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Abstract: Urban agglomerations are increasingly becoming the primary regional units in global
competition, characterized by the rapid expansion of impervious surface areas, which negatively
impacts both society and the environment. This study quantifies the spatiotemporal expansion
of these surfaces in the Yangtze River Delta urban agglomeration and explores its driving factors
using a Geographically Weighted Random Forest model. The results demonstrate a transition from
“point expansion” to “infill development”, while also revealing a gradual southward shift in the
developmental focus of the Yangtze River Delta urban agglomeration. Although expansion intensity
has decreased, spatial clustering has intensified. Based on the expansion patterns of impervious
surface areas, we propose a novel regional classification method, dividing the Yangtze River Delta
urban agglomeration into three zones: “A-Development Decline Zone”, “B-Development Core Zone”,
and “C-Development Ascendance Zone”. Socio-economic factors are the primary drivers of this
expansion, followed by science and education, and then the ecological environment, while physical
geography factors have the least impact. The study reveals differentiated regional development
characteristics and further refines the sub-regions within the urban agglomeration, providing a new
perspective for future regional coordinated development policies.

Keywords: impervious surface areas; spatial expansion; regional development zones; geographically
weighted random forest; urban agglomeration

1. Introduction

With the continuous progression of global urbanization, special urbanization phenom-
ena such as urban agglomerations, mega-cities, and metropolitan areas have gradually
emerged. Among these, the spatial expansion of city clusters has become a focal point of
widespread attention, gradually replacing individual cities as the primary regional units
for global competition and specialization [1]. A prominent feature of urban agglomerations’
spatial expansion is the increase in impervious surface areas (ISAs), such as asphalt roads,
houses, and parking lots, which are artificially constructed rather than naturally formed
and block water from seeping into the ground. The uncontrolled increase in ISAs places
significant pressure on the regional ecological environment [2]. In recent years, global
ISA datasets derived from long-term, multi-temporal remote sensing data have played an
increasingly crucial role in studying urban spatial morphology [3]. The Yangtze River Delta
Urban Agglomeration (YRDUA) stands out as one of China’s most robustly urbanized
regions, making its spatial expansion characteristics highly typical [4]. The YRDUA’s
significance extends far beyond its role as an urbanized region. As China’s largest and
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most dynamic urban agglomeration, it is a crucial engine for national economic develop-
ment, contributing approximately 24.3% to China’s GDP and housing over 235 million
residents [5]. The region’s unique geographical characteristics, featuring a dense water net-
work (3–4 km/km2) and predominantly flat terrain (60% plains), have historically provided
favorable conditions for urban development while presenting ecological challenges [6].
These environmental and cultural factors and its rapid economic growth have made the
YRDUA an ideal case for studying complex urban expansion processes. Therefore, analyz-
ing the spatiotemporal characteristics of ISA expansion in the YRDUA and identifying its
driving factors is of significant guiding importance for the sustainable development of the
regional economy and society as well as ecological and environmental protection.

The study of ISAs originated in the field of remote sensing, and early scholars focused
on the identification and extraction of ISAs [7]. With the rapid development of artificial
intelligence, methods such as Decision Trees [8], Attention Transfer Mechanisms [9], Ran-
dom Forests [10], and Neural Networks [11,12] have been increasingly applied to ISA
dataset generation, significantly improving recognition accuracy and speed. Concurrently,
research on ISAs has gradually begun to integrate with studies on urban heat island effects
and urban hydrology. These studies primarily explore the relationship between ISAs and
urban surface temperatures [3], and ISAs’ impact on surface rivers [13]. With the improved
availability and identification accuracy of ISA datasets, scholars have begun to explore the
relationship between ISAs and urban spatial morphology. Numerous studies have shown
that changes in ISAs effectively reflect the spatial pattern evolution of urban expansion [14].
Researchers have revealed the spatial and temporal change characteristics of ISAs using
methods such as Center of Gravity Analysis [15], the Dilatancy Index [16], the Landscape
Pattern Index [17], Standard Ellipse Difference [18], and the Moran Index [19]. These
methods effectively describe the spatial distribution characteristics of ISAs, using indicators
such as patch density and fractal dimension to reveal their spatial patterns. However,
these methods seldom focus on the spatial clustering characteristics of ISAs, limiting our
comprehensive understanding of expansion patterns. Additionally, some scholars have
primarily explored the evolutionary patterns of ISAs at the city scale. Li et al. used TM
imagery to analyze the characteristics of ISA expansion in Harbin [20]. Other scholars
have used similar methods to study the expansion of ISAs in cities such as Shanghai [21],
Guangzhou [22], and Xiamen [23]. Lu, Guan, and He used the urban expansion index to
study land expansion in the Wuhan urban agglomeration [24]. Ma, Wu, and Wang analyzed
the changing relationship between ISAs, spatial stratification, and population in three major
urban agglomerations in China [25]. In the case of the YRDUA, scholars have focused more
on the expansion characteristics of its construction land [26]. Comparatively, more research
is needed on ISA expansion at the urban agglomeration scale. Since urban agglomerations
serve as crucial spatial entities for regional development, the lack of research scale may
impact our understanding of ISA expansion characteristics at the regional level.

As research has progressed, scholars have increasingly focused on the factors influenc-
ing ISA expansion. Linear regression models are widely used in this field. For instance,
Zhou, Chen, and Li employed regression models to analyze the driving factors behind the
landscape pattern changes of ISAs in Xiamen [23]. Gao, Li, and Wang (2023) quantified
the driving factors of ISA expansion in Shanghai through integrated correlation analysis
and generalized additive models [21]. Zhao, Li, Wang, and Zhang (2023) applied the
Mann–Kendall Trend Test method to quantitatively analyze ISA change characteristics
and then used the Geographical Detector Model to analyze the driving factors behind
ISA expansion in the Central Plains urban agglomeration [15]. The relationship between
ISA expansion and its drivers is intricate and not always straightforward or linear [27,28].
To address this issue, Wu, Li, Zhang, and Liu used Boosted Regression Tree models to
analyze the main drivers of ISA changes in Shenyang from 2010 to 2017 [29]. However,
natural and socio-economic factors are not evenly distributed in space, which makes spatial
heterogeneity an important issue [28], which was overlooked in the research above. To
address spatial heterogeneity, Wu, Yang, Yin, and Zhang used Geographically Weighted
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Regression (GWR) based on ISA data to analyze the characteristics of urban land expansion
in 41 Chinese cities [30].

Although significant progress has been made in understanding ISA expansion’s char-
acteristics and driving factors, several areas for improvement still need to be addressed.
Firstly, current research methods lack sufficient spatial clustering analysis, resulting in
an incomplete understanding of the spatial distribution characteristics of ISAs. Secondly,
research often focuses on prefecture-level cities rather than urban agglomerations, resulting
in a limited understanding of expansion characteristics and their impact mechanisms at
larger scales. Furthermore, existing studies have failed to simultaneously address the
nonlinear relationships between driving factors and spatial heterogeneity; thus, they have
been unable to reveal the complex interactions among various factors fully. To ensure
accurate analysis results, both the nonlinear relationships in the model and the impact
of spatial heterogeneity should be comprehensively considered. Existing Random Forest
Models excel at capturing nonlinear relationships among variables but struggle with spatial
heterogeneity [18,31]. Conversely, GWR models fully consider spatial heterogeneity but
find it challenging to handle nonlinear relationships [32]. Therefore, this study introduces
the Geographically Weighted Random Forest (GWRF) model to identify the driving factors
of ISA expansion in the YRDUA. This locally nonlinear spatial machine learning method
effectively handles the high-dimensional nonlinear relationships among variables and the
spatial heterogeneity characterized by the significance of the explanatory variables [33,34].

Coordinated regional development is key to achieving high-quality growth. An in-
depth analysis of ISA expansion characteristics in urban agglomerations and their driving
factors is crucial for maintaining regional ecosystem balance and optimizing territorial
spatial development patterns. Therefore, the research objectives of this study are as follows:
1⃝ To systematically characterize the spatiotemporal expansion patterns of ISAs in the

YRDUA from 2000 to 2020, revealing overall growth trends. 2⃝ To analyze the spatial
clustering characteristics of ISA expansion and its evolutionary process. 3⃝ To identify
the importance of different drivers affecting ISA expansion at the local scale using the
GWRF model, and to deeply elucidate the spatial heterogeneity characteristics among these
drivers. Based on the above research objectives, this study establishes a systematic technical
framework (Figure 1).

 
 

1 

 

  

Figure 1. The technical roadmap.
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2. Methodology
2.1. Overview of the Study Area

The YRDUA, located in the eastern coastal region of China, is the country’s most
economically developed and highly urbanized area (Figure 2). The ISAs in the YRDUA
increased from 8.50% of the administrative area in 2000 to 30.36% in 2020, indicating a
significant expansion trend. This expansion has not only exacerbated ecological and envi-
ronmental pressures in urban and rural areas but also led to some degree of disorder in the
region’s spatial structure and land use patterns. Achieving sustainable urban and rural de-
velopment while protecting the regional ecological environment amidst rapid urbanization
has become a significant issue that urgently needs to be addressed in the YRDUA.
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2.2. Data Sources and Processing

The data on ISAs were sourced from the Global Artificial Impervious Areas (GAIA)
dataset, published by the team led by Peng Gong at Tsinghua University, and can be
downloaded from http://data.ess.tsinghua.edu.cn (accessed on 28 November 2023). The
spatial resolution is 30 m, with an overall accuracy of 90% [27]. The DEM was sourced
from the Geospatial Data Cloud and can be downloaded from https://www.gscloud.cn
(accessed on 12 March 2024). The administrative division data were sourced from the
National Geoinformation Public Service Platform and can be downloaded from https:
//cloudcenter.tianditu.gov.cn/administrativeDivision (accessed on 11 November 2023).
Statistical data were sourced from the statistical yearbooks of various cities and can be
downloaded from the official government websites.

2.3. Research Methods
2.3.1. Spatial Expansion Characteristics of ISA
Expansion Dynamics Index

To quantify the ISA expansion dynamics, this study employed expansion speed (V)
and intensity (R) metrics, capturing temporal and spatial characteristics of ISA growth. In

http://data.ess.tsinghua.edu.cn
https://www.gscloud.cn
https://cloudcenter.tianditu.gov.cn/administrativeDivision
https://cloudcenter.tianditu.gov.cn/administrativeDivision
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this study, the study period was divided into two intervals, T1 and T2, corresponding to
2000–2010 and 2010–2020, respectively. The formulas for calculation are as follows:

Vi =
Ub − Ua

T
(1)

Ri =
Ub − Ua

Ua
× 1

T
× 100% (2)

Vi represents the expansion speed of ISAs in city i during the period, measured in
km2·a−1; Ri represents the expansion intensity of ISA in city i during the period, measured
in %; and Ua and Ub are the areas of ISAs at the beginning and end of the study period.

Moran’s Index Method

Spatial autocorrelation can measure the degree of clustering of regional attribute
values [35] and can visualize data to intuitively reflect the similarity of attribute values in
adjacent units. In this study, the global Moran’s I Index was used to explore the spatial
dependence of ISAs in the study area, with specific calculation methods detailed in Rossi
and Becker [36].

Hot Spot Analysis

Hot Spot Analysis can identify high-density and low-density areas where ISAs are
clustered, thus providing a more comprehensive picture of the spatial distribution char-
acteristics of ISAs. The Getis–Ord Gi* index was used to reveal the cold and hot spots
of ISA expansion in the YRDUA, with specific calculation methods detailed in Rossi and
Becker [36].

2.3.2. Analysis of ISA Expansion Drivers
Geographically Weighted Random Forest Model

The GWRF model is based on the concept of spatial variation coefficient models
and consists of multiple local RF sub-models. It does not assume that data follow a
Gaussian distribution [33]. The GWRF model serves as an effective tool for interpreting
and predicting spatial heterogeneity and handling nonlinear relationships. The simplified
expression of the traditional RF regression equation is given as follows [37]:

Yi = axi + e (3)

where Yi is the dependent variable for the ith observation, axi is the RF nonlinear prediction
based on a set of x independent variables, and e is the error term. Equation (3) is formed
by inputting the entire dataset of variables without considering the spatial distribution
characteristics of the variables.

The GWRF model incorporates the spatial location information of variables into the
RF framework by fitting local RF sub-models to datasets of variables located in different
spatial positions [37]. The equation is as follows:

Yi = a(ui, vi)xi + e (4)

where a(ui, vi)xi is the prediction of the RF model calibrated at position i; and (ui, vi) are
the coordinates of the spatial unit i.

Selection of ISA Expansion Drivers

To identify the drivers of ISA expansion, this study constructed a comprehensive
indicator system based on an extensive literature review covering four guideline strata:
ecological environment, physical geography, socio-economic, and science and education,
as shown in Table 1.
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Table 1. Indicators of drivers of ISA expansion in the YRDUA.

Criterion Indicator Notation Unit

Ecological
Environment

Green Cover Area in Urban Region GCUR ha
Cultivated Land Area CLA 1000 ha

Industrial Sulphur Dioxide Emissions ISDE t
Industrial Fume Removal IFR t

Physical Geography
Average Elevation AE m

Average Slope AS
Groundwater Resources GR 10 m3

Socio-economic

Population Density PD p/km2

GDP Growth Rate GDPGR %
Number of Industrial Enterprises NIE No.

Proportion of Primary Industry in GDP PI %
Proportion of Secondary Industry

in GDP SI %

Area of City Paved Roads at Year-end CPR 10,000 sq·m
Residential Land Area RL km2

Science and
Education

Number of People in Scientific Research
and Technological Services NPSRT No.

Science and Technology Expenditure STE 10,000 RMB
Number of Patent Applications PA No.
Number of People in Education NPE No.

Regarding the ecological environment, natural resources with high ecological value,
such as green spaces and arable land, often limit ISA expansion in surrounding areas,
which is crucial for sustainable urban development [38]. Rapid urbanization typically
accompanies increased pollution, but effective environmental management measures can
mitigate ISA expansion to some extent. Physical geography, topography, and hydrology
directly constrain urban construction, affecting ISAs’ spatial distribution. The average ele-
vation and slope reflect surface undulation. Areas with significant topographical variation
limit ISA formation and expansion, while plain areas favor it. Water resources and precip-
itation reflect hydrological conditions. Increased ISAs lead to higher runoff coefficients,
causing urban issues and prompting decision-makers to adjust land use/cover layouts [39],
consequently affecting the spatial distribution of ISAs. Socio-economically, rapid urban
population and economic growth drive large-scale infrastructure development and urban
land expansion, directly causing continuous ISA expansion [40]. Increased population
density typically accelerates urbanization, exacerbating land use pressure and leading to
ISA expansion [29]. GDP growth reflects economic development [40]. A higher proportion
of secondary industries indicates a greater demand for production facilities, driving ISA
expansion [41]. Furthermore, urbanization demands more land resources, particularly for
residential and road areas, directly promoting ISA expansion [42].

However, scholars often overlook the role of science and education when studying the
driving factors of urban ISA expansion. An increase in the number of educated individuals
fosters the cultivation of scientific talents and enhances innovation capacity, promoting the
application of new technologies in urban planning and construction, thus helping to reduce
the expansion of ISAs. The increased expenditure on science and technology typically
reflects investment in technological innovation. This can provide new technological solu-
tions for urban management [43], thereby slowing the trend of increasing ISAs. Moreover,
increased patent applications indicate higher innovative activity [44]. Innovations in envi-
ronmental protection and urban construction can offer novel engineering and technological
solutions to reduce ISAs.
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3. Results and Analysis
3.1. Quantitative Characteristics of ISA Expansion
3.1.1. Overall Characteristics

From 2000 to 2020, the ISA expansion in the YRDUA increased significantly, growing
from 9757.90 km2 to 34,851.67 km2, with a cumulative increase of 25,093.77 km2. As shown
in Figure 3, the YRDUA’s ISAs have steadily increased yearly. However, when analyzing
the annual increment of ISAs at yearly intervals, it is observed that from 2000 to 2016,
despite fluctuations, there was an overall upward trend in the increment of ISAs. However,
the new ISAs plummeted in the year after 2016 and have been on an overall downward
trend since then.
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From 2000 to 2020, the ISAs in various cities within the study area showed significant
growth (Figure 4). Shanghai, Nantong, and Suzhou experienced the most rapid growth
in ISAs, reflecting the accelerated urbanization process. In contrast, older major cities
like Nanjing and Hangzhou had relatively lower growth rates due to their already high
levels of urbanization in earlier years. Notably, even Zhoushan, which had the lowest ISAs,
experienced nearly a fivefold increase over the past 20 years, indicating that the entire
region is undergoing unprecedented urbanization.

3.1.2. Analysis of Expansion Speed and Intensity

The proportion of ISAs in the study area increased from 8.50% in 2000 to 30.36% in
2020. Additionally, the increase in ISAs during T1 and T2 accounted for 37.17% and 62.83%
of the total new ISAs, respectively. It can be observed that the expansion area of ISAs
during T2 is significantly larger than that during T1.
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The expansion speed of ISAs during T1 and T2 was 932.63 km2/a and 1576.75 km2/a,
respectively, while the expansion intensity was 9.56% and 8.26%. This indicates that
although the expansion speed of ISAs during T2 was higher than that during T1, the
expansion intensity was lower. This is because, by the beginning of the T2 period, there was
already a significant amount of ISAs in the study area. Thus, despite the sizeable absolute
increase, the base area of ISA was also large, resulting in lower expansion intensity. This
trend reflects that land use in the YRDUA is moving towards a sustainable path. Although
the growth intensity of ISAs has slowed, the absolute values remain high, warranting
continuous attention.

3.2. Analysis of Spatial Heterogeneity of ISAs
3.2.1. Spatial Pattern Characteristics

As shown in Figures 5 and 6, by 2000, the initial growth nodes of ISAs had formed,
although these nodes were relatively independent and did not yet demonstrate a trend
of contiguous development. At this time, the growth nodes exhibited varying scales.
During the T1 period, ISAs expanded outward from the growth nodes established in 2000,
showing initial signs of contiguous development. By 2010, the outline of ISAs was largely
established, leading to infill growth primarily within the contours formed by 2010 during
the T2 period.

Specifically, the spatial distribution of ISAs in the YRDUA exhibits a pattern character-
ized by “strong in the east and weak in the west” and “one dominant area with multiple
strong ones”. Coastal mega-cities such as Shanghai, Nantong, and Suzhou, serving as
economic hubs, have highly concentrated and rapidly growing ISAs, surpassing other cities
to establish core area advantages. Simultaneously, several secondary aggregation centers
have emerged with the rise of emerging cities like Jiaxing, Huzhou, and Taizhou. These
peripheral growth poles around the core areas drive the gradual spread of ISAs across
the YRDUA, transitioning from urban to rural areas and expanding from points to larger
areas, blurring boundaries between cities and accelerating the formation of an integrated
metropolitan spatial pattern.
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3.2.2. Spatial Characteristics of ISA Expansion

Based on the spatial autocorrelation results, the global Moran’s I index for ISA expan-
sion in the YRDUA was 0.052 in 2000, 0.260 in 2010, and 0.326 in 2020. These values indicate
that the expansion of ISAs in the YRDUA has exhibited spatial clustering characteristics
over the past 20 years, with a trend towards further strengthening. As shown in Figure 7,
the spatial clustering pattern and the spatiotemporal evolution of the ISAs in the YRDUA
can be observed.

In 2000, the high-value clustering of ISAs in the region was primarily concentrated in
economically developed coastal cities such as Shanghai, Nantong, Suzhou, and Taizhou.
This formation included significant hotspots and secondary hotspots. Additionally, there
were scattered cold spots, particularly in the southern part of Zhejiang province.
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In 2010, the hot spots and secondary hot spots of the ISAs further expanded in the
region. All secondary hot spots were spatially adjacent to the hot spots, indicating that ISA
expansion in the hot spots had a radiating effect on their surrounding areas. Additionally,
the number of cold spots in the southern part of the YRDUA gradually decreased, transi-
tioning into secondary cold spots and transitional zones, indicating that urbanization in
the southern part of the YRDUA was accelerating.

In 2020, the range of hot spots and sub-hotspots remained the same as in 2010, in-
dicating that the spatial pattern of the metropolitan area with Shanghai at its core has
initially formed and stabilized. The southern part of the YRDUA is gradually transforming
from cold spots and sub-cold spots into a transition zone, suggesting that the urbanization
process in this region, while progressing, is still not as advanced as that of the core area
of the YRDUA. At the same time, the areas of cold spots and sub-cold spots are gradually
decreasing, reflecting the rapid increase in ISAs throughout the region.

According to the Hot Spot Analysis results, the YRDUA can be divided into three re-
gions: “A-Development Decline Zone”, “B-Development Core Zone”, and “C-Development
Ascendance Zone”, as shown in Figure 8. Specifically, Zone A includes Nanjing, Yangzhou,
Zhenjiang, and Changzhou; Zone B includes Taizhou, Nantong, Wuxi, Suzhou, Shanghai,
Huzhou, and Jiaxing; and Zone C includes Hangzhou, Shaoxing, Ningbo, Zhoushan, and
Taizhou. During the study period, Zone A was declining, transitioning from a transitional
zone to a secondary cold spot. Zone B consistently remained in the hot spot or secondary
hot spot category, gradually becoming the core area of the YRDUA over time. Zone C
showed an ascending trend, transitioning from a cold spot to a transitional zone. Further-
more, it was observed that while ISA growth intensity in Zone C was lower than in Zone
A in 2000, by 2020, it had surpassed that of Zone A. This indicates that urbanization effi-
ciency in Zone C is significantly higher than in Zone A, suggesting that the comprehensive
development potential of Zone C may be higher than that of Zone A.

3.3. Analysis of Drivers of ISA Expansion
3.3.1. Overall Analysis of Drivers

To ensure the scientific selection of indicators, a correlation test was conducted on the
driving factors listed in Table 1 using a cor. test in R v.4.2.3 (http://www.r-project.org/,
accessed on 16 October 2024) (Figure 9). All driving factors passed the collinearity test,
with Pearson’s R exceeding 0.8 [34] and the VIF remaining below 7.0 [45]. The reliability
test results showed that Cronbach’s α = 0.83, indicating that the indicator system ensures
the reliability of the measurement results for the driving factors of ISA expansion.

http://www.r-project.org/
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From the criterion level (Figure 10), the importance of socio-economic factors consis-
tently ranked first among the four criteria layers from 2000 to 2020. The scientific education
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criteria also held a significant position, ranking second only to socio-economic factors. In
2000 and 2010, the importance of the ecological environment ranked third, while natural
geographic criteria consistently ranked last. However, by 2020, the natural geographic
criteria had risen from fourth to third place, while the ecological environment criteria had
fallen to last place.
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From the indicator level (Figure 11), the five key factors influencing ISA expansion
in 2000 were RL, PD, ETI, STI, and CLA. In 2010, the five key factors influencing ISA
expansion were ETI, STE, AE, IFR, and NIE. In 2020, the five key factors influencing ISA
expansion were CPR, STE, RL, AE, and ETI.

3.3.2. Spatial Heterogeneity of Drivers

In the GWRF model, an increase in error measures the change in overall model error by
randomly shuffling feature values, demonstrating straightforwardly how features influence
model performance under varying conditions. Using the natural break point method, the
importance of driving factors was categorized into five levels: extremely high importance,
high importance, medium importance, low importance, and extremely low importance.
Darker colors indicate the higher importance of the driving factor for ISA expansion, while
lighter colors indicate lower importance.
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Ecological Environment

As shown in Figure 12a. Areas with extremely high or high values of GCUR are
primarily located in Zone B, with Shanghai consistently in the extremely high-value area.
Areas with extremely low values influenced by GCUR shifted within Zone A and C,
transitioning from Nanjing and Hangzhou to Changzhou and Ningbo. The impact of
CLA shows an overall increasing trend in Zone A, while it remains relatively stable in
Zone B; the area with extremely high values consistently falls within Nantong, reaching
its peak in 2010. Areas with extremely low values were consistently in Shanghai for two
consecutive periods. ISDE has a relatively balanced impact across the entire YRDUA, with
minor variations among Zones A, B, and C. The impact of IFR shows an overall declining
trend across Zones A, B, and C.

Physical Geography

As shown in Figure 12b. The areas with extremely high values of AE are concentrated
in Zone B, notably with no occurrence of extremely high values in Zone A from 2000 to
2020. The areas with extremely low values influenced by AE have shifted from Taizhou,
Suzhou, and Jiaxing to Taizhou and Jiaxing, later spreading to Yangzhou, with minimal
changes in other zones. The variation in the influence of AS shows a pattern similar to the
spatiotemporal distribution of AE from 2000 to 2010. The overall trend in the influence of
GR shows a decline.

Socio-Economic

As shown in Figure 12c, the influence of PD shows a characteristic of initial diffusion
followed by an overall decline, and by 2020, the influence of PD had decreased in Zones
A, B, and C. The influence of GDPGR has increased overall, with the most significant
increase in Zone C. In 2000, the areas with extremely high values expanded further within
Zone C in 2010 and 2020. The influence of NIE initially decreased and then increased in
different regions. The influence of the proportion of PI shows an overall declining trend
in all three regions, particularly noticeable in Zone B. Similarly, the influence of CPR also
decreased overall, with a concentration of areas with extremely low values in the western
part. The influence of SI also decreased from 2000 to 2010, with areas of extremely high
values shrinking from various regions to Zone B by 2010, while areas of extremely low



Land 2024, 13, 1951 14 of 22

values expanded to Zone B; by 2020, the influence of SI had rebounded in various regions.
The influence of RL continuously showed spatial heterogeneity in Zones A, B, and C.

Figure 12. Cont.
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Figure 12. (a) The spatial and temporal distribution pattern of importance of ISA drivers in the
YRDUA under the ecological guidelines layer, 2000–2020. (b) The pattern of spatial and temporal
distribution of importance of ISA drivers in the YRDUA under the natural geography criterion
layer, 2000–2020. (c) The spatial and temporal distribution patterns of importance of the drivers
of ISAs in the YRDUA under the socio-economic layer, 2000–2020. (d) The spatial and temporal
distribution patterns of importance of the drivers of ISAs in the YRDUA under the science education
layer, 2000–2020.

Science and Education

As shown in Figure 12d. The areas with extremely high values of NPSRT have been
consistently concentrated in Zone B from 2000 to 2020, with decreasing influence in Zone A
and increasing influence in Zone C. The overall influence of STE shows a trend of initially
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decreasing and then increasing. The influence of PA shows a pattern of initially increasing
and then decreasing. Initially, areas with extremely high values were distributed in Zones
A, B, and C, with relatively more areas of extremely low values in Zone B. By 2010, the
influence of PA synchronously increased across the entire zone, followed by a decline by
2020. The influence of NPE shows a relatively higher impact in Zone B, with Shanghai
consistently in the area of extremely high values. The variation in the influence of NPE in
Zone A and C is relatively minor.

4. Discussion

This study reveals the continuous and rapid expansion trend of ISAs in the YRDUA
from 2000 to 2020. This finding is consistent with previous research on the urbanization
process in the YRDUA [46]. It is attributed to excessive local government support for
real estate development, lax control over urban development boundaries, and imperfect
regulations regarding the conversion of agricultural land to construction land. The rate of
ISA expansion in the YRDUA has gradually slowed down, with urban expansion shifting
from a “sprawl” to an “infill” pattern. This shift is influenced by increasing national
emphasis on green development and ecological conservation [47]; local governments have
become more cautious and efficient in using land and resources, avoiding the large-scale
and disorderly expansion patterns seen in the past. However, there are spatial hierarchical
differences in the clustering centers of ISAs in the YRDUA [48], which could potentially
hinder the seamless integration of the metropolitan areas in the future. Therefore, enhancing
regional cooperation will be essential to optimize spatial planning.

Previous studies using population data and nighttime light data [49] reveal that
ISA distribution in the YRDUA is “strong in the east and weak in the west”, forming
a “dominant-single, multiple-strong, multi-center network”. This study reaffirms these
spatial differentiation patterns from the perspective of ISAs and further identifies that a
few major cities like Shanghai have established absolute core area dominance. This study’s
key contribution lies in the in-depth analysis of the spatial and temporal evolution of
ISAs expansion in the YRDUA, divided into three regions, and revealing a shift in the
development center to the south. This finding challenges Zhen et al.’s conclusion of “strong
in the east, weak in the west, and balanced in the north and south [50]” further enriching
the understanding of urbanization in the area. Additionally, the division of this region
breaks through administrative barriers, offering a new perspective for future macro-policy
formulation for integrated regional development.

In addition, our findings reveal a relationship between industrial transformation and
ISA expansion in the YRDUA. The significant impact of science and education factors on
ISA expansion, particularly in Zones B and C, suggests a potential pathway for sustainable
urban development. The historical expansion of ISAs since 2000 can be partially attributed
to China’s role as the ‘world’s factory’ in the global economy [51]. However, the recent
rise of knowledge-intensive and clean industries, supported by improved education levels,
may help curb excessive ISA expansion [52]. This transformation highlights the potential
of promoting education and clean industries as an effective strategy to balance economic
growth with environmental protection.

Within the YRDUA, as a growth pole of the Chinese economy, scientific and technologi-
cal innovation is the top priority for enhancing its competitiveness [53]. With improvements
in education and technological innovation capabilities, the new generation of artificial intel-
ligence technologies provides new tools for formulating sound development strategies [11].
These cities can utilize AI to create more scientific and reasonable urban planning, optimize
traffic management, and develop smart cities, indirectly promoting efficient and intensive
land use while curbing the uncontrolled growth of ISAs [54].

Although government and public attention to ecological protection has increased in
recent years [55], overall, ISAs continue to rise. The government should further strengthen
ecological policies and fully leverage new information technologies in urban governance
to build a more scientific and efficient planning system while promoting comprehensive,
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green, and low-carbon development. It should also focus on the guiding role of plan-
ning, formulate urban and land use plans scientifically, set reasonable urban development
boundaries, and strictly control development intensity [56]. To effectively implement these
policy measures, differentiated development strategies should be formulated based on the
distinct characteristics and needs of different regions. For Zone A, we recommend urban
regeneration strategies focusing on existing ISA renovation and smart city technologies
to improve land-use efficiency [57]. For Zone B, where ecological factors show persistent
importance, priorities should focus on integrating blue–green infrastructure with ISAs to
enhance urban resilience while maintaining its core position. For Zone C, which demon-
strates high development potential, we propose a “leap-forward smart growth” strategy,
combining transit-oriented development principles with ecological preservation to guide
rational ISA expansion. These targeted recommendations aim to promote coordinated
regional development while respecting the spatial heterogeneity revealed by our analysis.

This study introduces several methodological innovations. Using hotspot analysis, the
YRDUA was classified into the “Development Decline Zone”, “Development Core Zone”,
and “Development Ascendance Zone”, highlighting regional development trends to inform
coordinated policies. While the methodology was tailored specifically for the YRDUA, it
holds potential for application in other urban agglomerations with similar characteristics.
The combination of ISAs with specific spatial and statistical methods offers a framework to
identify urban expansion patterns, providing a model that may be adapted to other regions.
It also uniquely incorporates scientific education as a driving factor and applies the GWRF
model, capturing nonlinear relationships and enhancing explanatory power. However,
limitations exist. The study lacks urban 3D pattern data (e.g., building height and type),
which could better characterize urban sprawl. Additionally, its macro-level approach may
overlook city-specific policy and economic variations. Future research could address these
gaps through 3D data and case studies to better understand ISA expansion drivers.

5. Conclusions

Regarding spatiotemporal pattern characteristics, the ISAs have evolved from a point
distribution to a regionally clustered form, forming a spatial pattern of “one dominant
area with multiple strong ones”. Temporally, the expansion of ISAs can be divided into
two stages: an initial phase characterized by outward expansion from growth nodes and
a later phase dominated by infill development. Based on the expansion patterns of ISAs,
the YRDUA can be divided into three regions: the “A-Development Decline Zone”, “B-
Development Core Zone”, and “C-Development Ascendance Zone”. Zone B represents
the core area of the YRDUA, while Zone C has higher overall development potential
compared to Zone A. Regarding the drivers, there was significant spatial heterogeneity
in the importance of different drivers for ISA expansion. Ecological environment factors
such as GCUR and CLA maintained importance in Zone B. Physical geography factors,
particularly AE, were concentrated in Zone B. Socio-economic drivers like PD, initially
significant in Zone B, gradually spread to Zones A and C. The GDP growth rate gained
prominence in parts of Zones A and C. In terms of science and education factors, NPSRT
had the greatest impact in Zone B, while the importance of STE increased beyond its initial
concentration in Zone B, extending to parts of Zone C.
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