely
applied optimization algorithm is the non-dominant sorting genetic algorithm II (NSGA-
II) [24]. The non-dominant sorting genetic algorithm (NSGA) [25] is an algorithm that
effectively deals with complex, multivariate, and nonlinear optimization problems by sim-
ulating selection, variation, and genetic mechanisms in the process of biological evolution.
Based on the NSGA, Deb et al. [24] developed NSGA-II, which can use fast non-dominant
sorting and crowding comparisons to realize the efficient selection of excellent populations
by analyzing the dominance relationship and distribution density among individuals.
Dong et al. [26] incorporated carbon emission reduction benefits into a multi-objective
optimization framework to explore the best trade-off between hydrology, environment, and
economy of the CGGI in a sponge city pilot area in Nanchang, China. Wang et al. [27] used
life cycle cost, technological resilience, and operational resilience as optimization objectives
to conduct a contrastive study on the multi-objective optimization of CGGI in two areas
with different development intensities in Guangzhou, China. Liu et al. [28] proposed a
multi-objective optimization methodology for CGGI, adapting the spatial heterogeneity
of natural endowment and urban development, and then explored the trade-off between
runoff control benefits, capital investment, and ecological return on investment, using
Wuhan, China, as the research area. Currently, economic performance, hydrological re-
covery, and water quality protection are the most studied optimization objectives because
cost, hydrology, and water quality are the three most important aspects for decision makers
to consider [6,17]. However, few studies have included stormwater resource utilization
in multi-objective optimizations. In the context of climate change, the long duration of
high temperatures and frequent extreme drought events in summer will also cause se-
rious water shortages [29,30]; therefore, stormwater resource utilization is an important
aspect that cannot be ignored in urban stormwater management. In particular, in areas
with contamination-induced water shortages, the stormwater resource utilization potential
of CGGI should be given more attention. Water resources are abundant in areas with
contamination-induced water shortages, but few such water resources are available due to
pollution [31,32]. Areas with contamination-induced water shortages have great potential
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for using stormwater resources to relieve the pressure of water shortages, due to the natural
characteristic advantages of abundant rainfall and rich water systems. However, studies
on stormwater management in this type of area rarely consider the inclusion of stormwater
resource utilization in multi-objective optimization frameworks.

The Yangtze River Delta is one of the most typical areas with contamination-induced
water shortages in China [33]. From one perspective, although there are many rivers
and lakes, most of them feature transit water [34]. The development and utilization of
water resources here largely depends on transit water, but the transit water quality is very
poor as it is affected by upstream industrial pollution and flood pollution. From another
perspective, the Yangtze River Delta is one of the regions with the fastest processing of
industrialization and urbanization in China; therefore, urban development and economic
development in recent decades have led to severe pollution of rivers and lakes. For example,
the Huangpu River, the main drinking water source for citizens of Shanghai, was seriously
polluted by random sewage discharge such as heavy metals [35], microplastics [36], and
exhaust emissions from ships [37]. Taihu Lake, which is an important water source for
Changzhou, experienced eutrophication due to agricultural nonpoint source pollution,
industrial wastewater discharge, and frequent floodings [38,39]. Therefore, available water
resources in the Yangtze River Delta are scarce. In recent years, with the introduction of
some environmental protection policies [40], the comprehensive treatment of the water en-
vironment has witnessed certain achievements; however, because the region is an important
gathering area for printing and dyeing, the chemical industry, electroplating, paper making,
and other industries, the total amount of pollutants discharged is still far higher than the
environmental capacity. In the long run, there is still a long way to go to reduce pollution
emissions fundamentally. Since the cost of purifying stormwater is lower [41], stormwater
management is a good option to save costs and increase water resources. In addition,
under the influence of a subtropical monsoon climate [42], the climate characteristics of
high temperatures and frequent rain in summer always lead to frequent droughts and
floods, and more surface runoff carries more surface pollutants into water bodies, further
aggravating water pollution and water shortages. Therefore, various water problems in
the Yangtze River Delta are very complex and closely linked, which makes establishing
a multi-objective optimization framework covering economic performance, hydrological
recovery, water quality protection, and stormwater resource utilization to explore the links
and trade-offs between various optimization objectives a high priority. Therefore, a sponge
city pilot area with contamination-induced water shortages in the Yangtze River Delta was
selected as a case study.

However, previous studies usually optimized no more than three objectives [17,43],
because NSGA-II can only deal with three optimization objectives at most, which is in-
sufficient for simultaneously optimizing economic performance, hydrological recovery,
water quality protection, and stormwater resource utilization. The non-dominant sort-
ing genetic algorithm III (NSGA-III), proposed by Deb [44], is an upgraded version of
NSGA-II. NSGA-III can further improve the concentration and convergence of the solu-
tion set distribution and has demonstrated better applicability than NSGA-II in dealing
with complex multi-objective optimization problems in three or more dimensions [44,45].
Currently, the applicability of NSGA-III to stormwater management is limited. To solve
more optimization objectives in areas with contamination-induced water shortages and to
further understand the applicability of NSGA-III in stormwater management studies, it is
necessary to integrate stormwater resource utilization into multi-objective optimization
frameworks based on NSGA-III to advance new research.

Climate change has been the focus of stormwater management research, and, in recent
years, precipitation change caused by climate change has largely affected the performance
of CGGI [46]; therefore, research on and the practises of current stormwater management
must be considered from the perspective of future weather patterns [17,43]. The Coupled
Model Intercomparison Project (CMIP) [47] is a project of the World Climate Research Pro-
gram that organizes and coordinates different research institutions to use their respective
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global climate models to conduct climate simulations [48,49], which provides the basis for
researchers to simulate future climates. The Coupled Model Intercomparison Project 6
(CMIP 6) is the sixth version of the CMIP [50] and combines shared socioeconomic paths
(SSPs) and representative concentration paths (RCP) to create SSP-RCP scenarios. SSP-RCP
scenarios are combined scenarios coupled by SSPs and RCPs [50]. SSPs describe future
possible social development paths without the influence of climate change or policy [50–52],
including SSP1s (sustainable development paths), SSP2s (moderate development paths),
SSP3s (regional competition paths), SSP4s (uneven development paths) and SSP5s (fossil-
fueled development paths) [50], whereas RCPs describe future possible radiative forcing
in 2100 under the influence of anthropogenic greenhouse gas emissions [50,53], including
RCP1.9 (1.9 W/m2), RCP2.6 (2.6 W/m2), RCP3.4 (3.4 W/m2), RCP4.5 (4.5 W/m2), RCP6.0
(6.0 W/m2), RCP7.0 (7.0 W/m2), and RCP8.5 (8.5 W/m2) [50]. SSP-RCP scenarios con-
sider the interaction between future socioeconomic development and radiative forcing
levels, thus contributing to a more comprehensive and accurate estimation of future cli-
mates [54–56]. CMIP 6 has been widely used in future rainfall simulations. According to
some studies [5,57,58], rainfall caused by future climate change showed uncertain volatility
during the long-term time series; therefore, it is also uncertain whether the future per-
formance of CGGI is stable during the long-term time series [59]. Thus, it is necessary
to couple SSP-RCP scenarios and long-term time series into detailed multi-dimensional
combination scenarios to enhance the credibility of the simulation results and the feasibility
of the research for practice.

In order to solve the complicated water problems of areas with contamination-induced
water shortages in the Yangtze River Delta, this research constructed a multi-objective
optimization framework for CGGI under future multi-dimensional scenarios. Economic
performance, hydrological recovery, water quality protection, and stormwater resource
utilization were included in the multi-objective optimization framework based NSGA-III
to achieve the automatic optimization of schemes, finally providing suggestions for climate
suitability planning and management of CGGI in the future. The research framework can
also provide a reference for the research and construction of sponge cities in other water-
deficient areas, and it is of great significance in terms of alleviating the urban water crisis,
protecting the urban ecological environment, and promoting the green and sustainable
development of urban areas.

2. Research Framework

The flow and main steps of this study are illustrated in Figure 1. The first step was
future scenario settings and rainfall simulations. After nine multi-dimensional scenarios
were divided by coupling the SSP-RCP scenarios and time series, rainfall data under various
multi-dimensional scenarios were obtained by referring to CMIP 6 and drawing support
from the multi-model ensemble mean method. The second step was the development of the
stormwater management model and stormwater simulation. The stormwater management
model of the site was established based on the site status and drainage network data, and
the parameters were calibrated and verified. Then, the appropriate CGGI (storage tanks,
bioretention facilities, permeable pavements, and green roofs) and future rainfall data
were added to the model for stormwater simulation. The final step was the establishment
of a multi-objective optimization framework based on NSGA-III. The four optimization
objectives were economic performance, hydrological recovery, water quality protection, and
stormwater resource utilization, which were quantified by life cycle cost, runoff control rate,
pollutant reduction rate, and total node overflow, respectively. After setting the decision
variables, constraints, and algorithm parameters, the Python programming language was
edited on the JupyterLab platform [60] to couple the stormwater management model and
NSGA-III to realize automatic optimization of the CGGI.
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3. Materials and Methods
3.1. Study Area

The study area is the Administrative Centre of Wujin District, Changzhou City, a
provincial sponge-city pilot area, covering an area of 1.13 km2. As shown in Figure 2a.
Changzhou is located in the Yangtze River Delta and the Taihu Lake Basin, with many
rivers and lakes, but is a typical city with contamination-induced water shortages. As
shown in Figure 2b,c, with a high building density and a high proportion of impervious
underlying surfaces, water problems such as urban waterlogging, runoff pollution, and
water shortages are very serious in this area. In summer, stormwater and droughts under
the influence of a subtropical monsoon climate pose severe challenges to urban stormwater
management [42]. In addition, rainfall changes caused by climate change can aggravate
the challenges of stormwater management [30]. As a provincial sponge-city pilot area,
there is an urgent need to explore new modes of stormwater management adapted to
multiple risks.
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Figure 2. Overview map of the study area, including (a) a distribution map of water systems of the
Yangtze River Delta and the location of the study area in the Yangtze River Delta, Changzhou, and
Wujin; (b) a satellite map of the study area; (c) a distribution map of the underlying surfaces of the
study area; (d) a generalized SWMM of the study area.

3.2. Future Scenarios
3.2.1. Multi-Dimensional Scenarios Setting

The setting of future multi-dimensional scenarios referred to CMIP 6. In this study,
SSP1, SSP2 and SSP5 were selected in the SSPs, RCP2.6, RCP4.5, and RCP8.5 were selected
in the RCPs, and they were coupled into three SSP-RCP scenarios [61,62]: SSP126 scenario
(SSP1 + RCP2.6), SSP245 scenario (SSP2 + RCP4.5), and SSP585 scenario (SSP5 + RCP8.5) [50].
The SSP126 scenario focuses on ecological protection, with low radiative forcing and social
vulnerability [63], while the SSP245 scenario assumes that economic development and
ecological protection maintain the current trend, with moderate radiative forcing and
social vulnerability [64], while the SSP585 scenario focuses on rapid economic development
and features the largest amount of carbon emissions, the highest radiative forcing levels,
and social vulnerability [65,66]. The future time series was divided into three stages: the
near period (2023–2040), middle period (2040–2070), and far period (2070–2100). Then,
the three SSP-RCP scenarios and three stages were coupled into nine multi-dimensional
scenarios: the SSP126-N scenario (near period under SSP126 scenario), SSP126-M scenario
(middle period under SSP126 scenario), SSP126-F scenario (far period under SSP126 sce-
nario), SSP245-N scenario (near period under SSP245 scenario), SSP245-M scenario (middle
period under SSP245 scenario), SSP245-F scenario (far period under SSP245 scenario),
SSP585-N scenario (near period under SSP585 scenario), SSP585-M scenario (middle period
under SSP585 scenario), and SSP585-F scenario (far period under SSP585 scenario). The
coupling process of the nine multi-dimensional scenarios is shown in Figure 1.
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3.2.2. Rainfall Forecast

Raw data for future rainfall predictions were derived from eight single climate models
of CMIP 6 [67] (Table 1) and the multi-model ensemble mean method (MME) was used to
reduce prediction deviation. The MME method is a commonly used statistical method in
climate research, and some studies have shown that the predicted rainfall data obtained
by the MME method are more accurate than those obtained by a single model [68]. The
formula used is as follows:

SMME =
1
N

N

∑
i=1

Fi (1)

where SMME is the simulation result of the MME method, N is 8 and Fi is the simulation
result of a single model.

Table 1. Basic information of eight climate models in CMIP6.

Serial Number Model Name Institution Country Atmospheric Model Resolution

1 CanESM5 CCCMA Canada 2.81◦ × 2.79◦

2 CMCC-ESM2 CMCC Italy 1.25◦ × 0.94◦

3 GFDL-ESM4 NOAA-GFDL America 1.25◦ × 1◦

4 IPSL-CM6A-LR IPSL France 2.5◦ × 1.27◦

5 MIROC6 JAMSTEC Japan 1.41◦ × 1.4◦

6 MRI-ESM2-0 MRI Japan 1.13◦ × 1.12◦

7 NorESM2-LM NCC Norway 2.5◦ × 1.89◦

8 NESM3 NUIST China 1.88◦ × 1.86◦

The delta downscaling method was then used for deviation calibration of the rainfall
data [69]. This method assumes that future prediction deviation of climate models is
similar to historical performance and calibrates future prediction data by determining the
difference between simulated data and actual observed data. Many studies have confirmed
the applicability of the delta downscaling method for deviation calibration [70–72]. The
formula used is as follows:

Pre f = PreGCMs_ f ×
Preobs_re f

PreGCMs_re f
(2)

where Pre f is the precipitation data after deviation correction, PreGCMs_ f is the predicted
simulated precipitation data, and Preobs_re f and PreGCMs_re f are the observed and simulated
precipitation data for the calibration period, respectively.

The prediction period was determined to be 2015–2100 and the observation period was
determined to be 1961–2014, where 1961–1994 was the calibration period and 1995–2014
was the verification period. The data for the observation period were obtained from the
precipitation data of the CN05.1 data set [73]. The specific steps are as follows: first, the
data of each single climate model were downscaled to 0.25◦ × 0.25◦, matching the scale of
the CN05.1 data set; second, the data of each single climate model were calibrated with the
observed data of the calibration period; then, the simulation data of SMME were obtained
using the multi-model ensemble mean method.

In addition, the deviation calibration effects for different climate models were assessed
by comparing the observed and calibrated data from the verification period. The deviation
calibration effects are shown by Taylor plots [74,75] in Figure 3; the closer to the observation
point, the better the simulation effects. The Taylor plots show that deviation calibration
can significantly improve the accuracy of each model, and the MME method has higher
accuracy than most single climate models.
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3.3. SWMM Development
3.3.1. Construction of the SWMM of the Site

The stormwater management model (SWMM) [76] has been widely used in studies
of stormwater management [77,78] and was used to carry out the stormwater simulation
in this study. According to the site status and drainage network data, the study area was
divided into 90 sub-catchments using the Tyson polygon tool. A generalized model of the
site is shown in Figure 2d. The dynamic wave model was used to simulate flow routing [79],
and the Horton equation was used to simulate infiltration [80,81]. Pollutant accumulation
and scouring were simulated by using saturation functions and exponential functions,
respectively [82]. The duration of each rainfall event was 2 h. The Chicago hyetograph and
rainfall intensity formula for Changzhou were used to generate the rainfall processes for
different return periods.

3.3.2. Parameters Calibration and Verification

A comprehensive runoff coefficient comparison method [83] was used for the pa-
rameter calibration in this study. The comprehensive runoff coefficient of the study area
was approximately 0.553. The simulated comprehensive runoff coefficients for a return
period of 1 year were compared with 0.553, and the calibration value was obtained after
several adjustments. The calibration value was verified using the variation coefficient (Cv)
as follows:

Cv =
∆Ψ

Ψ
(3)

where ∆Ψ is the difference between the actual value and analogue value and Ψ is the mean
of the actual value and analogue value. If Cv was <5%, the calibrated parameters were
considered reliable.

The calibration procedures for these parameters are listed in Table 2. Through compar-
ison, it was found that the simulated runoff coefficient of the seventh group was closest
to the target runoff coefficient; therefore, the parameter of the seventh group was chosen
as the final parameter. Rainfall data for the return periods of the 2 years and 3 years were
selected for verification, and the verification results are shown in Table 3. According to
the verification results, the Cv values were 1.83% and 3.03%, respectively, which were all
less than 5%, indicating that the SWMM, established by using the selected parameters,
accurately reflected the hydrologic characteristics of the study area.
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Table 2. Calibration process of model parameters.

Parameter Name Initial Value G1 G2 G3 G4 G5 G6 G7 G8

N-Imperv 0.013 0.012 0.013 0.014 0.014 0.015 0.015 0.015 0.015
N-Perv 0.15 0.2 0.25 0.25 0.25 0.2 0.25 0.25 0.2

D-Imperv 2 2 2.25 2.25 2.4 2.3 2.4 2.4 2.3
D-Perv 5 5 5 8.5 9 8.5 8.5 9.5 8.5

MaxRate 60 65 65 65 70 65 70 70 65
MinRate 3.18 3.2 3.2 3.25 3.3 3.25 3.3 3.3 3.25

Decay 2 2 2 2 2 2 2 2 2
Simulated runoff coefficient 0.6076 0.5900 0.5833 0.5648 0.5578 0.5650 0.5583 0.5572 0.5650

Target runoff coefficient 0.5530 0.5530 0.5530 0.5530 0.5530 0.5530 0.5530 0.5530 0.5530
D-value 0.0546 0.0370 0.0303 0.0118 0.0048 0.0120 0.0053 0.0042 0.0120

Table 3. Results of model parameter verification.

Return Period Precipitation (mm) Runoff (mm) Simulated Value of
the Runoff Coefficient

Simulation
D-Value Cv

2a 45.653 26.246 0.5749 0.0219 1.83%
3a 49.014 28.977 0.5912 0.0382 3.03%

3.3.3. Types of CGGI

Based on the actual situation of the site and the practical requirements of stormwater
management, storage tanks, bioretention facilities, permeable pavements, and green roofs
were selected for this study. The study area is an urban built-up area. The reconstruction
of roads, pipelines, and other facilities caused by the transformation of the pipe network
can bring huge additional costs. Therefore, from an economic perspective, this research
selected storage tanks as the grey infrastructure. Storage tanks are a type of stormwater
collection facility that can temporarily store the peak flow of stormwater runoff and receive
stormwater overflow from pipelines to reduce runoff pollution and recycle the collected
stormwater. This plays a role in promoting economic performance, hydrology recovery,
water quality protection, and stormwater resource utilization simultaneously [82]. Rainfall
data for a return period of 5 years were used for the waterlogging simulation of the study
area to obtain the locations of the waterlogging points, and storage tanks were arranged
at the waterlogging points to reduce the flood risk to a greater extent. Bioretention facili-
ties, green roofs, and permeable pavements, common types of green infrastructure, were
arranged in the green spaces on top of buildings and roads, respectively. The parameter
values of CGGI referred to relevant studies [83,84] and complex [76].

3.4. Multi-Objective Optimization Framework Based on NSGA-III
3.4.1. Optimization Objectives

1. Economic performance.

Life cycle cost (LCC) was used as an indicator of economic performance [85]. LCC
refers to the cost of the entire product life cycle, including the cost of initial construction,
future operation, and future maintenance [86]. The cost of initial construction includes
material and labour cost, which are based on the local market price; the cost of future
operation and maintenance was calculated using the Discounted Cash Flow model [26,87].
The LCC was calculated as follows:

F1 = C1 + C2 (4)
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where F1 is the sum of the LCC of CGGI, C1 is the sum of the LCC of grey infrastructure
and C2 is the sum of the LCC of green infrastructure.

C1 = Igrey·
(

1 +
Tgrey

∑
t=1

rgrey

(1 + v)t

)
·Ngrey (5)

C2 =
3

∑
i=1

Igreen·
(

1 +
Tgreen

∑
t=1

rgreen

(1 + v)t

)
·Ngreen (6)

where Igrey and Igreen are the initial construction cost of CGGI; Tgrey and Tgreen are the
service lives of CGGI; rgrey and rgreen are the percentages of the operation and maintenance
cost of CGGI in the initial construction cost; v is the discount rate; and Ngrey and Ngreen are
the scales of CGGI. The specific cost parameter values are listed in Table 4.

Table 4. Cost parameters of CGGI.

CGGI Construction Cost
(RMB/m2)

Percentage of the Operation
and Maintenance Cost (%) Service Life (Years) Discount Rate (%)

Bioretention facility 536.76 5 30 6
Green roof 477.75 5 30 6

Permeable pavement 315.42 5 30 6
Storage tank 2335.05 8 25 6

2. Hydrological recovery.

The runoff control rate (RCR) was taken as an indicator of hydrological recovery. The
RCR refers to the ratio of runoff controlled by CGGI to the total precipitation, which is the
core index for measuring the hydrological benefits of the CGGI [79]. The formula used is
as follows:

F2 =
runo f f _ctrl
Precipitation

·100% (7)

where F2 is the RCR and runo f f _ctrl is the runoff controlled by CGGI.

3. Water quality protection.

The pollutant reduction rate (PRR) was used as an indicator of water quality protection.
The PRR refers to the proportion of the total amount of pollutants in the runoff reduced by
the CGGI to the total amount of pollutants in the entire study area. It is an important indi-
cator for evaluating the effectiveness of CGGI in improving water quality [59]. Suspended
solids were selected as the pollutant type studied in this research. The calculation formula
is as follows:

F3 =
SS_rdct
SS_wash

·100% (8)

where F3 is PRR, SS_rdct is the amount of pollutants reduced by CGGI, and SS_wash is the
amount of pollutants produced by wash during rainfall.

4. Stormwater resource utilization.

Total node overflow (TNO) was used as an indicator reflecting potential stormwater
resource utilization. Overflow stormwater collected in the storage tanks can be reused
after purification, which plays an important role in alleviating the urban water resource
crisis [82]. The formula is as follows:

F4 =
7

∑
i=1

Qi (9)

where F4 is the TNO of the study area and Qi is the stormwater overflow of the ith node.
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3.4.2. Decision Variables and Constraints

The bottom area of the storage tanks was unified at 500 m2, and the depth of the
storage tanks and scale of the green infrastructure were considered as decision variables. To
ensure the rationality and effectiveness of the values of the decision variables and improve
the efficiency of the optimization process, the depth of the storage tanks and the scale
of the green infrastructure were constrained. The depth of the storage tanks was limited
to 0–5 m, and the area of the green infrastructure did not exceed 15% of the area of the
corresponding sub-catchment.

3.4.3. Algorithm Setting

The selection of the algorithm parameters referred to related studies [17,20,22]. The
interaction coefficient and variation coefficient were determined as 0.8 and 0.09, respectively.
To ensure that the algorithm could effectively explore the space and converge to the optimized
solution set, a population of 300 individuals was set, and an iterative operation was performed
for 400 generations. A flowchart of the NSGA-III algorithm is shown in Figure 4.
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4. Results
4.1. Optimization of Hydrological Recovery

As shown in Figure 5, overall, under either scenario, the RCR always maintained an
upward trend with increasing LCCs; that is, LCCs were positively correlated with the RCR,
which also means that the investment in CGGI should be increased to obtain a better runoff
control effect. However, the RCR did not grow steadily, and that the growth rate decreases
with an increase in LCC calls for consideration of the trade-off between investment in CGGI
and the hydrological recovery effects.
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4.1.1. Analysis of Optimization of Hydrological Recovery from SSP-RCP
Scenarios Dimension

The hydrological recovery optimization effects of the SSP-RCP scenario dimension
are shown in Figure 5a. Under the SSP126 scenario, the optimization schemes of the near
period were always at the top, and the optimization schemes of the middle and far period
were always at the bottom, indicating that the near period can achieve the maximum RCR
and best hydrological recovery effects while the middle and far period can achieve smaller
RCR and general hydrological recovery effects. Initially, the optimization schemes of the
middle period were located above those of the far period, and when the CGGI increased to
a certain scale, the optimization schemes of the far period began to be located above those
of the middle period. It can be seen that the hydrological recovery effects of the SSP126-
M scenario were greater than those of SSP126-F scenario when cost was lower, and the
hydrological recovery effects of SSP126-M scenario were weaker than those of the SSP126-F
scenario when the cost was higher. However, there was little difference between the runoff
control effects of the SSP126-M and SSP126-F scenario. Under both the SSP245 and SSP585
scenarios, the best RCR appeared in the near period. In contrast to the SSP126 scenario, the
difference in the RCR in the middle and far period under the SSP245 and SSP585 scenarios
was more obvious, and the runoff control effects in the middle period were significantly
greater than those in the far period. In summary, runoff control effects in the near period
were best under all three SSP-RCP scenarios. Over time, the RCR gradually decreased in
the middle and far period, the hydrological recovery effects of the SSP245-F and SSP585-F
scenarios were minimized, and the hydrological recovery effects of the SSP126-F scenario
were minimized at low-cost inputs.

4.1.2. Analysis of Optimization of Hydrological Recovery from Time Series Dimension

The hydrological recovery optimization effects of the time-series dimension are
shown in Figure 5b. In the near and middle period, the optimization schemes of the
SSP126 scenario were always at the top, those of the SSP585 scenario were always at
the bottom, and those of the SSP245 scenario were always in the middle. Overall, the
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SSP245 scenario had the best runoff control effect in the near and middle period and the
SSP126 scenario had the worst. Numerically speaking, in the near period, the ranges of
available RCR for the SSP126-N, SSP245-N, and SSP585-N scenarios were 90.73–94.62%,
91.25–95.61% and 90.94–94.79%, respectively, and, in the middle period, the ranges of
available RCR for the SSP126-M, SSP245-M, and SSP585-M scenarios were 89.05–92.97%,
90.42–94.18%, and 90.08–93.38%, respectively, also indicating that, in the near and mid-
dle period, the best runoff control effect could be achieved under the SSP245 scenario
and the SSP126 scenario could achieve the worst runoff control effect. In the far period,
the optimization schemes of the SSP245-F scenario remained located below those of the
SSP585-F scenario; therefore, the runoff control effects of the SSP245 scenario were better
than those of the SSP585 scenario at any stage. However, over time, the optimization
schemes of the SSP126-F scenario rose from the bottom to top; therefore, in the far period,
the SSP126-F scenario had better runoff control effects than the SSP245-F and SSP585-
F scenarios. Numerically, in the far period, the RCR ranges of the SSP126-F, SSP245-F,
and SSP585-F scenarios were 90.12–93.18%, 88.1–91.71%, and 86.9–90.65%, respectively,
and it can also be seen that the runoff control effect of the SSP126-F scenario was the
best, that of the SSSP245-F scenario was second, and that of the SSP585-F scenario was
the worst. In short, the optimization effects of hydrological recovery in the near pe-
riod and middle period presented as SSP245 scenario > SSP585 scenario > SSP126 scenario,
and, in the far period, the optimization effects of the hydrological recovery presented as
SSP126 scenario > SSP245 scenario > SSP585 scenario.

4.2. Optimization of Water Quality Protection

As shown in Figure 6, overall, PRRs increased with LCCs, which also indicates that
LCCs were positively correlated with PRR, meaning that an increase in CGGI reduced more
pollutants. Moreover, as with the RCR, the growth rate of PRR decreased with the input of
LCC, which also required consideration of the trade-off between investment in CGGI and
the water quality protection effects.
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4.2.1. Analysis of Optimization of Water Quality Protection from SSP-RCP
Scenarios Dimension

The water quality optimization effects of the SSP-RCP scenario dimensions are shown
in Figure 6a. In general, under all three SSP-RCP scenarios, the optimization schemes
of the near period were almost always at the top and the optimization schemes of the
middle and far period were almost always at the middle and bottom, respectively. It can
be seen that the PRR of the near period was almost always greater than that of middle
and far period, which also means that the best water quality protection effect was most
likely in the near period. Under the SSP126 scenario, with gradual investment in LCCs,
the difference in the achievable PRR in the three stages was not large. Under the SSP245
scenario, the difference in the achievable PRR in the three stages was more evident, and the
optimization schemes of the near period were significantly higher than those of the middle
and far period, indicating that the water quality protection effects of the near period were
significantly greater than that of the middle and far period. In terms of specific values, the
maximum PRR of the SSP245-N, SSP245-M, and SSP245-F scenarios were 92.79%, 91.28%,
and 89.71%, respectively, indicating that the SSP245-N scenario had the best water quality
protection potential. When the cost was lower, the difference in the PRR between the
middle and far period was not large. With gradual investment in LCCs, the difference in
the PRR between the middle and far period gradually widened. Under the SSP585 scenario,
the difference in PRR among the three stages was the most obvious, and the optimization
schemes of the far period were significantly lower than those of the near and middle period,
indicating that the water quality protection effects of the far period were significantly worse
than those of the near and middle period. In terms of specific values, the maximum PRR
values of the SSP585-N, SSP585-M, and SSP585-F scenario were 91.56%, 90.13%, and 88.23%,
respectively, indicating that the SSP585-N scenario had the best water quality protection
effects. In short, the influence of time series on water quality protection presented as near
period > middle period > far period.

4.2.2. Analysis of Optimization of Water Quality Protection from Time Series Dimension

The water quality optimization effects of the time series dimension are shown in
Figure 6b. In general, in the near, middle and far period, the optimization schemes under
three SSP-RCP scenarios were relatively clustered, and different stages showed different
distribution patterns. In the near period, the optimization schemes of the SSP245-N scenario
were clearly above those of the SSP126-N and SSP585-N scenario. There were many
overlaps between the optimization schemes of the SSP126-N and SSP585-N scenario, but
the outermost optimization schemes of the SSP126-N scenario were clearly located above
those of the SSP585-N scenario. The PRR ranges of the SSP126-N, SSP245-N, and SSP585-N
scenario were 80.26–91.21%, 80.42–92.79%, and 80.81–91.56%, respectively. Overall, SSP126-
N scenario achieved the worst PRR and the SSP245-N scenario achieved the best PRR.
Therefore, the SSP245-N scenario had the best water quality protection effect, whereas
the SSP126-N scenario had the worst water protection effect. In the middle period, the
three SSP-RCP scenarios had the greatest scheme overlaps and the difference in water
quality protection effect was minimal compared to the other two stages. In terms of
distribution states, the optimization schemes of the SSP126-M and SSP245-M scenario
were more widely distributed, and those of the SSP585-M scenario were more narrowly
distributed. The ranges of achievable PRR under the SSP126-M, SSP245-M, and SSP585-
M scenarios were 77.95–91.32%, 78.4–91.28%, and 81.34–90.13%, respectively, which also
echoes the distribution status of the optimization schemes of the three SSP-RCP scenarios in
this stage. From the maximum potential of the values, the SSP126-M and SSP245-M scenario
could obtain a better PRR. In the far period, it is obvious that the optimization schemes of
the SSP585-F scenario were at the bottom; therefore, the water quality protection effect of
the SSP585-F scenario was the worst. When the cost was lower, the optimization schemes
of the SSP245-F scenario were above those of the SSP126-F scenario, and when the cost was
gradually increased, the optimization schemes of the SSP245-F scenario began to proceed
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below those of the SSP126-F scenario; therefore, the water quality protection effects of the
SSP245-F scenario were better than those of the SSP126-F scenario in the low-cost zone, and
the water quality protection effects of the SSP245-F scenario were worse than those of the
SSP126-F scenario in the high-cost zone. The PRR ranges of the SSP126-F, SSP245-F, and
SSP585-F scenario were 80.27–90.81%, 79.4–89.71%, and 77.92–88.23%, respectively. The
water quality protection effects of the SSP585-F scenario were the worst, whereas those of
the SSP126-F and SSP245-F scenario were relatively better.

4.3. Optimization of Stormwater Resource Utilization

As shown in Figure 7, under all SSP-RCP scenarios, the schemes distribution of
stormwater resource utilization optimization was more dispersed than that of hydrologic
recovery optimization and water quality protection optimization. It is clear that LCC
and TNO were not obviously correlated, which means that an increase in LCCs did not
necessarily reduce node overflow. It is evident that low-cost investment and high-cost
investment could achieve similar stormwater resource utilization effects to a certain extent,
and there was no obvious correlation between the scale of CGGI and stormwater resource
utilization, showing that there is a complicated constraint relationship between economic
performance and stormwater resource utilization. Thus, it is necessary for decision makers
focusing on stormwater resource utilization to choose appropriate optimization schemes
rather than blindly increasing investment in CGGI, which contributes to achieving the ideal
stormwater utilization objective at minimal costs. Furthermore, the optimization schemes
in the lower-right corner are dense, whereas those in the upper-left corner are scattered.
Therefore, optimization schemes that produced a larger TNO are primarily distributed in
low-cost areas, whereas optimization schemes that produced a smaller TNO are mainly
distributed in high-cost areas. It can be seen that, with an increase in the scale of CGGI, the
probability of reducing node overflow could be improved to some extent.
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It is worth noting that a large number of schemes generating no node overflow all
appeared under the nine multi-dimensional scenarios, indicating that CGGI plays a pow-
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erful role in runoff control so that there is no overflow phenomenon. Generally speaking,
stormwater management with runoff control as the main objective does not want over-
flow; on the contrary, in water-deficient areas, the multi-objective optimization covering
stormwater resource utilization hopes to produce some overflow, then uses storage tanks
to collect overflow stormwater for the recycling of stormwater resources. However, larger
overflow is undesirable because it may cause waterlogging, flooding, and other risks. These
schemes that do not produce TNO were distributed in both low-cost and high-cost areas;
therefore, neither stormwater management that considers potential stormwater resource
utilization nor stormwater management that does not consider potential stormwater re-
source utilization should blindly increase investment in CGGI. In summary, according to
the optimization results of the stormwater resource utilization, low cost and high cost can
both achieve no stormwater resource utilization effects and moderate stormwater resource
utilization effects, and the likelihood of obtaining a larger such effect at low cost was
greater than at high cost, which gives stormwater management decision makers many
different choices. This also embodies the value of multi-objective optimization research
that considers stormwater resource utilization.

4.3.1. Analysis of Optimization of Stormwater Resource Utilization from SSP-RCP
Scenario Dimension

The stormwater resource utilization optimization effects of the SSP-RCP scenario
dimension are shown in Figure 7a. Overall, under the three SSP-RCP scenarios, the
optimization schemes in the near, middle, and far period were relatively on the left, centre,
and right, showing that the maximum cost of achieving the same stormwater resource
utilization effect was most possible in the far period and almost impossible in the near
period. Moreover, in each graph, optimization schemes generating a larger TNO were
primarily from the far period, with fewer coming from the near period; additionally, under
three SSP-RCP scenarios, the optimization effect of stormwater resource utilization was
expressed as far period > middle period > near period. The maximum TNO achievable
under the SSP126-N, SSP126-M, and SSP126-F scenarios were 162 m3, 189 m3, and 186 m3,
respectively; the maximum TNO achievable under the SSP245-N, SSP245-M, and SSP245-F
scenarios were 150 m3, 173 m3, and 199 m3, respectively; and the maximum TNO achievable
under the SSP585-N, SSP585-M, and SSP585-F scenarios were 162 m3, 180 m3, and 224 m3,
respectively. In general, in terms of stormwater resource utilization, the potential of the
far period was the greatest, while the near period had the worst stormwater resource
utilization potential.

4.3.2. Analysis of Optimization of Stormwater Resource Utilization from Time
Series Dimension

The stormwater resource utilization optimization effects of the time series dimension
are shown in Figure 7b. In the near period, the optimization schemes of the SSP245,
SSP585, and SSP126 scenario were relatively on the left, centre, and right, respectively,
indicating that the maximum cost of achieving the same stormwater resource utilization
effect appeared most likely under the SSP126-N scenario. The optimization schemes
generating a larger TNO were primarily from the SSP126 and SSP585 scenarios. The
maximum TNO of the SSP126-N, SSP245-N, and SSP585-N scenarios were 162 m3, 150 m3,
and 162 m3, respectively. In the near period, the maximum stormwater resource utilization
effects were achieved under the SSP126 and SSP585 scenario, and the worst stormwater
resource utilization effects were achieved under the SSP245 scenario. In the high-cost area
of the middle period, the optimization schemes of the SSP245, SSP585, and SSP126 scenario
remained relatively on the left, centre, and right, respectively, whereas, in the low-cost area
of the middle period, the optimization schemes of the SSP126 scenario were on the left,
meaning that a similar stormwater resource utilization effect could be achieved both at
the extremely low-cost and extremely high-cost areas under the SSP126-M scenario. The
maximum TNO achievable under the SSP126-M, SSP245-M, and SSP585-M scenarios were
189 m3, 173 m3 and 180 m3, respectively. Based on the maximum value, the SSP126-M
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scenario had the greatest potential for stormwater resource utilization. In the far period,
the SSP126 and SSP585 scenario produced no schemes, with a cost of less than 75 million.
Among the schemes with a cost of more than 75 million, the schemes of the SSP126-F,
SSP245-F, and SSP585-F scenario were relatively on the left, centre, and right, respectively.
Moreover, from the maximum value, the maximum TNO of the SSP126-F, SSP245-F, and
SSP585-F scenarios were 186 m3, 199 m3, and 224 m3 respectively; therefore, overall, the
SSP585-F scenario had the best stormwater resource utilization potential.

5. Discussion
5.1. Impact of Climate Change from a Multi-Dimensional Perspective

Differences in the optimization effects under different multi-dimensional scenarios
also reflect the coupled impacts of the SSP-RCP scenarios and time series on the benefits
of CGGI. In the SSP-RCP scenarios dimension, from the near period through the middle
period to the far period, the effects of hydrological recovery and water quality protection
approximated an ordering of near period > middle period > far period. The effects of
stormwater resource utilization approximated an opposite ordering. It can be seen that the
far period had a negative effect on hydrological recovery and water quality protection and
a positive effect on stormwater resource utilization. In terms of the time series dimension,
in the near and middle period, with increasing carbon emissions and levels of economic de-
velopment, the optimization effects of hydrological recovery and water quality protection
generally presented the ordering of SSP245 scenario > SSP585 scenario > SSP126 scenario,
and the optimization effects of stormwater resource utilization presented the ordering of
SSP126 scenario > SSP585 scenario > SSP245 scenario. In the far period, the ordering of
the optimization effects of hydrological recovery and water quality protection changed
to SSP126 scenario > SSP245 scenario > SSP585 scenario, and the ordering of the opti-
mization effect of stormwater resource utilization changed to be SSP585 scenario > SSP245
scenario > SSP126 scenario. Therefore, in general, the SSP-RCP scenarios did not have
stable influences on hydrological recovery, water quality protection, or stormwater resource
utilization. However, from the near to middle period, the SSP126 scenario had the greatest
impact on the performance of CGGI, and, in the far period, the SSP585 scenario had the
greatest impact on the performance of CGG. From the perspective of multi-dimensional
coupled scenarios, the worst hydrological recovery effect, worst water quality protection
effect, and best stormwater recycling effect all appeared under the SSP585-F scenario. The
maximum RCR, maximum PRR, and maximum TNO under the SSP585-F scenario were
90.65%, 88.23%, and 224 m3 respectively; therefore, the SSP585-F scenario had the greatest
influence on stormwater management under the support of carbon emissions, economic
development, and time, which holds equally true in related studies [17,88,89].

The difference in the optimization effects under the multi-dimensional scenarios lie
in the difference in precipitation. Many studies have shown that the larger the return
period, the worse the benefits of CGGI [57,90]. The different return periods reflect different
precipitation, which can directly affect the effectiveness of CGGI. Therefore, different opti-
mization effects appeared under nine multi-dimensional scenarios with different average
annual precipitations. Figure 8 simultaneously shows the average annual precipitation
and optimization effects of CGGI under various multi-dimensional scenarios. Gener-
ally speaking, the change trend of optimization effects of stormwater resource utilization
was consistent with the change trend of average annual precipitation, and the change
trends of optimization effects of hydrological recovery and water quality protection were
contrary to the change trend of average annual precipitation. Under the three SSP-RCP
scenarios, the average annual precipitation gradually increased from the near period to
the far period. Therefore, under the influences of different shared socioeconomic paths
and carbon emissions levels, the far period suffers the most precipitation. Therefore, the
hydrological recovery effects and water quality protection effects in this stage are the
worst, but the potential for stormwater resource utilization is the greatest. In the near
and middle period, the amount of average annual precipitation exhibited the ordering of
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SSP126 scenario > SSP585 scenario > SSP245 scenario, and the optimization effects of these
two stages also showed the same change trend as indicated for average annual precipita-
tion. In the far period, the amount of average annual precipitation presented as SSP585
scenario > SSP245 scenario > SSP126 scenario, which is also consistent with the change
trends of the optimization effects in this stage.
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5.2. Enlightenments of Stormwater Management for Areas with Contamination-Induced
Water Shortages

The differences in the precipitation of the multi-dimensional scenarios indicates the
uncertainty of the future climate, and their different optimization effects also indicate the
uncertain performance of CGGI in the future. Therefore, the planning and management
of CGGI must focus on carbon emissions, socioeconomic development, and time. During
the near and middle period, the SSP126-N and SSP126-M scenarios had the highest pre-
cipitation. Although the SSP126 scenario had lower carbon emissions, its better ecological
environment also resulted in more precipitation in the initial stage. Under the influence of
the time series, from the near period to the middle period, the precipitation of the SSP126
scenario continued to increase; therefore, the SSP126 scenario had the greatest impacts
on stormwater management in these two stages. As such, in the near and middle period,
stormwater management workers must focus on climate change caused by the SSP126
scenario. Under the influences of high carbon emissions, rapid socioeconomic develop-
ment, and time, the largest precipitation occurred under the SSP585 scenario, which led to
the worst hydrological recovery effect, worst water quality protection effect, and greatest
stormwater resource utilization potential. Therefore, in the far period, it is necessary to
focus on the climate change brought about by the SSP585 scenario. In addition, regardless
of the levels of carbon emissions and shared socioeconomic paths, the far period has a
significant impact on urban stormwater management. It is necessary for relevant per-
sonnel to make good contingency plans for the far period with respect to planning and
management of CGGI. While stormwater management is a direct measure for promoting
stormwater resource utilization, it must be made clear that the fundamental measure for
increasing stormwater resource utilization is to reduce pollution. As the Yangtze River
Delta region suffers from both upstream and local pollution risks, it should actively re-
spond to environmental protection policies and call for multi-party cooperations to carry
out green development.
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Generally, urban stormwater management does not require the production of TNO
because it needs to primarily focus on hydrological recovery benefits; however, areas
with contamination-induced water shortages require the recycling of water resources to a
certain extent. According to the research results of multi-objective optimization based on
NSGA-III, both low cost and high cost can produce a similar TNO and no TNO, which is
caused by the different configurations and scales of the CGGI under the premise of fixed
cost. This promotes two ideas for stormwater management of areas with contamination-
induced water shortages. Stormwater management that considers stormwater resources
utilization can select schemes that achieve a certain hydrological recovery effect, water
quality protection effect, stormwater resource utilization effect, and appropriate cost; in
contrast, stormwater management that does not consider stormwater resources utilization
can select schemes that do not produce TNO, and these schemes can also achieve a better
hydrological recovery effect, better water quality protection effect, and an appropriate cost.

5.3. Comparison of NSGA-III and NSGA-II

Previous studies based on NSGA-II primarily considered hydrological recovery and
water quality protection as the main optimization objectives [17,91]. In this study based
on NSGA-III, these two optimization objectives were retained. According to the results,
the runoff control rates under the nine multi-dimensional scenarios were all above 85%
and the pollutant removal rates under the nine multi-dimensional scenarios were all above
75%, which all reached the construction standards of the sponge city of Changzhou. By
comparison, it was found that both the distributions of the optimized Pareto solution sets
and the specific values showed some similarities in the previous studies and this study.
Therefore, multi-objective optimization based on NSGA-III can also be utilized in the same
roles of multi-objective optimization based on NSGA-II. Moreover, multi-objective opti-
mization studies based on NSGA-III can effectively solve more than three optimization
objectives. This study incorporated stormwater resource utilization into a multi-objective
optimization system, optimized the economic performance, hydrological recovery, wa-
ter quality protection, and stormwater resource utilization simultaneously, and finally
optimized the ideal results. This novel optimization framework expands the number of
optimization objectives, improves the research value of multi-objective optimization in the
field of stormwater management, and helps to solve more water problems for cities. Given
the interconnected, intertwined, diverse, and complex urban stormwater problems, it is
necessary to use NSGA-III to solve more optimization objectives.

6. Conclusions

To solve the diverse and severe water problems in areas with contamination-induced
water shortages, this study developed a multi-objective optimization framework based on
NSGA-III for grey–green infrastructure under future multi-dimensional scenarios. This
research creatively integrated stormwater resource utilization into the multi-objective
optimization system and applied NSGA-III to the field of stormwater management to
optimize four objectives simultaneously. In addition, multi-dimensional scenarios were
considered to simulate multiple risks under future climate conditions. The main conclusions
of the study are as follows:

1. The optimization effect of CGGI was different under different multi-dimensional
scenarios. The optimization effects of hydrological recovery and water quality protec-
tion were almost opposite to those of stormwater resource utilization. Among nine
multi-dimensional scenarios, the SSP245-N scenario that assumes that economic devel-
opment and ecological protection maintain the current trend, with moderate radiative
forcing and social vulnerability, had the best hydrological recovery effect, the best
water quality protection effect, and the worst stormwater resource utilization potential.
In contrast, the SSP585-F scenario that focuses on rapid economic development, with
the largest carbon emissions, highest radiative forcing level and social vulnerability,
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had the worst hydrological recovery effect, the worst water quality protection effect,
and the greatest stormwater resource utilization potential.

2. Precipitation was a determinant of optimization effects, and the SSP-RCP scenarios
and time series jointly influenced precipitation. In terms of the SSP-RCP scenarios, the
SSP126 scenario that focuses on ecological protection, with low radiative forcing and
social vulnerability, had the greatest influence on the precipitation and efficacy of CGGI
in the near and middle period, and the SSP585 scenario that focuses on rapid economic
development, with the largest carbon emissions, highest radiative forcing level, and
social vulnerability, had the greatest influence on the precipitation and efficacy of CGGI
in the far period. In terms of the time series, the far period had the greatest influence
on the precipitation and efficacy of CGGI under the three SSP-RCP scenarios.

3. Stormwater resource utilization was not significantly correlated with the CGGI scale.
High and low costs can not only achieve a similar stormwater recycling effect but
also do not produce stormwater overflow. This finding is applicable to stormwater
management considering stormwater resource utilization in areas of the Yangtze River
Delta with water shortages due to contamination, as well as stormwater management
in this region where the water shortages will be effectively alleviated.

This study enriches the research content of multi-objective optimization in the field of
stormwater management and can provide references and suggestions for future stormwater
management in areas of the Yangtze River Delta with contamination-induced water shortages.
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