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Abstract: Soil salinization is a critical global environmental issue, exacerbated by climatic and anthro-
pogenic factors, and posing significant threats to agricultural productivity and ecological stability in
arid regions. Therefore, remote sensing-based dynamic monitoring of soil salinization is crucial for
timely assessment and effective mitigation strategies. This study used Landsat imagery from 2001
to 2021 to evaluate the potential of support vector machine (SVM) and classification and regression
tree (CART) models for monitoring soil salinization, enabling the spatiotemporal mapping of soil
salinity in the Yutian Oasis. In addition, the land use transfer matrix and spatial overlay analysis
were employed to comprehensively analyze the spatiotemporal trends of soil salinization. The geo-
graphical detector (Geo Detector) tool was used to explore the driving factors of the spatiotemporal
evolution of salinization. The results indicated that the CART model achieved 5.3% higher classifica-
tion accuracy than the SVM, effectively mapping the distribution of soil salinization and showing a
26.76% decrease in salinized areas from 2001 to 2021. Improvements in secondary salinization and
increased vegetation coverage were the primary contributors to this reduction. Geo Detector analysis
highlighted vegetation (NDVI) as the dominant factor, and its interaction with soil moisture (NDWI)
has a significant impact on the spatial and temporal distribution of soil salinity. This study provides
a robust method for monitoring soil salinization, offering critical insights for effective salinization
management and sustainable agricultural practices in arid regions.

Keywords: CART; geographical detector; soil salinization mapping; spatiotemporal variation;
spatiotemporal distribution

1. Introduction

Soil salinization, a type of soil degradation, is one of the most critical and widespread
environmental issues globally in arid and semi-arid regions [1]. Approximately one billion
hectares of land are affected by salinization worldwide, accounting for 7% of the total land
area. In arid and semi-arid regions, factors such as low rainfall, high evaporation rates,
elevated groundwater levels, and high concentrations of soluble salts exacerbate the issue
of soil salinization [2]. Soil salinization not only hinders local agricultural productivity and
sustainable economic development but also contributes to the ecological degradation of
oases in arid regions [3,4]. Thus, dynamic monitoring of soil salinization is essential for
mitigating its impacts and serves as a scientific foundation for improving and utilizing
saline soils.

Soil salinization mapping is an effective method for acquiring and expressing spatial
distribution information of soil salinity to achieve dynamic monitoring of salinization [5].
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Traditionally, large-scale and detailed digital soil salinization maps have been generated
through field surveys and sampling, which are time-consuming and labor-intensive, limit-
ing the feasibility of mapping and monitoring over large areas [6]. The advent of remote
sensing technology has provided a rapid and efficient scientific method for mapping soil
salinization [7].

In recent years, with the advancement of research [8], a more systematic theoretical
framework has emerged, covering the distribution of saline soils, the characteristics of
salinization [9], and the mechanisms and trends of its evolution [10,11]. Previous studies
primarily focused on utilizing spectral information to construct inversion models, which
have become a crucial approach for digital soil salinization mapping [12,13]. This high-
lights the great potential and efficiency of remote sensing technology in soil salinization
monitoring. With the maturation of machine learning algorithms, their application in
spatiotemporal soil salinization mapping and digital cartography has demonstrated sig-
nificant potential [14,15]. Integrating remote sensing data with machine learning enables
the construction of a more robust analytical framework [7], efficiently handling large-scale
datasets and feature sets, ultimately producing higher-precision digital soil salinization
maps [16,17].

However, previous studies have often relied on single-temporal remote sensing data,
which lacks comprehensive analysis of the spatiotemporal characteristics of soil salinization.
Over time, soil salinity redistributes within the soil, making salinization a dynamic process,
that leads to changes in the spatiotemporal distribution and degree of salinization [18].
The use of multi-temporal remote sensing imagery to monitor and assess dynamic salinity
changes can more comprehensively capture the temporal trends of salinization and its
evolutionary processes, while mitigating the impacts of spectral confusion, such as “same
spectrum, different objects” and “same object, different spectra” [19]. Various scholars
have conducted dynamic monitoring studies of soil salinization in diverse geographical
environments, such as oases [20], grasslands [21], river deltas [22], coastal plains [23],
and farmlands [24]. These studies have successfully produced spatiotemporal maps of
salinization that reveal its trends and distribution patterns. Such research demonstrates the
feasibility of combining satellite imagery with spatiotemporal analysis for monitoring and
assessing regional salinization dynamics [25], providing important scientific foundations
for regional resource management and utilization.

Time-series monitoring of soil salinization heavily relies on remote sensing data and
field measurements. However, due to technological limitations, high costs, and incomplete
methodologies, current data are insufficient to support long-term time-series mapping of
soil salinization. Moreover, significant variations in soil spectral characteristics, caused
by different sources and types of salinity [26], make it challenging to develop a univer-
sal time-series inversion model for soil salinity. Therefore, in the absence of sufficient
data, qualitative research based on expert interpretation, field databases, and salinization
characteristics offers more advantages than quantitative studies at a temporal scale.

As research on soil salinization deepens, scholars have begun to focus on the driving
factors behind its changes. Spatial information science and geostatistical methods have
proven to be effective tools for dynamically monitoring salinization. Several studies [27–30]
have employed the Geo Detector [31] to analyze the dominant factors and driving forces of
soil salinization, contributing to a better understanding of the salinization process and its
dynamic changes.

Therefore, the integration of remote sensing and geographic information science
enables rapid, large-scale dynamic monitoring of saline land and the acquisition of temporal
evolution data, which are crucial for assessing soil improvement as well as the sustainable
development and utilization of land [32]. This study aims to utilize remote sensing imagery
and machine learning classification algorithms to analyze the spatiotemporal distribution
characteristics and trends of soil salinization in the Yutian Oasis and to investigate the
driving factors behind these changes. The findings will play a critical role in stabilizing
the local ecological environment and ensuring sustainable agricultural production in the
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oasis, providing valuable scientific insights for the improvement, utilization, and ecological
restoration of saline soils.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1. Yutian County is located in the southern part of Xinjiang Uygur
Autonomous Region, China (81◦9′–82◦51′ E, 35◦14′–39◦29′ N). The region experiences a
typical temperate arid desert climate with an average annual temperature of 11.6 ◦C [33].
The extreme maximum temperature can reach 43 ◦C. The region’s average annual evap-
oration is 1708.49 mm, and the average annual precipitation is 55.87 mm. The average
annual water resources total 4.2 × 109 m3, of which 32.4% is available for use. Surface water
accounts for 20%, while groundwater accounts for 12.4% of the total water resources [34].
Due to the intense surface evapotranspiration, the problems of soil salinization and de-
sertification in the plain and desert areas have become increasingly severe. The salinized
soils are primarily distributed in the transitional zones in the central region of the Yutian
Oasis and in the desert-saline soil interlaced zones in the northern part of the oasis, where
evapotranspiration is intense [35].
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Figure 1. Overview of the study area. (A) Map of China. (B) Map of Xinjiang, China, Yutian County,
and study area. (C) Map of the study area. Figure (C) shows Landsat8 OLI 15 July 2021 remote
sensing image of the study area.

2.2. Remote Sensing Data Sources and Soil Sample Data

The Landsat remote sensing imagery used in this study was obtained from the open-
source data platform Earth Explorer (https://earthexplorer.usgs.gov/ accessed on 25 Octo-
ber 2024), with the data classified as Collection 2 Level 1. Given the distinct dry and wet

https://earthexplorer.usgs.gov/
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seasons in the study area, to minimize the influence of climate and seasonal factors on soil
salinization mapping [36], cloud-free Landsat images of the study area were selected. The
timeframe was restricted to the dry season, specifically from June to August. The detailed
satellite imagery parameters are provided in Table 1.

Table 1. Data source.

Image Collection Time Resolution

Landsat7 ETM+ 30 June 2001

30 m
Landsat5 TM 22 July 2006
Landsat 5 TM 5 August 2011
Landsat8 OLI 15 June 2016
Landsat8 OLI 15 July 2021

Based on different land use patterns, vegetation types, and soil characteristics in the
Yutian Oasis, we established 140 typical sample points in the study area. Soil samples
were collected using the three-point method and subsequently brought to the laboratory.
Representative salinity indicators or parameters, including pH value, salinity, and electrical
conductivity (EC) [37] of a saturated soil paste extract, were measured using a conductivity
meter and pH meter.

2.3. Workflow

The workflow used in this study is shown in Figure 2. Initially, Landsat remote sens-
ing images were preprocessed, including radiometric calibration, atmospheric correction,
geographic registration, and image cropping. Spectral features and parameters were then
extracted from multi-temporal images, creating a dataset of driving factors. The 420 field
samples were divided into training (70%) and validation (30%) sets, consisting of 140 saline
soil samples and 280 samples of vegetation, water bodies, deserts, buildings, and bare
land. Soil salinization was classified using SVM and CART models, with accuracy assessed
through confusion matrices and field data. The best-performing model was used to produce
spatiotemporal maps of soil salinization. Finally, land use transfer matrices and spatial
overlay analysis were employed to study salinization transitions and evolution, with the
Geo Detector tool identifying the driving factors of these changes.
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Figure 2. Workflow.
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2.4. Feature Extraction

To minimize noise interference from the raw images and to better extract and differen-
tiate soil with varying degrees of salinization, this study selected spectral indices [5,38,39]
that have significant correlations with saline soils, based on previous research findings.
These spectral indices were used as the spectral feature set for the CART classification. The
specific inversion formulas and references for the spectral indices are shown in Table 2.

Table 2. Formula and reference of the spectral features.

Index Calculation Methods Reference

Spectral features for classification

Normalized Difference Vegetation Index
NDVI NDVI = (ρNIR − ρRed)/(ρNIR + ρRed) [40]

Normalized Difference Water Index
NDWI NDWI = (ρGreen − ρNIR)/(ρNIR + ρGreen) [41]

Salinity Index 1
S1 S1 = ρBlue/ρRed [39]

Salinity Index 2
S2 S2 = (ρBlue − ρRed)/(ρBlue + ρRed) [39]

Salinity Index
SI2 SI2 =

√
ρGreen

2 + ρRed
2 + ρNIR2 [42]

Driving factor

Salinity Index
SI-T SI − T = (ρRed/ρNIR)× 100 [43]

Salinity Index
SI1 SI1 =

√
ρGreen × ρRed [42]

Normalized Difference Salinity Index
NDSI NDSI = (ρRed − ρNIR)/(ρNIR + ρRed) [44]

Comprehensive Salinity Index
CSI CSI = NDSI+S2+SI−T

3

Land Surface Temperature
LST

LST = K2(
ln K1

B(TS)
+1

)
TM ρthermal1 K1 = 607.76 W/m2 × µm × sr, K2 = 1260.56 K [45]

ETM+ρthermal1 K1 = 666.09 W/m2 × µm × sr, K2 = 1282.71 K [46]

TIRS ρthermal1 K1 = 774.89 W/m2 × µm × sr, K2 = 1321.08 K [47]

K1and K2 as Calibration Conversion Parameters for Landsat Satellites,
and B(TS) as Radiance, Calculable via the USGS Website.

Albedo Albedo = 0.356 × ρBlue + 0.130 × ρRed + 0.373 × ρNIR + 0.085 × ρSWIR1 +
0.072 × ρSWIR2 − 0.0018 [48]

Desertification Difference Index
DDI

DDI = a × NDVI − Albedo
a is the intercept of the linear fit of NDVI and Albedo [49]

Temperature Vegetation Drought Index
TVDI

TVDI = TS−TSmin
TSmax−TSmin

TSmax = a1 + b1 × NDVI
TSmax = a1 + b1 × NDVI

TS represents the land surface temperature (LST), andTSmaxis the maximum
surface temperature for a specific NDVI value, representing the “dry edge”.

TSmin is the minimum surface temperature for a specific NDVI value,
representing the “wet edge”

[50]

Annotation
ρBlue, ρGreen, ρRed, ρNIR, ρSWIR1, ]ρSWIR2, ρThermal correspond to the blue,

green, red, near-infrared 1, near-infrared 2, and thermal infrared bands of
the Landsat satellite.

Additionally, to identify the driving factors behind the soil salinization dynamics in
the Yutian Oasis, this study extracted remote sensing indices such as albedo, DDI, TVDI,
and LST based on previous studies, to analyze the driving factors of the spatiotemporal
evolution of soil salinization.
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In which the comprehensive salinity index (CSI) [38] was derived based on previous
research findings as a relevant salinity index. Selecting three salinity indices with strong
correlations. These three indices were normalized, and equal weights were assigned to
represent the salinity levels in the study area.

The specific calculation methods and inversion formulas are provided in Table 2.

2.5. Soil Salinization Mapping and Classification Methods
2.5.1. Soil Salinity Classification Criteria and Classification Systems

Based on previous studies [51], saline soils were classified into three categories, as
shown in Table 3. Using our soil sampling data, the classification standards were combined
with visual interpretation standards to establish the following soil salinization classification
system.

Table 3. Classification criteria and characterization.

Ec (dS/m) Classification Surface Feature
Characterization Landscape

Non-salinization

Water body Salt lakes, rivers,
reservoirs, wetlands
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Table 3. Cont.

Ec (dS/m) Classification Surface Feature
Characterization Landscape

>8 Highly salinization
0–5% vegetation coverage, white

patches, clear salt spots, and
salt crust
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2.5.2. Support Vector Machine (SVM)

SVM is renowned for its strong generalization ability and robustness with small
sample datasets, making it particularly suitable for handling complex remote sensing
image classification problems [52], and has been widely applied in remote sensing image
classification. In this study, SVM was used to extract soil salinization information, with a
focus on model type and parameter selection. The radial basis function (RBF) kernel was
used to classify soil salinization information in the study area.

2.5.3. Classification and Regression Tree (CART)

The classification and regression tree (CART) algorithm, introduced by Breiman [53]
is a decision tree construction method [54]. CART utilizes the GINI index for node split-
ting, which allows it to better handle the diversity of soil spectral characteristics and the
“same spectrum, different objects” phenomenon, thereby improving classification perfor-
mance [55]. CART automatically selects classification features for different land cover types,
establishes rules, and progressively separates the target objects, minimizing interference
from other land cover types.

2.5.4. Classification Accuracy Assessment

Classification accuracy was evaluated using overall accuracy (OA), producer’s accu-
racy (PA), user’s accuracy (UA), and the Kappa coefficient. Overall accuracy refers to the
ratio of correctly classified image elements to the total number of image elements. The
Kappa coefficient measures the effectiveness of classification by comparing the model’s
predictions with actual classification results. Producer’s and user’s accuracy were used to
assess omission and commission errors for various land types [56,57].

2.6. Land-Use Transfer Matrix

A land-use transfer matrix [58] was employed in this study to quantitatively analyze
the conversion between different land-use types, revealing their transition rates over the
study period. The calculation formula for the transfer matrix is as follows:

Sxy =


s11, s12, · · · s1n
s21, s22, · · · s2n

...
... · · ·

...
sn1, sn2, · · · snn

 (1)

where n represents land-use types, and Sxy denotes the area of land that transitioned from
land-use type x at the beginning of the study period to saline soil type y at the end of the
study period.

2.7. Geographical Detector

In this study, a geographical detector (Geo Detector) was used to analyze the driving
factors and spatial autocorrelation of soil salinization. Geo Detector is a quantitative method
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that detects the relationships between spatial variables to reveal the influence of different
factors on geographic phenomena. A grid of 240 m × 240 m was created in the study area,
and each unit was sampled. This method includes factor detection and interaction detection.
The former assesses the contribution of individual natural factors to the spatiotemporal
changes of salinization, while the latter analyzes the interactions between different factors.
For detailed working principles and algorithms of Geo Detector, refer to the literature [31].

3. Result
3.1. Mapping of Soil Salinization
3.1.1. Classification Accuracy Evaluation

We calculated the overall accuracy, Kappa coefficient, user accuracy (UA), and pro-
ducer accuracy (PA) using the confusion matrix to quantitatively compare the classification
accuracies of the SVM and CART models, as shown in Figure 3. From 2001 to 2021, the
overall classification accuracy of the CART decision tree for soil salinization was 92.78%,
85.08%, 92.64%, 91.57%, and 89.71%, with an average classification accuracy over five
years of 90.36%. The corresponding Kappa coefficients were 0.9224, 0.8184, 0.8937, 0.8908,
and 0.8674 over these years. For SVM, the overall classification accuracy was 79.91%,
82.83%, 86.59%, 88.84%, and 87.12%, with an average classification accuracy of 85.06%.
The corresponding Kappa coefficients for the SVM model were 0.7371, 0.79, 0.8334, 0.8544,
and 0.8352. As shown in Table 4, from 2001 to 2021, the user’s accuracy and producer’s
accuracy of the CART method consistently outperformed the SVM model, with the average
classification accuracy of CART being 5.3% higher than that of SVM.

Land 2024, 13, x FOR PEER REVIEW 9 of 25 
 

In this study, a geographical detector (Geo Detector) was used to analyze the driving 
factors and spatial autocorrelation of soil salinization. Geo Detector is a quantitative 
method that detects the relationships between spatial variables to reveal the influence of 
different factors on geographic phenomena. A grid of 240 m × 240 m was created in the 
study area, and each unit was sampled. This method includes factor detection and inter-
action detection. The former assesses the contribution of individual natural factors to the 
spatiotemporal changes of salinization, while the latter analyzes the interactions between 
different factors. For detailed working principles and algorithms of Geo Detector, refer to 
the literature [31]. 

3. Result 
3.1. Mapping of Soil Salinization 
3.1.1. Classification Accuracy Evaluation 

We calculated the overall accuracy, Kappa coefficient, user accuracy (UA), and pro-
ducer accuracy (PA) using the confusion matrix to quantitatively compare the classifica-
tion accuracies of the SVM and CART models, as shown in Figure 3. From 2001 to 2021, 
the overall classification accuracy of the CART decision tree for soil salinization was 
92.78%, 85.08%, 92.64%, 91.57%, and 89.71%, with an average classification accuracy over 
five years of 90.36%. The corresponding Kappa coefficients were 0.9224, 0.8184, 0.8937, 
0.8908, and 0.8674 over these years. For SVM, the overall classification accuracy was 
79.91%, 82.83%, 86.59%, 88.84%, and 87.12%, with an average classification accuracy of 
85.06%. The corresponding Kappa coefficients for the SVM model were 0.7371, 0.79, 
0.8334, 0.8544, and 0.8352. As shown in Table 4, from 2001 to 2021, the user’s accuracy and 
producer’s accuracy of the CART method consistently outperformed the SVM model, 
with the average classification accuracy of CART being 5.3% higher than that of SVM. 

 
Figure 3. Sample separability and overall classification accuracy. 

Table 4. Comparison of user accuracy and producer accuracy for CART and RF classifications, 2001–
2021. 

Method YEAR CLASS PA UA Method YEAR CLASS PA US 

CART 2001 
BB 94.33 97.4 

SVM 2001 
BB 80.39 94.31 

WB 96.66 95.24 WB 91.62 90.53 

Figure 3. Sample separability and overall classification accuracy.

Table 4. Comparison of user accuracy and producer accuracy for CART and RF classifications,
2001–2021.

Method YEAR CLASS PA UA Method YEAR CLASS PA US

CART 2001
BB 94.33 97.4

SVM 2001
BB 80.39 94.31

WB 96.66 95.24 WB 91.62 90.53
VG 98.47 99.78 VG 80.01 61.43
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Table 4. Cont.

Method YEAR CLASS PA UA Method YEAR CLASS PA US

SS 66.6 72.08 SS 37.31 72.12
MS 94.6 93.25 MS 65.03 56.5
HS 94.69 71.7 HS 85.42 66.24

CART 2006

BB 99.17 73.65

SVM 2006

BB 91.89 63.55
WB 89.4 99.6 WB 96.83 94.77
VG 98.45 99.27 VG 96.97 98.67
SS 71.31 67.95 SS 61.18 91.36
MS 75.95 71.85 MS 88.19 72.01
HS 57.94 98.07 HS 35.61 93.18

CART 2011

BB 93.58 93.95

SVM 2011

BB 95.8 96.9
WB 79.81 96 WB 76.52 94.31
VG 96.73 99.77 VG 91.27 86.1
SS 90.11 48.78 SS 96.15 66.52
MS 99.26 70.98 MS 51.87 92.19
HS 93.57 80.86 HS 98.6 74.78

CART 2016

BB 95.64 94.14

SVM 2016

BB 96 99.08
WB 89.89 84.31 WB 88.59 92.51
VG 81.89 84.31 VG 89.95 97.47
SS 45.22 35.45 SS 44.52 50
MS 90.57 89.22 MS 86.87 89.12
HS 89.29 98.12 HS 99.16 78.28

CART 2021

BB 88.91 83.35

SVM 2021

BB 94.99 89.82
WB 93.84 90.63 WB 83.09 92.79
VG 91.64 98.27 VG 99.1 95.55
SS 71.53 77.69 SS 53.59 43.53
MS 83.42 92.31 MS 84.08 84.16
HS 79.6 68.23 HS 88.51 91.44

PA: producer’s accuracy; UA: user’s accuracy. SS: slightly salinized soil; MS: moderately salinized soil; HS: highly
salinized soil; VG: vegetation; WB: water body; BB: bare land, desert, and building.

3.1.2. Classification Comparison

To compare the performance of different classification models in soil salinization
mapping in detail, the year 2021 was used as a case study, concerning field sampling and
observation results. The soil salinization maps generated by the SVM and CART models
were compared based on classification details. Figure 4 presents the classification details
of typical salinized areas within the study region. The same training samples were used
to train both the SVM and CART models, but the resulting soil salinization maps showed
significant differences. In this study, representative areas A and B in the Yutian Oasis were
selected for local comparison. These areas are transition zones between salinized soils and
deserts, characterized by high soil salinity and clearly delineated zones of mild, moderate,
and severe salinization, making them ideal for validating classification performance.

The results of Figure 4 show that the SVM model performed poorly in distinguishing
between severely salinized land and bare soil. In case A, an irrigation channel (BB) was
misclassified as a severely salinized area (HS). In case B, the SVM model performed poorly
in classifying vegetation and mildly salinized areas, with desert regions misclassified as
severely and moderately salinized. This ultimately led to lower classification accuracy and
performance compared to the CART model. The results indicate that the CART model, by
effectively utilizing specific spectral feature sets, outperformed the SVM model in classifi-
cation accuracy, particularly when dealing with complex, interwoven salinized soil regions.
In contrast, the SVM model was constrained by the unfiltered original spectral feature set,
potentially affected by image noise. Additionally, due to the complexity of overall soil
spectral response patterns and the “same spectrum different objects” phenomenon [59],
SVM did not perform as well as CART in high-precision classification. Therefore, feature
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selection plays a critical role in soil salinization classification, and the CART model more
effectively utilized these features, leading to superior classification performance.
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3.2. Spatiotemporal Distribution Characteristics of Soil Salinization

The study utilized the CART model, which exhibited the highest classification accuracy,
to generate soil salinity distribution maps from 2001 to 2021 (Figure 5). The results show
that soil salinization in the Yutian Oasis primarily occurred in the northern, southwestern,
and transitional zones between the oasis and desert, which is consistent with findings from
previous studies [60]. This phenomenon is primarily caused by the combined effects of the
local arid climate, topography, and water resource scarcity [61]. In salinized areas, severely
salinized soils were primarily located near the desert boundary in the northern part of
the study area and around rivers in the southwestern region, gradually transitioning into
desert and barren land. In the northern desert region of the oasis, the high permeability
of sandy soil and low groundwater levels result in the accumulation of salt on the soil
surface as water evaporates, leading to salinization [62]. Additionally, saline lakes outside
the oasis plains and salinized soils near the southwestern river are highly affected by
climatic disturbances. Severely and moderately salinized soils are distributed in a banded,
interwoven pattern in these areas, where high groundwater levels and intense surface
evaporation significantly affect salt movement, leading to marked salt accumulation in the
soil [63].
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3.3. Spatiotemporal Transfer Analysis of Soil Salinization

To visually reflect the trend of soil salinization at different intensities, spatial overlay
analysis and the difference method were employed to examine the spatiotemporal evolution
of soil salinization across five periods: 2001–2006, 2006–2011, 2011–2016, 2016–2021, and
2001–2021. Different salinity weight values were assigned to each land type for each year.
By calculating the difference between the new and previous time nodes, changes in soil
salinization during different periods were analyzed. The calculation methods and salinity
weight assignments are shown in Figure 6.
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Figure 7 illustrates the spatiotemporal changes in land types across the five periods
from 2001 to 2021, while Figure 8 presents the land-use transitions for different types in
2001, 2006, 2011, 2016, and 2021. From the analysis of Figures 7 and 8, it is evident that
from 2001 to 2021, most areas exhibited trends of slightly significant decrease, significant
decrease, and highly significant decrease in salinization. This phenomenon is primarily
reflected in the significant expansion of cultivated land within the oasis. According to
Figure 8, vegetation cover increased significantly from 404.07 km2 in 2001 to 672.89 km2 in
2021, indicating a significant increase in cropland. This increase was particularly notable in
the development of cultivated land in the southern Gobi desert and the eastern part of the
oasis from 2011 to 2021.

The changes in water body area were not significant, with the maximum area in 2001
being 126.35 km2, which fluctuated and decreased to 98.21 km2 by 2021. Nevertheless, soil
moisture remains the primary driver of salt movement and changes, indirectly influencing
the spatial distribution of soil salinity [64].
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From 2001 to 2021, the area affected by soil salinization in the study region significantly
improved, decreasing from 825.97 km2 to 604.97 km2, representing a reduction of 26.76%.
The area of mildly salinized soils decreased from 61.72 km2 in 2021 to 35.48 km2, while
moderately salinized soils initially increased and then decreased, from 471.52 km2 in 2001
to 398.28 km2 in 2021. Similarly, severely salinized soils showed a trend of significant
increase followed by a decrease, with the area shrinking from 292.73 km2 in 2001 to
171.21 km2 in 2021. Noteworthy, from 2001 to 2011, the secondary salinization of cultivated
land in the oasis intensified. This was mainly due to the relatively low efficiency of
irrigation water use and outdated irrigation techniques, particularly the extensive use
of flood irrigation, which raised the groundwater table and caused the accumulation of
salts in the surface soil, leading to the conversion of mild and moderate salinized soils
to severely salinized soils [65]. However, from 2011 to 2021, the area affected by various
types of salinization significantly decreased, indicating that secondary salinization of
cultivated land was effectively controlled. The primary reason for this improvement is
the increased water use efficiency in the surface soil of cultivated land in recent years,
which has reduced the trend of mildly and moderately salinized soils transforming into
severely salinized areas. This achievement can be attributed to the local government’s
promotion of rational irrigation methods and advanced irrigation technologies, which have
improved production efficiency and mitigated the trend of soil salinization [66]. In addition,
key interventions such as regional water resource protection, soil conservation policies in
arid regions of Northwest China [67], and the ‘Three-North Shelterbelt Project’ [68] were
instrumental in enhancing water use efficiency, reducing desertification, and stabilizing
soils, all contributing to reduced salinization [69]. These combined efforts demonstrate
the effectiveness of policy interventions and technological advancements in improving
soil health sustainably [70]. The observed trend in our study aligns with conclusions from
previous research [63].

From 2001 to 2021, areas with little to no change in soil salinization were primarily
concentrated in the transitional zones between the northern desert and salinized soils, as
well as in river basins in the southwestern part of the oasis. One reason is that the northern
desert has low elevation and flat terrain, leading to shallow groundwater levels, low
hydraulic gradients, and stagnant horizontal runoff, creating an environment conducive to
salt accumulation [71]. Another possible reason is the low irrigation water use efficiency
in the cultivated land of the oasis, combined with severe field infiltration, which raises
the groundwater level in the northern areas. Coupled with prolonged and intense surface
evaporation during the dry season, this has resulted in the accumulation of severely and
moderately salinized soils in the northern part of the oasis [33]. In the southeastern part
of the oasis, the main cause of salinization could be the low salt content in cultivated
land due to drainage improvement measures. However, when irrigation and drainage
become imbalanced, soluble salt ions from the subsoil are transported to the surface through
capillary action, leading to the formation of secondary salinization in the farmland [61].

3.4. The Dominant Factors in the Process of Salinization Evolution
3.4.1. Single Factors

In this study, the factor detector was used to analyze and reveal the explanatory power
of individual factors on the spatiotemporal evolution of salinization in the study area. By
calculating the q-values of individual factors across different historical periods, the key
factors influencing the evolution of soil salinization in the Yutian Oasis were identified
for each period. Diagonal elements (X1X1, · · · X10X10) represent the results of the factor
detector, reflecting the significance (q-value) of each individual factor in relation to soil
salinization (classification). The higher the q-value, the greater the explanatory power of
that factor in terms of the spatial heterogeneity of soil salinization, indicating a stronger
correlation. The most important three factors explaining the soil salinization evolution
process from 2001 to 2021 are shown in Figure 9.
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For 2001: NDVI (0.46) > NDWI (0.26) > DDI (0.16); for 2006: NDVI (0.43) > DDI (0.25) >
CSI (0.21); for 2011: NDVI (0.53) > CSI (0.25) > NDWI (0.14); for 2016: NDVI (0.50) > NDWI
(0.41) > CSI (0.30); and for 2021: NDVI (0.33) > S2 (0.22) > S1 (0.21). These results indicate
that vegetation cover is the dominant factor influencing the evolution of salinization. This
is because the growth of vegetation interacts with the salt migration process in the soil [72].
Vegetation growth affects the vertical distribution of soil salts [72] which indirectly reflects
the spatiotemporal distribution pattern of salt. Additionally, both NDWI and DDI represent
soil moisture and water distribution in the study area, making them secondary factors
influencing the evolution of salinization. The salinity index is the third most influential
factor in the spatiotemporal distribution of salinization, indicating that it can, to some
extent, reflect the spatiotemporal evolution of soil salinization.

3.4.2. Dominant Interactive Factor

The factors influencing the evolution of soil salinization in the oasis are often not
singular, and the spatiotemporal evolution of soil salinization is shaped by multiple factors.
In this study, an interaction detector was employed to analyze the contribution of multiple
factors to the salinization process. The off-diagonal elements in reflect the explanatory
power (correlation) of the interaction between any two factors (XiXj, i, j, · · · , 10) on the
dependent variable. The results indicate that the q-values of any two interacting factors are
greater than those of individual factors, suggesting that the influence of natural factors on
the salinization process is complex and mutually reinforcing. In 2001, the top three most
explanatory interaction factors for the evolution of salinization in the Yutian Oasis were:
NDVI ∩ Albedo (0.52) > NDVI ∩ DDI (0.51) > NDVI ∩ S1 (0.51). In 2006, they were:
NDVI ∩ Albedo (0.61) > Albedo ∩ DDI (0.55) > NDVI ∩ SI2 (0.54). NDVI ∩ Albedo (0.61) >
Albedo ∩ DDI (0.55) > NDVI ∩ SI2 (0.54). For 2011: NDVI ∩ S1 (0.63) > NDVI ∩
S2 (0.62) > NDVI ∩ Albedo (0.59). For 2016: NDWI ∩ S2 (0.60) > NDWI ∩ S1 (0.59) >
CSI ∩ S2 (0.58).And for 2021: NDVI ∩ S2 (0.53) > NDVI ∩ S1 (0.53) > NDWI ∩ S2 (0.49).
In conclusion, NDVI and NDWI were the primary interactive factors influencing the spa-
tiotemporal evolution of salinization in the study area, indicating that vegetation and soil
moisture jointly affect the migration and accumulation of salts within the soil, thereby
controlling the spatial heterogeneity of salinization. Vegetation not only impacts evap-
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otranspiration rates but also modulates the soil moisture regime, which in turn affects
salt mobilization. This interdependence underscores the importance of considering both
vegetation dynamics and soil moisture availability when evaluating salinization processes.

4. Discussion

The Yutian Oasis, significantly affected by seasonal climatic variations, represents
a typical arid region exhibiting both secondary and primary salinization phenomena.
Previous studies have mostly focused on discussing the spatiotemporal variation trends of
oasis soil salinization using medium-resolution satellite imagery and assessing mapping
accuracy via confusion matrices, without further exploration into the evolution and driving
factors of soil salinization. This study integrated Landsat imagery with machine learning
methods to map and monitor soil salinization dynamically under medium-scale conditions.
The classification results were discussed based on field sampling and surveys, providing
valuable insights for regional-scale soil salinization monitoring.

4.1. Dominant Factors in the Spatiotemporal Evolution of Modern Yutian Oasis Soil Salinization

The spatial distribution of salt content in the soil profiles of the Yutian Oasis results
from the combined action of various factors, including structural factors (such as climate,
parent material, topography, soil types, and groundwater movement) and random factors
(such as farming practices, fertilization, cropping systems, and irrigation schemes) [60]. In
this study, most natural factors had q-values less than 0.6, indicating their limited explana-
tory power for the spatial heterogeneity of salinization. This indicates that the correlation
between individual factors and the spatial distribution of salinization is not significant,
while also revealing notable spatial clustering (spatial autocorrelation) of salinization in the
study area. This spatial autocorrelation can be attributed to the clustering of salinization in
specific areas. Extensive spatial clustering of salinization was observed in the northern and
western parts of the study area, resulting in relatively uniform distribution patterns and
weak spatial heterogeneity, consistent with the findings of previous studies [60]. Thus, the q-
values of any two interacting factors were higher than those of individual factors, indicating
that multi-factor interactions determine the spatial heterogeneity of soil salinization.

Based on our field surveys conducted from 2021 to 2024, the promotion of modern
irrigation technologies such as drip irrigation, Unmanned Aerial Vehicle (UAV) spraying,
and subsurface drainage systems [73] has significantly improved water use efficiency in
oasis farmland [74,75], reducing salt accumulation in cultivated land and leading to a
marked improvement in secondary salinization in the region.

Additionally, future research should explore the specific effects of groundwater depth
and soil profiles on salinization accumulation [76–78], further quantifying the role of natural
and social factors in the dynamic changes of oasis salinization.

4.2. Limitations and Prospects

The comparison between SVM and CART models highlights the strengths of CART
in classifying soil salinization with higher overall accuracy and Kappa coefficients. While
CART is known for its simplicity and interpretability due to its decision tree structure, it
excels in handling complex data with varied spectral characteristics, making it effective
for distinguishing classes in heterogeneous environments. Random forest (RF) also uses
decision trees but in an ensemble format, combining multiple decision trees to enhance
overall model stability and reduce overfitting [79]. This ensemble approach, however,
can dilute the precise feature selection advantage that CART provides, especially in cases
where distinct feature splits are critical for addressing the “same spectrum, different ob-
jects” phenomenon. Although RF is typically more robust and adept at handling larger
datasets, CART may be better suited for specific, targeted classifications in complex spectral
conditions [80], such as arid regions with bare soil and sparse vegetation. Nevertheless, RF
has demonstrated potential in constructing effective salinization inversion models, offering
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flexibility and improved accuracy through its ensemble learning framework, which could
be leveraged for broader applications in soil salinity mapping [81–83].

Field investigations over the years have revealed that the distribution of saline soils in
the study area is highly complex, with salinized land of varying degrees showing “frag-
mented” distribution within a 10-m range. This indicates that the 30-m spatial resolution
of Landsat imagery hinders the accurate identification of smaller or dispersed saline soil
patches, leading to mixed-pixel effects where different land features are represented within
the same pixel. Previous studies have demonstrated the great potential of using high-
resolution satellite imagery such as Planet Scope for soil salinization inversion [84,85].
Therefore, to overcome these limitations, employing higher spatial resolution imagery and
remote sensing platforms can significantly improve the accuracy of soil salinization mapping.

To compare the mapping performance at different spatial resolutions, this study used
3m resolution Planet Scope imagery to map soil salinization in the Case A region.

As shown in Figure 10, at 30-m resolution, Landsat imagery failed to effectively
distinguish between impervious surfaces (BB, building desert and bare land) and highly
salinized soil (HS, highly salinization soil), and the canal in the upper-left corner was
incorrectly classified. The Case A region is located in the northern part of the study
area, at the intersection of desert and salinized land, where salt-tolerant vegetation such
as tamarisk, salt cedar, and reeds covers an area much smaller than 30 m, resulting in
spectral characteristics prone to mixed-pixel effects. The Kappa coefficient and overall
accuracy for classification of planet scope images using the SVM model are 0.9101 and
94.304% respectively, while the Kappa coefficient and overall accuracy using landsat8 are
0.8352 and 87.12%. Therefore, using high-resolution imagery can not only reduce mixed
pixels but also improve the classification accuracy of spectrally similar features such as
highly salinized soil and impervious surfaces, thereby enhancing the overall accuracy of
regional salinization monitoring.
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Optical remote sensing (such as Landsat and Sentinel-2) excels in providing surface
reflectance information, enabling the identification of vegetation cover, water bodies, and
bare soil. Microwave remote sensing (such as SAR imagery), on the other hand, has the
ability to penetrate the soil surface, capturing soil moisture content and salinity dynamics,
making it particularly advantageous in arid regions. Combining optical and microwave im-
agery enables multi-dimensional monitoring of soil salinization and provides more accurate
classification results. Several studies [33,63] have shown that integrating backscatter coeffi-
cients, polarization features, and phase characteristics from optical and microwave remote
sensing can significantly improve the classification accuracy of salinized soils [77,86,87].
Moreover, multi-source fusion of multispectral remote sensing data (such as Sentinel-2
or other high-resolution satellite data) can provide richer soil information in salinization
monitoring, further enhancing classification performance [88].

To further improve classification performance, the integration of advanced machine
learning methods, such as random forest (RF), convolutional neural networks (CNN),
and gradient boosting, can be particularly beneficial. These machine learning models are
capable of capturing complex spatial and spectral features effectively, thereby addressing
limitations such as mixed pixels and similar spectral characteristics that are common in
salinized areas. Additionally, combining multi-source remote sensing data, particularly
high spatial resolution imagery, with machine learning models tailored to the study area
can enhance the precision of soil salinization monitoring [89].

Furthermore, the accuracy of machine learning classification methods largely depends
on the quality and quantity of training samples. Therefore, to comprehensively capture
the spatiotemporal trends of salinization, sample points should encompass various soil
types across different geographic locations and ecological conditions within the study
area. Future research should focus on enhancing the diversity and representativeness of
sample data. By training models with diverse sample sets, the model’s generalization
ability across different regions and scenarios can be improved, minimizing classification
errors and ensuring higher accuracy in dynamic salinization monitoring [7].

These studies will provide more detailed and valuable references for regional forest
and grassland conservation, and ecological restoration. By integrating higher resolution re-
mote sensing data with multi-dimensional environmental variable analysis, future research
is expected to achieve a more comprehensive understanding of salinization processes and
offer insights for salinization prevention in similar regions worldwide.

5. Conclusions

Soil salinization has had a significant impact on agricultural production and ecological
environments globally, making effective and rapid monitoring of soil salinization essential.
This study aims to achieve dynamic monitoring of soil salinization using remote sensing and
spatial information technology. By comparing the SVM and CART models, we confirmed
the superiority of CART in extracting salinization information and further employed the
CART model to map the spatiotemporal distribution of soil salinization in the Yutian Oasis,
revealing its evolution and driving factors.

The results indicate that:

(1) The classification accuracy of the CART model was significantly higher than that of
the SVM model, with an average improvement of 5.3%. The CART model exhibited
superior detail-capturing ability in complex salinized regions, particularly in distin-
guishing between highly salinized soil and bare land. It was able to utilize spectral
features to better reflect the actual salinization conditions, whereas the SVM model
performed poorly in these areas. This finding supports the applicability of using the
CART model for spatiotemporal dynamic monitoring of soil salinization.

(2) From 2001 to 2021, the area affected by soil salinization decreased by 26.76%, from
825.97 km2 to 604.97 km2, with significant improvements, particularly in heavily
salinized areas. The alleviation of secondary salinization was mainly concentrated in
the cultivated lands within the oasis, while the expansion of cultivated land at the oasis
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periphery also significantly reduced the spread of salinization. This improvement
was attributed to the promotion of modern agricultural irrigation technologies and
the enhancement of land use efficiency.

(3) The results of the Geo Detector analysis indicated that NDVI (Normalized Difference
Vegetation Index) was the primary factor influencing soil salinization dynamics, with
the highest q-value reaching 0.53. Additionally, factors such as NDWI (Normalized
Difference Water Index) and CSI (Comprehensive Salinity Index) also significantly
impacted the spatial distribution of salinization. Interaction analysis showed that the
interaction between NDVI and NDWI explained the major drivers of spatiotemporal
changes in salinization, indicating that vegetation cover and soil moisture jointly
determine the dynamic evolution of soil salinization.

This study comprehensively analyzed the distribution, trends, and driving factors
of soil salinization in the Yutian Oasis, providing a scientific basis for the sustainable use
of regional land resources. The results offer valuable insights for local governments in
formulating irrigation strategies and land use management, contributing to the mitigation
of land degradation and the improvement of the ecological environment.
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