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Abstract: The Massarosa wildfire, which occurred in July 2022 in Northwestern Tuscany (Italy),
burned over 800 hectares, leading to significant environmental and geomorphological issues, includ-
ing an increase in soil erosion rates. This study applied the Revised Universal Soil Loss Equation
(RUSLE) model to estimate soil erosion rates with a multi-temporal approach, investigating three
main scenarios: before, immediately after, and one-year post-fire. All the analyses were carried out
using the Google Earth Engine (GEE) platform with free-access geospatial data and satellite images
in order to exploit the cloud computing potentialities. The results indicate a differentiated impact
of the fire across the study area, whereby the central parts suffered the highest damages, both in
terms of fire-related RUSLE factors and soil loss rates. A sharp increase in erosion rates immediately
after the fire was detected, with an increase in maximum soil loss rate from 0.11 ton × ha −1 × yr−1

to 1.29 ton × ha −1 × yr−1, exceeding the precautionary threshold for sustainable soil erosion. In
contrast, in the mid-term analysis, the maximum soil loss rate decreased to 0.74 ton × ha −1 × yr−1,
although the behavior of the fire-related factors caused an increase in soil erosion variability. The
results suggest the need to plan mitigation strategies towards reducing soil erodibility, directly and
indirectly, with a continuous monitoring of erosion rates and the application of machine learning
algorithms to thoroughly understand the relationships between variables.

Keywords: soil erosion; wildfire impact; Google Earth Engine; RUSLE

1. Introduction

Wildfires represent one of the main causes of environmental deterioration since they af-
fect terrestrial ecosystems and tend to increase geomorphological degradation processes [1],
especially in the Mediterranean region [2–4]. The current context of climate change (CC)
has clear implications in wildfire occurrence in the Mediterranean area for several rea-
sons [5]. The frequency and intensity of heatwaves will tend to increase, leading to a greater
likelihood of extreme wildfire events [6]. Regarding the vegetation, a higher number of
warmer and drier summers results in greater fuel availability and low moisture content,
resulting in an increased fuel flammability and thereby increasing the number of fires [7].
Annual drought periods are strictly correlated to fire occurrence since a direct correlation
was found, for instance, in Greece, where two 30-year periods were compared within the
second half of the 1900s [8]. Additionally, the CC-related rainfall events with anomalous
patterns can result in a lethal mix that boosts the impact of soil erosion phenomena [9].
Fires not only affect the vegetation cover but also alter the physical and chemical properties
of soil [10,11], contributing to an increase in its susceptibility to degradation processes
like erosion [12]. Although soil erosion is a natural process involving the mechanical
removal of soil particles from slopes, primarily due to water runoff, it can become haz-
ardous if the rate of soil loss exceeds the natural soil formation rate [13] or when it triggers
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other types of geomorphological processes (e.g., landslides). After a wildfire, a significant
amplification of erosion intensity is observed since the combustion of vegetation cover
leaves the soil without any protection from the actions of water and wind [14]. Several
studies have demonstrated the increase in post-fire erosion rates compared to pre-fire
conditions, also linked to a reduction in the soil infiltration capacity due to the formation of
a hydrophobic layer [15], combustion of organic matter [1], deterioration of soil structure
and modification of porosity [16]. The occurrence of heavy rainfall immediately after a
fire worsens the general condition of the soil due to nutrient depletion, hindering plant
regrowth [17]. Understanding the relationships between wildfires and soil erosion, even
with a multi-temporal perspective, is crucial for developing effective land management
aimed at mitigating the long-term impact of these events, in particular, in Mediterranean
areas such as Italy, where many mountainous and hilly areas are present and complex
rainfall patterns are often found, leading to soil erosion processes and landslide events.

Empirical methods are the most used approaches to assess soil erosion rates thanks to
their simplicity and flexibility, through the application of the Universal Soil Loss Equation [18]
and the Revised Universal Soil Loss Equation [19]. These approaches are applied—particularly
nowadays with the improvements of geospatial tools—at the basin scale [20,21], the regional
scale [22], and the continental scale [23]. Their ease of application is increased if applied
with freely accessible data, allowing them to rapidly assess soil erosion rates over areas of
different sizes. Google Earth Engine (GEE) [24] represents one of the most famous platforms
for cloud-based geospatial analysis in soil erosion assessment, characterized by a petabyte
database of geospatial datasets. Indeed, since its release in 2010, the publications related to
soil erosion assessment using the GEE platform have nearly constantly increased from 2016
to 2024. The reduced computational speed also allows for a multi-temporal modeling of
environmental parameter changes during seasons or years [25,26], or after forcing events (e.g.,
floods [27], wildfires [28], landslides [29]).

Although the use of cloud computing is widespread in Italy for environmental tasks
(e.g., for gully erosion [30], for conservation agriculture [31], and for archaeological preser-
vation from extreme events [32]) and also for predicting and mapping potential fire severity
for risk analysis [33], no particular studies are focused on multi-temporal, post-fire soil
erosion assessments in Italy or even consider a mid-term perspective of erosion risk using
Google Earth Engine. Therefore, this work aims to overcome this gap by focusing on the
multi-temporal assessment of soil erosion rates before and after a wildfire occurs in a small
municipality located in Northwestern Tuscany (Italy) using the potentiality of Google Earth
Engine in terms of the ease of analyzed time span variation (to assess the soil erosion risk at
different time scales) and its complete availability of freely accessible petabytes of data. The
Massarosa wildfire is considered as one of the major recent forest fires that has occurred
in Italy in recent years. This fire caused damage due to its large spreading area, risking
several elements, from the mountainous area down to the coastline. Due to its severity,
three scenarios were analyzed by applying the RUSLE approach in order to assess the
variation in soil erosion rates after different time spans and to analyze the contribution
of vegetation recovery and soil erosion propensity in soil erosion rate changes: (i) before
the wildfire, (ii) immediately after the event, and (iii) one year after the event. The RUSLE
approach was chosen as opposed to others because of its simplicity, ease of application, and
reproducibility that allow for a direct comparison between the three analyzed scenarios
and other studies across the Mediterranean area.

2. Study Area
2.1. General Setting

Massarosa is an Italian municipality located in the Northwestern Tuscany region
(Lucca province) and it is characterized by different landscapes such as plains, wetlands,
and hills, situated in a transition zone between the coastline (Versilia) in the west, the
Apennine reliefs, and the Apuan Alps mountain chain in the east and north, respectively, at
an altitude that varies from 0 m to 450 m above the sea level. Massarosa presents a typical
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Mediterranean climate, characterized by hot, dry summers and mild, wet winters with a
mean annual precipitation ranging from 870 to 900 mm/year.

From a geological perspective, the hilly slopes are constituted by sandstone bedrocks
(Macigno Formation, MAC in Figure 1b) formed during the Late Oligocene to Early Miocene
era as a result of turbidite sedimentation, characteristic of deep marine environments dur-
ing the Appennine belt formation [34], laying over terrigenous formations (Scaglia Toscana
Formation, SCA in Figure 1b) and pelagic calcareous rocks (Serie Toscana group, ST in
Figure 1b). The land cover (from Corine Land Cover, 2018 update) is mainly composed
of forest areas (i.e., the Mediterranean woods and bush forest) in the hilly parts, and agri-
cultural and agroforestry areas as well as urban areas and wetlands in the flat zones, as
shown in Figure 1c. Regarding the soil type distribution, the hilly areas of Massarosa are
mainly characterized by slightly deep soil associations with an A-Bw-C horizons sequence
characterized by a well-drained structure with predominately loamy sand and loam tex-
tures (PEL1 facies), less deep soils associations with an A-Bw-R horizons characterized
by a well-drained structure with gravelly and pebbly loam textures (SFC1 facies) and
slightly deep soil associations with an Ap-C-Cr horizon sequence, well drained with a
loamy texture (GCC1 facies) [35]. Near the urbanized areas, deep soils with an Ap-Bw-Bg
horizon sequence that are well drained and with loamy and sandy textures (FAB1 facies)
are present (Figure 1d).

Figure 1. (a) Location of the Massarosa wildfire area within the Tuscany region (red dot). (b) Ge-
ological setting of the study area (MAC = Macigno Formation; SCA = Scaglia Toscana Formation;
ST = Serie Toscana group). (c) Land cover distribution. (d) Pedological association (PEL1 = slighlty
deep soils with loamy textures and well-drained structure; SFC1 = shallow depth soils with gravelly
and pebbly textures and well-drained structures; GCC1 = slightly deep soils with loamy textures and
well-drained structures; FAB1 = deep soils with sandy textures and well-drained structures). The
burned area is highlighted with the red polygon.

2.2. The 2022 Wildfire

The Massarosa wildfire was a forest fire that occurred in the mountainous area near
the main town center that started on the afternoon of 18 July 2022 and ended on 22 July
2022. Due to the extent of the forest fire, ashes rapidly reached the seaside (approximately
10 Km away from the fire area) and the local “A11” highway section was closed. After
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two days, a fire-front of several kilometers long was still active with more than 60 hectares
burned. Accordingly, the Copernicus Emergency Management Service (CEMS) was activated
on 20 July 2022 by the Italian Civil Protection to map the extent of the wildfire, assess the
most affected areas, and evaluate the damage. At the end of the wildfire, 836.7 hectares of
land was burnt [36,37].

3. Materials and Methods
3.1. Google Earth Engine and Data Sources

Google Earth Engine is a cloud-based platform consisting of a multi-petabyte analysis-
ready data catalog and high-performance computational service. The data catalog hosts
a large amount of free available geospatial datasets including Earth Observation images
from different satellites (e.g., Landsat, Sentinel constellations) and weather, climate, land
cover, topographic, and many other types of datasets. The GEE platform can compute
geospatial analysis at the planetary scale thanks to the large parallel processing system
that subdivides computations, whereby users can gain access to the data and run scripts
with the JavaScript programming language using a web-based application programming
interface (API) and associated interactive development environment (IDE) [24]. For this
study, datasets from different sources within the GEE catalog were used.

As multispectral satellite datasets, three Sentinel-2 L2A (atmospherically corrected)
images [38] were collected by filtering the GEE collection on the period of interest and
setting a suitable cloud cover percentage threshold (30% for this study). In particular, an
image before the wildfire occurrence (acquired on 15 February 2022), an image immediately
after the end of the wildfire (acquired on 27 July 2022), and an image after one year from
the wildfire occurrence (acquired on 15 July 2023) were used. The topographic variables
were extracted from the NASA Shuttle Radar Topography Mission (SRTM) dataset [39]. This
dataset provides a digital elevation model on a global scale at a resolution of 1 arc-second
(approximately 30 m). To obtain rainfall data, the Climate Hazard Center for Infrared Precipita-
tion (CHIRPS) dataset was used [40] (0.05 degree spatial resolution, approximately 5 m)
while soil data (clay and sand percentage, organic matter content, and texture classes) were
retrieved, with a 250 m spatial resolution, from the OpenLandMap soil property database
available on GEE [41].

3.2. Burned Area Detection and Burn Severity Assessment

The burn area detection and burn severity assessment represents a mandatory propaedeu-
tic analysis in wildfire case studies. This analysis can be performed through the use of the
Normalized Burn Ratio (NBR),which is a normalized difference index that can be calculated
from a multispectral image with the following Formula (1):

NBR =
(NIR + SWIR)
(NIR − SWIR)

(1)

where NIR represents the Near-Infrared spectral region and SWIR represents the Shortwave
Infrared spectral region. This index is commonly used in burned area detection studies by
analyzing the difference in reflectance of vegetated areas (higher reflectance in NIR spectral
region than SWIR spectral region) and fire-affected areas (higher reflectance in SWIR
spectral region than NIR region). Consequently, high NBR values in (1) represent healthy
vegetation, while recently burnt areas show low NBR values. To assess the burnt area
extent, the difference between pre- and post-wildfire NBR images (∆NBR) was calculated
following (2) [42,43]:

∆NBR = NBRpre f ire − NBRpost f ire (2)

The higher the values of ∆NBR, the more severe the fire damage. The United States
Geological Survey (USGS) proposed a table (Table 1) in order to help in classifying different
levels of burn severity.
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Table 1. Burn severity classes according to ∆NBR values (from USGS).

Severity Level ∆NBR Values

Enhanced regrowth <−0.101
Unburned −0.100 to 0.99

Low severity 0.100 to 0.269
Moderate severity 0.270 to to 0.659

High severity >0.660

In this work, the Sentinel-2 bands number 8 (NIR) and number 12 (SWIR) were used to
calculate the NBR index for the three scenarios, and ∆NBR was evaluated in two situations:
after five days from the wildfire occurrence (difference between 15 July 2022 and 27 July
2022 acquisitions) and after a year from the wildfire occurrence (difference between 15 July
2022 and 15 July 2023 acquisitions) and was reclassified using Table 1 to assess the burn
severity for the two cases. The actual burned area was detected by masking out all the
pixels with ∆NBR below 0.100.

3.3. RUSLE Parameter Estimation

In this study, the RUSLE model [18,19] was applied to predict the soil erosion rates in
the three scenarios by considering the change in the parameters in response to the wildfire.
The RUSLE model assesses the soil erosion rates through (3):

A = R ∗ K ∗ LS ∗ C ∗ P (3)

where A is the soil erosion rate [ton × ha−1 × yr−1], R is the rainfall erosivity factor
[MJ × mm× ha−1 × h−1 × yr−1], K is the soil erodibility factor [ton × h × MJ−1 × mm−1], LS
is the slope and length factor [dimensionless], P is the support practice factor [dimensionless],
and C is the cover factor [dimensionless]. All the RUSLE parameters were evaluated on a
pixel-based approach.

3.3.1. Rainfall Erosivity Factor (R)

The rainfall erosivity factor represents the erosive energy of the rainfall. In this study,
it was calculated following (4) (modified from [44]) using the CHIRPS dataset:

R =
(1163 + 4.9 ∗ H − 35.2 ∗ NRD − 0.58 ∗ q)

100
(4)

where H [mm/yr] is the mean annual precipitation, q is the elevation at the pixel level (using
SRTM DTM), and NRD (number of rainy days) is the mean number of rainy days per year.
In this work, a rainy day is considered as a day with more than 1 mm of rainfall. For the first
(pre-fire condition) and second (immediately after-fire condition) scenarios, the previous
10 years (2012–2022) were taken into account to calculate the mean annual precipitation.
For the third scenario (one-year after-fire condition), the total annual precipitation (from
July 2022 to July 2023) was considered.

3.3.2. Soil Erodibility Factor (K)

The soil erodibility factor represents the propensity of soil particles to be removed and
transported by water runoff in terms of structure, permeability, and organic matter content.
This parameter is strongly influenced by wildfires since the fire modifies these properties,
leading to an increase in the K factor values. The K factor is calculated by (5) [18,19,45]
using data from OpenLandMap [41]:

K =
2.1 ∗ 10−4 ∗ M ∗ (12 − OM) + (3.25 ∗ (s − 2)) + (0.250 ∗ (p − 3))

100
∗ 0.1317 (5)
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where M is a particle size parameter (dependent on the percentage of sand and clay),
OM is the organic matter content, s and p are the soil structure code and permeability
class, respectively (evaluated from the soil textural classes from OpenLandMap dataset)
(Tables 2 and 3) [46].

Table 2. Soil textural classes and corresponding soil structure codes.

Soil Texture Class Soil Structure Code

Sa, LoSa, SaLo 1 (very fine granular)
SaCl, SaClLo, Lo, SiLO, Si 2 (fine granular)

ClLo, SiClLo 3 (medium or coarse granular)
Cl, SiCl 4 (blocky, platy, or massive)

Table 3. Soil textural classes and corresponding soil permeability classes.

Soil Texture Class Soil Permeability Class

Sa 1 (fast and very fast)
LoSa, SaLo 2 (moderately fast)
Lo, SiLo, Si 3 (moderate)

SaClLo, SaCl 4 (moderately slow)
SiClLo, SaCl 5 (slow)

SiCl, Cl 6 (very slow)

In the tables above, the abbreviations and their full forms are as follows: Sa: sand; LoSa:
loam–sand; Si: silt; SaLo: sand–loam; SiLo: silt–loam; Lo: loam; SaClLo: sand–clay–loam;
SiClLo: silt–clay–loam; ClLo: clay–loam; Cl: clay; SiCl: silt–clay; and SaCl: sand–clay.

In this study, to assess the soil erodibility values after the wildfire, K factor origi-
nal values were multiplied by factors of 1.6, 1.8, and 2 based on the burn severity es-
timated from ∆NBR values (low, medium, and high, respectively) (Table 4), following
Terranova et al. [44] and Lanorte et al. [47].

Table 4. K factor multiplication parameters dependent on burn severity level.

Severity Level Multiplication Parameter

Low burn severity 1.6
Medium burn severity 1.8

High burn severity 2.0

3.3.3. Length and Steepness Factor (LS)

The LS factor represents the morphometric and hydorlogic-related parameters that
are involved in soil erosion phenomena (e.g., slope, aspect, flow accumulation). For this
study, the procedure proposed by Elnashar et al. [46] was followed (using Equations (6) and
(8)–(10)) and Table 5 from Wischmeier et al. [18], Desmet et al. [48], and Renard et al. [19].

Table 5. Steepness factor (S) values based on slope ranges.

Slope Ranges S values

<5◦ S = 10.80 × sin(slope) + 0.03
5◦–10◦ S = 16.80 × sin(slope) + 0.50
>10◦ S = 21.91 × sin(slope) + 0.96

F = | sin(a)|+ | cos(a) (6)

F =
sin(s)
0.0896

3 ∗ (sin(s)0.8 + 0.56)
(7)
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m =
F

F + 1
(8)

L =
(FA + scale2)m+1 − FAm+1

scalem+2 ∗ Xm ∗ 22.13m (9)

LS = L ∗ S (10)

where a is the aspect direction, s is the slope in radians, F is an intermediate factor, FA is the
flow accumulation (from Lehner et al. [49]), and m is the slope length exponent (22.13 is
the standard slope length exponent).

3.3.4. Cover Management Factor (C)

The cover management factor represents the surface cover and cover management
contribution to soil erosion processes, since a higher vegetation cover and appropriate crop
management reduce runoff and soil loss [50]. To rapidly estimate the C factor, spectral
indices like NDVI (Normalized Difference Vegetation Index) can be used [51,52]. The NDVI
index was calculated as the normalized difference between the NIR band (band 8) and red
band (band 4) in Sentinel-2 images in the three scenarios considered. For this work, to
evaluate the C factor from the NDVI, an equation derived from Van der Knijff et al. [13],
Tamene et al. [53], and Elnashar et al. [46] was used (11):

C = exp(−2.5 ∗ NDVI
(1 − NDVI)

) (11)

3.3.5. Support Practice Factor (P)

The P factor represents the contribution of agricultural conservation practices to reduce
runoff and erosion (e.g., terracing, contouring) [18,19]. In this work, since no information
on specific supporting practices were available, a constant value of 1 was assigned to the P
factor for the entire area to consider the worst scenario.

4. Results

In Figure 2, the burn severity maps calculated from the ∆NBR values are depicted.
Figure 2a represents the “five days after the fire” scenario while Figure 2b represents the
“one year after” scenario. From Figure 2a, the impact of the wildfire is clearly visible since
most of the study area was classified with either a medium or high burn severity, while only
a few areas were considered to have been slightly affected by the fire (low burn severity)
and just a few spots remained unburned. After a year (Figure 2b), there was a shift towards
a less serious scenario, since a decrease in highly damaged areas is evident. However, some
sectors classified as high-burn-severity-affected are still present within the area.

In Figure 3, the R factor maps are presented, while the LS factor map is presented in
Figure 4. Both of the R factor maps are characterized by a small value range, with maximum
values located in the southern parts of the study area and lower values in the central parts.
In the one-year-after scenario, an increase in the absolute value range is clearly visible.

The LS factor presents very low values with the maximum value along the higher and
steeper parts and the minimum along flat areas.

The factors that were affected by the wildfire effects (K and C factors) are presented in
Figures 5 and 6. Considering the pre-fire situation (Figure 5a), the original values of the K
factor present low values (from 0 to 0.024 ton × h × MJ−1 × mm−1) and a narrow range
between the minimum and the maximum. The higher values are constrained in the lower
parts, while the northern part presents lower values of the K factor. Immediately after the
wildfire (Figure 5b), a sharp increase in the K factor values is easily noticeable, as it is two
times higher than the baseline (upper limit of 0.043 ton × h × MJ−1 × mm−1). The effects of
fire are clearly visible in the central sector, near the western boundary of the area, where an
increase from 0.02 ton × h × MJ−1 × mm−1 to 0.04 ton × h × MJ−1 × mm−1 was detected.
However, the spatial distribution across the study area remains nearly the same as the before-
fire condition. One year after the wildfire (Figure 5c), a slight decrease in the K factor values is
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visible with a reduction in the upper limit of up to 0.039 ton × h × MJ−1 × mm−1. In this
scenario, a change in the spatial distribution is detected with a general increase in low K
factor values across the area. The boxplots (Figure 5d) highlight a clear difference in K
value distributions in the three scenarios. Before the wildfire, there was a relatively low
median K factor value with a narrow distribution and a few outliers below the lower bound.
The immediate effects of the wildfire show a sharp increase in the median value and a
wider distribution, indicating an increase in the K factor variability across the study area as
well. After one year, the effects of the wildfire are still present. A high median value of K is
visible even though it is slightly lower than the previous scenario, with a wide distribution
indicating a variability in soil recovery.

Figure 2. (a) Burn severity after a few days from the wildfire (difference between 15 July and 27 July
2022 NBR indexes). (b) Burn severity after a year from the wildfire (difference between 15 July 2022
and 15 July 2023 NBR indexes).

Figure 3. R factor maps of the Massarosa wildfire area. (a) R factor map of the pre-fire and immediately
post-fire scenarios and (b) R factor map of the one-year-after-fire scenario.
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Figure 4. LS factor map of the Massarosa wildfire area.

Figure 5. K factor maps of the Massarosa wildfire area: (a) before the wildfire occurrence; (b) five
days after the wildfire occurrence; (c) one year after the wildfire occurrence; (d) boxplot comparison
of the three scenarios

In Figure 6, the variations in the C factor in the three scenarios are presented. The C
factor values before the wildfire (Figure 6a) shows a nearly constant spatial distribution of
zero values with a few scattered hotspots. Five days after the fire occurrence, the Figure 6b
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shows a sharp increase in the values of the C factor with a maximum value more than
three times higher than the the baseline (from 0.24 in the baseline to 0.79 after the event).
A general increase in the C factor spatial distribution is evident, with several peaks of
high C values in the central (0.77) and western parts (0.67) of the study area. The mid-
term C factor map (Figure 6c) shows a comeback to nearly pre-fire condition for most of
the extent of the area that presents values near 0. The maximum values of the C factor
(0.34) are constrained into sparse spots that are, in particular, located in the central part,
near the western boundary. As can also be seen in Figure 6d, before the wildfire, the C
factor distribution presents values clustered to zero with minimal variability and some
outliers above the upper bound, indicating a good and homogeneous vegetation cover.
Five days after the fire, a clear increase in the C factor value is visible, both regarding the
median value and the variability, indicating a reduction in the vegetation cover. Moreover,
the high variability and the presence of very-high-value outliers suggest a differential
vegetation response to the fire’s impact. In the long term, the C factor returns to general low
values (with a median close to zero and a reduced variability but still higher than pre-fire
condition), meaning that most of the vegetation has been recovered. However, the presence
of numerous outliers confirms the presence of large spots with still sparse and unhealthy
vegetation. In Figure 7, the soil loss maps for the three scenarios are presented.

Figure 6. C factor maps of the Massarosa wildfire area: (a) before the wildfire occurrence; (b) five
days after wildfire occurrence; (c) one year after wildfire occurrence; and (d) boxplot comparison of
the three scenarios.

Figure 7 shows the multi-temporal assessment of soil erosion rates using the RUSLE
approach in the three scenarios considered. The baseline situation, before the wildfire
occurrence, represents a normal condition with very low soil erosion rates (overall mean
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value at 7.16 × 10−4 ton × ha −1 × yr−1 and maximum at 0.11 ton × ha −1 × yr−1)
and a constant near-zero value distribution in most of the study area. Immediately after
the wildfire, a rapid intensification in the soil loss values is observed. The overall mean
value increased to 0.19 ton × ha −1 × yr−1 and the maximum value of soil loss reached
1.29 ton × ha −1 × yr−1, indicating an increase in mean values of 264% and more than
1000%, considering the maximum values. A clear change in the spatial distribution of the
soil erosion rates is visible, with maxima detected in the central (1.29 ton × ha −1 × yr−1),
south (1.08 ton × ha −1 × yr−1), and western (1.23 ton × ha −1 × yr−1) parts of the study
area (in accordance with the changing of the K and C factors). After one year, the overall
mean soil erosion rate decreases to 0.02 ton × ha −1 × yr−1 (maximum value equal to
0.74 ton × ha −1 × yr−1) with a decrease in mean values of 89% and 42%, considering
the maximum values with respect to the immediate post-fire scenario. However, high
soil-loss-rate values are still detected in the central part of the study area that is considered
the most problematic zone, while values near zero are detected in the rest of the study
region (and also in most of the western and southern parts of the area previously affected by
the sharp increase in soil loss rates). Nevertheless, considering the mid-term scenario, both
the mean and the maximum soil loss values after one year still have higher differences than
the baseline situation (more than 26% higher and more than 570% higher, respectively). The
analysis of the boxplot distributions (Figure 7d) highlights a low median value and a low
variability of the erosion rates before the event, with some outliers presenting high values.
Immediately after the fire, despite a sharp increase in median values and a high number
of outliers with low erosion rates, no signs of high variability were detected, indicating
a low non-uniformity of the fire’s impact, also in terms of erosion rates across the study
area. In contrast to mid-term distributions of C and K factors, the soil erosion rates after
one year still have higher median values than the baseline conditions, and the main feature
observable is an increase in the rates’ variability with respect to the previous scenarios,
thereby suggesting a strong differential spatial recovery of the soil loss rates within the
study area.

To better understand the change in soil erosion rate distribution, a Kernel density
estimation for the three scenarios was evaluated (Figure 8). The use of a logarithm of soil
erosion rates allows us to highlight the differences between the three scenarios. Upon
analyzing the graph in Figure 8, the differences between pre-fire and immediately after
scenarios are focused on a general increase in the absolute values and an increase in the
area-under-the-curve width after five days (density peak from 0.7 to 0.25), indicating a
slight change in data variability. The mid-term scenario (one year after) presents highly
dispersed data compared to the previous scenarios that virtually cover the whole value’s
range between the baseline and immediately after distribution, indicating a time-dependent
response typology.

Figure 9 presents the differences in soil erosion rates evaluated among the three
scenarios and allows us to identify the change in soil erosion rates both from a spatial
distribution across the study area (maps on the left side) and the distribution shapes (violin
plot on the right side). Figure 9a (left) shows the distribution of the differences in terms of
soil erosion rates between the immediate impact of the wildfire and the baseline condition.
The main hotspot that can be seen is located in the central part of the area near the western
boundary (differences in soil erosion of 1.29 ton × ha −1 × yr−1) and a minor hotspot
located in the northwestern part. The rest of the study area shows lower values of soil
loss differences with minimum values located in the north zones. The Kernel density
estimation plot (Figure 9a, right) highlights a wide distribution of the difference with a
maximum of around 0.1, meaning that many parts of the area present nearly constant
values before and after the event. However, the skewness of the data towards positive
values and the long tail confirm the presence of localized maxima across the study area
up to 1.2–1.4 ton × ha −1 × yr−1. In Figure 9b (left), a strong decrease in absolute values
is detected. Indeed, most of the area presents lower values of different soil erosion rates
compared to the five-days-after scenario, indicating an ongoing recovery of the study area.
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The Kernel density plot (right side) highlights a general decrease in the soil erosion rate
differences, centering near 0 ton × ha −1 × yr−1, and data variability, indicating a reduction
in the overall magnitude of the event even with a wider distribution of soil erosion rate
values across the area (Figure 8).

Figure 7. Soil loss map of the Massarosa wildfire area: (a) before the wildfire occurrence; (b) five days
after wildfire occurrence; (c) one year after wildfire occurrence; and (d) boxplot comparison of the
three scenarios.

Figure 8. Kernel density estimation plot (KDE) of the logarithm of soil erosion rates in three scenarios.
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Figure 9. Differences in soil erosion rates. (a) Differences between the “five days after” and the
pre-fire scenarios and the KDE plot of its distribution. (b) Differences between the “one year after”
and the pre-fire scenarios and the KDE plot of its distribution.

5. Discussion

By the ∆NBR calculation, the burned area detected (area with ∆NBR > 0.1) was
8.89 Km2 (889.65 hectares) wide, in accordance with the final value provided from [37].

The wildfire had different impacts across the study area, highlighting zones affected by
distinct burn severities. In particular, the central part is detected as the most affected in both
post-fire scenarios, resulting in the most critical as well due to higher value distributions of
fire-independent factors (R and LS). This differential behavior is obviously reflected in the
post-fire assessment of K and C factors that experienced higher values in the central zones
with respect to the whole burned area and an increase in the data variability immediately
after the wildfire. Focusing on the “one year after” distribution, a shift between the two
factors is visible since the K factor still has a higher variability distribution than the C factor.
This result suggests a nearly total and homogeneous recovery of the vegetation, lowering
the C factor to almost constant values across most of the area. On the other hand, the soil
erodibility presents higher variability due to its direct relations with the burn severity and
the physical fire-related effects as a result of the hydrophobic layer formation, an increase in
sealing phenomena, decrease in porosity, and organic carbon removal [1,16]. It is important
to highlight that the post-fire assessment of the K factor is based on an empirical method
that was already used by Lanorte et al. [47] in order to maintain the procedure of K factor
calculation to be as easy as possible.
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The resulted soil erosion rates are essentially low in all the three scenarios, with
mean annual values of 7.16 × 10−4 ton × ha −1 × yr−1, 0.19 ton × ha −1 × yr−1, and
0.02 ton × ha −1 × yr−1 for the pre-fire, five-days-after, and one-year-after scenarios, re-
spectively. These values seem to be within the same order of magnitude with those in other
studies of similar regions, with similar sizes among the Mediterranean area [54–56]. Con-
versely, other studies applied in Mediterranean areas detected substantially higher mean
erosion values [57,58]. It is worth noting that these studies were applied at higher scales
(catchment scale) than this study, leading to an increase in overall mean soil erosion rates.

When one analyzes a post-fire soil erosion event, it is crucial to consider the “window
of disturbance (WoD)” model [59], which describes the time span in which an increase
in sediment yield is observed due to the fire’s impact and which tends to decrease and
return to background values after a certain period due to fire-related parameter recovery
(e.g., vegetation cover). The time span can vary from a few months to 10 years. In the
Mediterranean region, the WoD can vary from 2 to 6 years [9,60,61], but it can even reach
25 years [62]. Given the above time periods, a mid-term analysis should be considered
within the window of disturbance of the forest fire. However, the decrease in soil erosion
rates, especially for the mean values where a decrease of nearly 50% was detected, suggests
a faster recovery than other similar study sites along the Mediterranean area (e.g., Kastridis
et al. [62]).

From a broader perspective, the soil erosion rates in the study area prior to the
wildfire presents mean and maximum values significantly below the long-term threshold for
sustainable soil erosion in the Mediterranean (1 ton × ha −1 × yr−1 [63]). Considering the
maximum values detected, immediately after the forest fire, the rapid increase in soil erosion
rates leads to rates exceeding the threshold, and thus, to an unsustainable soil erosion rate
in the central and northern parts. Conversely, after one year, the rates return to below
the precautionary threshold, suggesting a sustainable soil erosion rate in the long term.
However, if the analysis is focused on the mean values, the sustainable threshold would
not be overcome, as it was not detected in either the short-term analysis or the mid-term
one. With a deeper analysis, the higher change in data variability after one year indicates a
change in the “soil erosion response” after the event, with an initial immediate response
reflected in a substantial increase in absolute values (with a spatial distribution related to
the fire-dependent factors) and a “longer-term” response that represents a spatially varying
feedback dependent on the natural recovery mechanism.

This behavior may be caused by the different assessments of C and K factors in the
mid-term analysis and is mainly led by soil erodibility. Their divergence leads to an
increase in soil loss variability over long periods as part of the post-fire resilience of the
landscape, whereby interacting with vegetation regrowth and soil physical and chemical
properties results in localized areas of normal recovery or prolonged degradation. The soil
loss variability in the mid-term analysis also introduces a complexity factor in suggesting
mitigation strategies to reduce the erosion over time. The main efforts should be focused on
the reduction in soil erodibility, both directly or indirectly. For instance, the addition of soil
nutrients and organic matter could help in soil property restoration [64,65]. Furthermore,
the vegetation recovery status may not be enough to stabilize slopes in post-fire conditions
against erosion since some hotspots of higher values are still present over one year. To
overcome this limit, native and deep-root vegetation species could be introduced to enhance
the anchoring of soil layers [66].

Lastly, mitigation actions could be conducted by also focusing on fire-independent
factors, in particular, the LS factor reshaping the steepest slopes (e.g., adding contour
terraces). These slope reduction actions can lead to the slowing down of runoff, allowing
for an increase in water infiltration and providing an additional mechanical stabilization.
The continuous monitoring of soil loss and vegetation recovery [67] should also be the key
point for modifying mitigation strategies and adapting them at current erosion rates.

The use of GEE in this study allowed us to simplify the procedures for estimating soil
erosion assessments for several reasons, despite the relatively small size of the study area.
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Primarily, the use of freely accessible data, even if with coarse spatial resolution, enhanced
a reproducibility of the study for other areas with larger size or where high-resolution
datasets are not available. The multi-temporal analyses were rapidly carried out without the
need of a large amount of data storage. Secondly, the use of cloud computing allowed for a
dynamic and rapid assessment, even for future perspectives, in monitoring the recovery
processes during the WoD period. Furthermore, the RUSLE method represents a consoli-
dated approach to rapidly evaluate soil erosion rates using fixed and well-known formulas
calibrated on generalized site characteristics even if they cannot investigate and recognize
patterns among the variables and study non-linearity relationships. However, some draw-
backs have arisen from this study. First of all, a full validation with field measurements was
not carried out even though the comparison with other similar studies [54,55] suggested
that a correct estimation of the overall mean erosion rates is significant. Moreover, the
coarse resolution of some datasets (e.g., OpenLandMap) may lead to a punctual overesti-
mation or underestimation of the soil loss in certain areas, and the empirical calculation of
the K factor introduces a simplification into the K factor post-fire assessment. Finally, the
use of the one-year-based R factor for the mid-term analysis may lead to an overestimation
of the R values compared to the trend-based R factor.

6. Conclusions

In July 2022, a huge wildfire hit the mountainous area near the village of Massarosa
(Northwestern Tuscany, Italy) causing more than 800 to be hectares burned, more than
200 evacuees, and several environmental and geomorphological issues, including an in-
crease in soil erosion phenomena due to the presence of steep slopes, vegetation cover
removal, and soil property modification. This study used free-access data, available on
the Google Earth Engine platform, to investigate the multi-temporal soil erosion rate as-
sessment before and after the wildfire by considering three main scenarios (before the
event, immediately after the fire, and one year after the fire) and using the RUSLE method.
The analysis revealed a differential impact of the fire across the different zones within the
study area with the central part that exhibits the highest values of fire-dependent factors
(K and C) and the subsequent soil loss rates. The background very-low-soil-erosion rates
experienced a sharp increase immediately after the wildfire, causing an overcoming of the
sustainable erosion threshold of 1 ton × ha −1 × yr−1 in some hotspots. After one year, the
soil erosion rates decreased to below the threshold, showing comparable values with other
studies in the Mediterranean region. On the other hand, the variability in the distribution
increased due to the different mid-term behaviors of fire-related factors. This particular
phenomenon suggests that we focus on mitigation strategies that act, in particular, to reduce
the soil erodibility both directly and indirectly and to implement a continuous monitoring
of soil loss and vegetation recovery that could be crucial even for other geomorphological
associated risks. This work represents a solid approach for studying the wildfire erosion
impact in Italy using the Google Earth Engine cloud platform due to its petabyte database
of freely accessible datasets and rapid multi-temporal assessment of soil erosion rates.
Future improvements will be focused on using Google Earth Engine datasets on wider
scales and analyzing non-linear relationships more thoroughly between causes and effects
by applying machine learning algorithms.
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