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Abstract: An accurate understanding of the structure of spatial correlation networks of land use
carbon emissions (LUCEs) and carbon balance zoning plays a guiding role in promoting regional
emission reductions and achieving high-quality coordinated development. In this study, 42 counties
in the Tarim River Basin from 2002 to 2022 were chosen as samples (Corps cities were excluded due to
missing statistics). The LUCE spatial correlation network characteristics and carbon balance zoning
were analyzed by using the Ecological Support Coefficient (ESC), Social Network Analysis (SNA),
and Spatial Clustering Data Analysis (SCDA), and a targeted optimization strategy was proposed for
each zone. The results of the study indicate the following: (1) The LUCEs showed an overall upward
trend, but the increase in LUCEs gradually slowed down, presenting a spatial characteristic of “high
in the mid-north and low at the edges”. In addition, the ESC showed an overall decreasing trend,
with a spatial characteristic opposite to that of the LUCEs. (2) With an increasingly close spatial LUCE
correlation network in the Tarim River Basin, the network structure presented better accessibility
and stability, but the individual network characteristics differed significantly. Aksu City, Korla City,
Bachu County, Shache County, Hotan City, and Kuqa City, which were at the center of the network,
displayed a remarkable ability to control and master the network correlation. (3) Based on the carbon
balance analysis, the counties were subdivided into six carbon balance functional zones and targeted
synergistic emission reduction strategies were proposed for each zone to promote fair and efficient
low-carbon transformational development among the regions.

Keywords: land use carbon emission (LUCE); spatial correlation network; carbon balance zoning;
Social Networking Analysis (SNA); carbon peaking and carbon neutralization

1. Introduction

As global warming, caused by carbon emissions, is becoming increasingly serious,
maintaining the balance between natural ecosystems and socio-economic systems and
bringing about socio-economic transformation to achieve low carbon goals have become
major issues that need to be urgently solved by all countries [1,2]. Based on this, China
has put forward the strategic goal of “carbon peaking by 2030 and carbon neutrality by
2060” [3]. Existing research results show that land use alterations contribute to approxi-
mately one-third of anthropogenic carbon emissions [4,5]. Therefore, research on land use
carbon emissions (LUCEs) is crucial in promoting regional carbon emission reductions and
accomplishing green development.

Scholars have conducted a large number of studies on land use carbon emissions
(LUCEs), with the main focuses on spatio-temporal differentiation [6–8], influencing fac-
tors [9–11], prediction simulation [12,13], and land use optimization under the low-carbon
perspective [14,15]. To estimate carbon emissions, existing studies have mainly used model
estimation [16], sample plot inventory [17], and the IPCC emission factor method [18].
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However, due to the problems of insufficient data and difficulties in obtaining data, it
is still challenging to estimate the LUCEs in a study area on a micro scale. The use of
remote sensing data, such as nighttime light remote sensing data, can make up for the
lack of energy data, and it provides a good solution for carbon emission calculation at the
meso/micro scale [19,20]. With the deepening of China’s regional coordinated development
strategy, the spatial correlations of economic development, population flow, and energy
consumption, as well as the activities of production factors, geographical limitations have
been broken through, presenting the characteristics of a complex network structure [21–23].
By analyzing the carbon correlation network structure at the provincial and city scales,
some studies have found that the current carbon emission correlation shows the spatial
differentiation characteristics of “club”, “vassal economy”, and “gradient fault” systems,
with problems such as “carbon leakage” and “carbon emission refuges” [24,25]. How to
carry out carbon balance zoning and formulate regional synergistic emission reduction
action programs has increasingly become a research hotspot [26–28].

The Tarim River Basin is one of the driest and most ecologically fragile regions in
China and even in Eurasia [29,30]. With rapid economic development, the ever-increasing
area of artificial oases, irrational land allocation, and aggravated soil desertification have
led to an increasing amount of non-essential carbon emissions, as well as an increasingly
prominent contradiction between social development and regional ecology [31–33]. There
are significant regional differences in economic development, energy endowment, and
ecological pressure within the Tarim River Basin [34,35]. As inter-regional exchanges and
cooperation increase, spatial correlation formed has a crucial impact on the flow of carbon
emission factors.

Based on the abovementioned research findings, we proposed two key research objec-
tives for this study. First, on the basis of LUCE measurement, the role characteristics of each
research unit in the LUCE spatial correlation network were identified using Social Network
Analysis (SNA). Second, this study utilized LUCE spatial agglomeration, the Ecological
Support Coefficient (ESC), and spatial correlation network structure to delineate carbon
balance zoning. This analysis emphasized the internal spatial correlation within LUCE
balance zoning and enhanced the scientific and empirical basis for zoning planning.

2. Materials and Methods
2.1. Study Area

The Tarim River Basin (73◦10′–94◦05′ E, 34◦55′–43◦08′ N) is located in the southern
region of Xinjiang Uygur Autonomous Region [36]. The landscape pattern of the basin
consists of mountains, glaciers, valley steppes, and oases, with deserts dominating the
landscape [37,38]. Because of the extremely fragile ecological environment and the favorable
geographic location in the core area of the Silk Road, the economic development status
and ecological environment maintenance of the basin occupy an important position in
Xinjiang [39]. The Corps cities were not included in the study area due to missing statistics.
The study area is shown in Figure 1.
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Figure 1. Overview of the study area. Note: AHQ, AKS, AKT, ATS, AWT, BC, BAC, BH, CL, JS, HJ,
HS, HTC, HT, KS, KP, KC, KEL, LT, LP, MGT, MF, MY, PS, QM, RQ, SY, SC, SF, SL, TSK, YL, WS,
WQ, WUS, XH, YQ, YC, YJS, YT, YPH, and ZP represent Aheqi, Aksu, Aketao, Atushi, Awati, Bachu,
Baicheng, Bohu, Cele, Jiashi, Hejing, Heshuo, Hotan City, Hotan, Kashi, Keping, Kuche, Korla, Luntai,
Luopu, Maigaiti, Minfeng, Moyu, Pishan, Qiemo, Ruoqiang, Shaya, Shache, Shufu, Shule, Taxkorgan
Tajik Autonomous County, Yuli, Wensu, Wuqia, Wushi, Xinhe, Yanqi Hui Autonomous County,
Yecheng, Yingjisha, Yutian, Yuepuhu, and Zepu, respectively. The map was constructed based on a
standard map produced by China’s Ministry of Natural Resources (MNR) using the standard map
service website (review map number GS(2022)4314), with no modifications to the base map.

2.2. Data Sources

Four main types of data were used in this study: namely, land use data, energy carbon
emission data, nighttime lighting data and social statistics data (Table 1).

Table 1. Data sources and descriptions.

Data Name Data Sources Data Declaration

Land use data

“30 m annual land cover and its dynamics in China
from 1990 to 2022”
http://www.ncdc.ac.cn/portal/metadata/9de270f3
-b5ad-4e19-afc0-2531f3977f2f (accessed on
4 September 2023)

The resolution is 30 m × 30 m, and the land use is
categorized into six types: cultivated land, forest
land, grassland, water land, built-up land, and
unused land through the reclassification function
of GIS.

Energy carbon emissions data

“County-level CO2 emissions and sequestration in
China during 1997–2017”
https://doi.org/10.6084/m9.figshare.13090370
(accessed on 25 September 2023)

The carbon emission results from this dataset have a
good fit of 0.998 with the results obtained from
energy accounting.

Nighttime lighting data

“Developing improved time-series DMSP-OLS-like
data (1992–2022) in China by integrating DMSP-OLS
and SNPP-VIIRS”
https://ieeexplore.ieee.org/document/9652530
(accessed on 28 September 2023)

The resolution is 1 km × 1 km. The biggest
advantage of this dataset is that it realizes the
calibration, synthesis and improvement of the long
time series of nighttime light data in China.

Social statistics data https://data.cnki.net (accessed on 10 July 2023) Missing data were filled in by multiple
interpolation method.

http://www.ncdc.ac.cn/portal/metadata/9de270f3-b5ad-4e19-afc0-2531f3977f2f
http://www.ncdc.ac.cn/portal/metadata/9de270f3-b5ad-4e19-afc0-2531f3977f2f
https://doi.org/10.6084/m9.figshare.13090370
https://ieeexplore.ieee.org/document/9652530
https://data.cnki.net
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2.3. Research Methods

First, this study analyzed LUCEs and the ESC in the Tarim River Basin using land
use data and other related data. Then, with the help of SNA, we explored the characteris-
tics of the LUCE spatial network structure from both the individual and overall network
perspectives. In addition, by combining the ESC, spatial agglomeration, and spatial net-
work structure, the carbon balance partition was established and differentiated emission
reduction strategies were proposed. A detailed analysis workflow is shown in Figure 2.
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Figure 2. Flow chart of study.

2.3.1. LUCE Measurement Methodologies

LUCEs are equal to the sum of carbon emissions/absorptions of each land use type [40].
Among the land use types, built-up land belongs to carbon sources; forest land, grassland,
water land, and unused land belong to carbon sinks; and cultivated land has both carbon
source and carbon sink attributes, as shown in Equation (1).

C = Ec + Ea + Ex (1)

where C is the LUCE amount; Ec is carbon emissions from built-up land; Ea is carbon
emissions from cultivated land; and Ex is carbon absorption from cropland, woodland,
grassland, watersheds, and unused land.
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(1) Built-up land carbon emissions

Built-up land carbon emission values, as anthropogenic carbon emissions generated
during land use activities, can be indirectly obtained from the energy carbon emissions
generated by built-up land as it hosts human production activities [41]. However, the county
energy carbon emission dataset [42] has a certain lag. Considering the correlation between
carbon emissions and nighttime lighting data, we fitted the nighttime lighting data of each
county to the data on carbon emissions from energy consumption in the corresponding
year, and the equation with the highest goodness-of-fit (Table 2) was selected to estimate
the energy carbon emission of each county in 2018, 2019, 2020, 2021, and 2022.

Table 2. Fitting results of energy carbon emissions by counties in the Tarim River Basin.

County Fitted Model R2 County Fitted Model R2

Korla =19.039x1.286 0.825 Bachu =143.195x1.001 0.854
Luntai =127.613x + 6.879 0.861 Taxkorgan =46.372x + 0.008 0.925
Yuli =e1.296−(0.002/x) 0.879 Hotan City =−0.100 + 1.050x − 0.104x2 0.920
Ruoqiang =3.448 + 0.336lnx 0.877 Hotan =e0.504−0.001/x 0.980
Qiemo =8.926 − 0.007/x 0.843 Moyu =4.423 + 0.581lnx 0.846
Yanqi =8.084x + 1.096 0.902 Pishan =35.782x0.685 0.949
Heshuo =0.0179x0.591 0.924 Luopu =4.111 + 0.549lnx 0.936
Bohu =7.000x0.630 0.922 Cele =86.731x0.883 0.888
Aksu =−0.460 + 50.760x − 63.039x2 0.801 Kuche =3.036 − 70.283x + 507.838x2 − 849.570x3 Kuche
Yutian =72.787x0.918 0.966 Minfeng =273.203x + 0.080 0.865
Wensu =4.136x0.242 0.909 Wushi =7.983x0.652 0.913
Shaya =14.861 + 3.246lnx 0.834 Awati =97.841x1.037 0.833
Xinhe =4.418 + 0.746lnx 0.976 Keping =71.186x + 0.009 0.963
Baicheng =76.492x1.196 0.911 Atushi =24.621x0.831 0.931
Maigaiti =0.120 + 103.522x − 681.512x2 0.859 Aketao =e−0.518−0.001/x 0.963
Yingjisha =−0.124 + 42.738x − 590.340x2 + 2502.028x3 0.921 Aheqi =0.011 + 78.413x − 6402.445x2 + 178,804.289x3 0.963
Jiashi =18.517x0.813 0.872 Wuqia =e0.441−0.003/x 0.928
Yupuhu =0.055 + 21.913x − 47.306x2 0.959 Kashi =2.391x − 6.636 0.858
Zepu =−0.780 + 9.884x − 5.696x2 0.978 Shufu =7.794x0.648 0.906
Shache =−0.068 + 72.571x − 330.731x2 0.939 Shule =−0.0385 + 8.160x + 0.350x2 0.989
Yecheng =e2.170−0.011/x 0.946 Heshuo =22.876x0.602 0.883

(2) Cultivated land carbon emission

Cultivated land carbon emission mainly comes from agricultural production activities,
such as the application of fertilizers and pesticides, agricultural plastic film, agricultural
machinery, tillage, and irrigation, as well as from CH4 produced during crop cultivation [43].
The equation for calculating cultivated land carbon emission is as follows:

Ea =
n

∑
i

Si × βi +
m

∑
j

Aj × γj (2)

where Ea is the cultivated land carbon emission; Si is the amount of resources used in an
area for each type of agricultural activity; βi is the carbon emission coefficient of each type
of cultivated land utilization activity; Aj is the planting area of each crop; and γj is the
carbon emission coefficient of each crop type in the whole growth process. Combining the
research findings of previous scholars and the actual utilization of arable land in the Tarim
River Basin [44–48], carbon emission sources in the process of arable land utilization were
classified into five categories: chemical fertilizer, pesticide, agricultural plastic film, organic
carbon loss from tilling, and electric energy consumption from agricultural irrigation. The
crops with the largest planting area in Xinjiang, namely, cotton, wheat, maize, soybeans,
vegetables, and rice, were used for the measurement of carbon emission. According to
previous studies, the relevant carbon emission coefficients are shown in Table 3.
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Table 3. Carbon emission coefficient of cultivated land.

Carbon Emission Source Carbon Emission Factor Carbon Emission Coefficient

Agricultural land use

Tillage 312.6 kg(C)/hm2

Irrigation 266.48 kg(C)/hm2

Fertilizers 0.8956 kg(C)/kg
Pesticides 4.9341 kg(C)/kg

Agricultural plastic film 5.18 kg(C)/kg
Agricultural machinery 0.1802 kg(C)/kw

Crops planting

Cotton 1493.16 kg(C)/hm2

Wheat 142.22 kg(C)/hm2

Maize 205.78 kg(C)/hm2

Soybean 186.10 kg(C)/hm2

Vegetable 401.80 kg(C)/hm2

Rice 717.46 kg(C)/hm2

(3) Carbon absorption of cultivated land, forest land, grassland, water land, and unused land

In this study, carbon absorption of cultivated land, forest land, grassland, water land,
and unused land was estimated using the carbon emission factor method [49]. The formula
is as follows:

Ex =
n

∑
m=1

(S m × im) (3)

where n is the land use type; Sm is the area of every land use type; and im is the carbon emis-
sion coefficient of each land use type. Combining the findings from previous studies and
the natural geography of the Tarim River Basin [50–52], the carbon absorption coefficients
(kg©/(m2·a)) of cultivated land, forest land, grassland, water land, and unused land in this
study were taken to be −0.0007, −0.0635, −0.0390, −0.0248, and −0.0005, respectively.

2.3.2. Spatial Correlation Network Analysis of LUCE

(1) Spatial correlation network construction of LUCE

The gravitational model is derived from the law of gravity in physics and has been
widely used in the field of spatial interactions, including to explore LUCE correlations in
watersheds [53,54]. To better reflect the degree of LUCE correlation among the counties
in the basin, we introduced carbon emissions, gross domestic product (GDP), and the
parameter k into the model with the following equation [55]:

yij = kij ×
3
√

PiCiGi 3
√

PjCjGj( Dij
ei−ej

)2 , kij =
Ci

Ci + Cj
(4)

where yij and Dij are the gravitational force and spatial distance between county i and
county j, respectively; P, C, G, and e denote a county’s year-end population, carbon emis-
sions, gross domestic product, and per capita income level, respectively; and kij denotes
the gravity coefficient of carbon emissions from county i to county j. To avoid weak spatial
linkage affecting the results, based on previous related studies, we took the row mean value
of the matrix as a threshold and assigned 1 to a gravitational value greater than the mean
value, whereas a lower-than-mean value was assigned 0; this allowed us to construct a
bivariate matrix characterizing the correlation relationship of LUCEs among the counties.

(2) Structure characteristics of the LUCE spatial correlation network

Social Network Analysis (SNA) quantitatively analyzes the association paths between
nodes in the form of a network and identifies the role of each node [56]. Therefore, we
used SNA to analyze the overall, individual, and cluster structure characteristics of the
LUCE spatial correlation network. The network density, network connection degree, and
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network hierarchy degree can well portray the overall characteristics; the degree, close-
ness, and betweenness centrality can well portray the individual characteristics; and the
block model can be used to analyze the spatial clustering characteristics. According to
the evaluation methods used by other scholars [57,58], we categorized the spatial network
structure into four types: (1) bidirectional overflow blocks, where there are overflow re-
lationships to other blocks as well as overflow to the intra-block, but overflow received
from other blocks occurs less often; (2) net spillover blocks, where block members present
fewer receiving relationships from other blocks than those overflowing to other blocks;
(3) primary beneficiary blocks, where there is a much larger number of receiving relation-
ships than overflow relationships, as well as overflow relationships between members
within the block; and (4) agent blocks, where there is a much larger number of receiving and
overflowing relationships, with blocks’ members playing the role of bridges in the network.

2.3.3. Exploratory Spatial Data Analysis

Exploratory spatial data analysis identifies agglomeration effects by exploring and
outlining the spatial distribution of elements or phenomena, which mainly includes global
spatial autocorrelation and local spatial autocorrelation [59]. The formula for calculating
global spatial autocorrelation is as follows:

I =
m∑m

i=1 ∑m
j=1 Wij

(
Ci − C

)(
Cj − C

)
∑m

i=1 ∑m
j=1 Wij

(
Ci − C

)2 (5)

where I is the Moran index; m is the number of counties; Ci and Cj are the LUCEs of county
i and county j, respectively; and Wij is the spatial weighting matrix.

Local spatial autocorrelation is usually used to analyze the local spatial clustering or di-
vergence characteristics of a research unit, which is calculated using the following formula:

Ii =
m
(
Ci − C

)
∑m

i=1 Wij
(
Cj − C

)
∑m

i=1
(
Cj − C

) (6)

where Ii is the Anselin local Moran’s I index. If Ii is greater than 0, it means that the carbon
emissions of a county and its neighboring county are similar, so the spatial agglomerations
can be classified into high–high (HH) and low–low (LL) clusters; if Ii is less than 0, it
means that the carbon emissions of the county and its neighboring county are significantly
different, so the spatial agglomerations can be classified into high–low (HL) and low–high
(LH) clusters.

2.3.4. Ecological Support Coefficient (ESC)

ESC reflects the magnitude of the carbon sink capacity in the study area [60]. The
formula is as follows:

ESC =
Cni/Cn

Cri/Cr
(7)

where ESC is the Ecological Support Coefficient of LUCEs in the study area; Cni and Cri are
the carbon sink and carbon source of county i, respectively; and Cn and Cr are the carbon
sink and carbon source of the Tarim River Basin, respectively. If ESC is greater than 1, it
indicates that the carbon sink capacity of the study area is strong; if ESC is less than 1, it
indicates that the carbon sink capacity of the area is weak.

3. Results
3.1. Spatio-Temporal Evolution Characteristics of LUCEs in the Tarim River Basin

As illustrated in Figure 3, the LUCE in the Tarim River Basin increased significantly,
with an increase from 1152.38 × 104 t in 2002 to 17,212.49 × 104 t in 2022. The average
annual growth rate of LUCE decreased significantly, with a decrease from 34.53% in 2002
to 11.34% in 2022; the carbon emission intensity increased from 2.81 t/million CNY in
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2002 to 3.64 t/million CNY in 2022. In terms of carbon source, built-up land played the
most important role, accounting for more than 93% of carbon emissions, with a growth of
15,825.74 × 104 t during 2002–2022; carbon emissions from cultivated land were another
source, rising from 135.91 × 104 t in 2000 to 203.39 × 104 t in 2022. In terms of carbon
absorption, grassland made the highest contribution, accounting for more than 83% of
carbon absorption; therefore, grassland was the most important carbon sink, followed by
unused land, while forest land and water contributed weakly to carbon absorption. Overall,
the absorption of the carbon sink was significantly lower than the emission from carbon
sources. Therefore, the LUCEs in the Tarim River Basin are expected to continue to rise in
the coming period, and it is difficult to offset the rise in carbon emission from built-up land
through the absorption of carbon sink land only.
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Figure 3. Changes in land use carbon emissions (LUCEs) in the Tarim River Basin.

In terms of spatial distribution (Figure 4), the LUCE was higher in Kuqa City, Korla
City, Luntai County, Shaya County, and Aksu City. The dual drive of urbanization and
industrialization had resulted in rapidly expanding construction land and dense population
in these counties, which are located in the hinterland of Xinjiang. This led to their LUCE
growth. The LUCEs were smaller in Ahechi, Aktau, and Tashkurgan Tajik Autonomous
County because of the relatively slow economic development of these counties, resulting in
less energy consumption.
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3.2. Spatio-Temporal Distribution Characteristics of ESC

With the decline in overall ESC in the study area, the spatial difference in ESC was
evident, characterized by being “low in the middle and high at the edge” (Figure 5). In
2002, the areas with high values of ESC were distributed in the western regions such as
Tashkurgan Tajik Autonomous County and Wuqia County, as well as Ruoqiang County
in the east. These counties, with their major industries based on agriculture, had a strong
carbon sink capacity due to their underdeveloped economies, large areas of carbon sink
land, and rich ecological resources. In 2012, the ESC decreased significantly, indicating that
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the rapid economic development and urbanization process aggravated ecological pressure.
In 2022, the decreasing trend of ESC slowed down. Compared with 2002, there were
fewer regions with ESC < 1.00 and ESC > 20.00. Ecological environmental protection was
emphasized in the context of Beautiful China construction, thus contributing to this result.
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3.3. Structure of the LUCE Spatial Correlation Network in the Counties of Tarim River Basin
3.3.1. Overall Characterization of the LUCE Spatial Correlation Network

According to Equation (4), we constructed a graph of the LUCE correlation intensity
in the Tarim River Basin in 2002, 2012, and 2022 (Figure 6). Overall, the network correlation
and network stability of LUCE increased in the basin, and the overall network structure
was characterized by a “core-edge” structure. From the perspective of spatial distribution,
the spatial correlation of the north-central region was strong. Because of the developed
economy and convenient transportation, the node counties represented by Aksu, Hotan,
Kashgar, Korla, Bachu, Bohu, and Aheqi counties played a “dominant” role in the network
and had a significant relationship with other counties. From the perspective of network
density changes, the densities in 2002, 2012, and 2022 were 0.1678, 0.3264, and 0.3310,
respectively, indicating a strengthening of LUCE interaction links between counties; the
slowing down of the network density growth rate in the later period might be due to
the faster development of transportation facilities and information networks, and the
more frequent exchanges of LUCE-related elements from 2012 to 2022. However, the
increase in element exchange also brought about an increase in the gravitational mean
value between nodes, which made the determination of the spatial correlation relationship
between network nodes more difficult. In addition, the network correlation of the basin was
overall 1, reflecting a closely connected and robust spatial correlation network of LUCEs.
The network hierarchy degree decreased from 0.51 in 2002 to 0.39 in 2019, suggesting that
the spatial correlation network was less dependent on a single node or a few nodes.
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3.3.2. Individual Characterization of Spatial Correlation Network

Using UCINET6.560, we determined the degree, closeness, and betweenness centrality
of the LUCE correlation network (Figure 7). In terms of degree centrality and closeness
centrality, counties at the relative center of the correlation network performed better,
such as Aksu City, Bachu County, Kuqa City, Korla City, Kashgar City, Gashi County,
and Hotan City, and they were able to quickly form connection with other regions. In
addition, their higher in-degree centrality indicated that these counties received more
carbon overflow from other counties. Among them, the in-degree centralities of Aksu
City and Korla City were significantly higher than those of other counties, which fully
demonstrated their central role in the correlation network. In terms of out-degree centrality,
counties such as Bachu County, Aheqi County, Hotan City, Bohu County, Minfeng County,
Yutian County, and Qiemo County had long been in the top ten, indicating that they
generated a high amount of carbon emission overflow. On the one hand, regions with
better economic development, such as Bachu County and Hotan City, could attain carbon
transfer through the path of industrial transfer and economic cooperation, in addition
to absorbing advantageous factors internally. On the other hand, under the siphoning
effect of developed counties, the overflow of human resources, backward infrastructure
development, and further geographic–economic distance growth in the edge counties, such
as Aheqi, Bohu, Minfeng, Yutian, and Qimo counties, hindered the inflow of capital, talent,
technology, and other factors, and it was difficult for these counties to quickly establish
carbon connection with other regions.
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In terms of betweenness centrality, the regions in the top ten were increasingly concen-
trated in counties with a better economic base, with Aksu City, Korla City, Bachu County,
Shache County, Hotan City, and Kuqa City being consistently located in the paths with
more nodes. These counties had a high degree of factor marketization, more active trading
of carbon emission rights and land indexes, and more smooth and convenient factor flows,
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which were more likely to affect the LUCE of neighboring regions through the overflow of
low-carbon technologies and green production lifestyles.

3.3.3. Clustering Characteristics of the Spatial Correlation Network

As can be seen from Table 4, the spatial overflow effect of LUCE was mainly dominated
by inter-regional overflow, indicating that the spatial correlation between blocks was
greater than the spatial correlation within blocks. In terms of spatial distribution, the
panels comprising the southern and western regions were the main exporters of elements
in most years, while the panels comprising the northern districts and counties were the
main receivers of elements in most years. The reason was that the division of blocks
within the network was affected by many factors, such as geographic location and the
influence of economic development, which affected the flow of various types of factors. The
region consisting of Korla City, Aksu City, and Kashi City had a developed economy and
convenient transportation, which made it easy to absorb all kinds of factors, thus becoming
the main receiver of these factors.

Table 4. Spatial correlation of LUCEs across different geographic blocks.

Year Block Counties

Accepted
Relationships

Overflow
Relationships

Expected
Internal

Relationships (%)

Actual
Internal

Relationships (%)In Out In Out

2002

Net overflow AHQ, WQ, HTC, BAC, TSK 11 22 11 120 9.76 8.40
Bidirectional
overflow

MY, SC, SF, SL, AWT, MGT, WS, YJS, ATS, LP,
JS, MF, YPH 15 47 15 57 29.27 20.83

Primary
beneficiary

AKS, XH, LT, KC, HS, BH, QM, YQ, SY, BC,
KEL, YL, RQ, HJ 27 105 27 8 31.71 77.14

Agent AKT, CL, WUS, HT, KP, YC, PS, YT, KS, ZP 4 59 4 48 21.95 7.69

2012

Net overflow AHQ, MF, BH, QM, RQ, KP, CL, WUS, HJ, YT 36 8 36 180 21.95 16.67
Bidirectional
overflow

WS, LT, BC, AKS, XH, SY, KC, HS, AWT,
YL, YQ 74 92 74 61 24.39 54.81

Net overflow YC, AKT, TSK, HTC, PS, HT, WQ, BAC 16 54 16 92 17.07 14.81

Agent MGT, KEL, LP, JS, SF, MY, KS, ATS, SC, YJS,
SL, YPH, ZP 11 200 11 95 29.27 10.38

2022

Net overflow AHQ, MF, BH, QM, RQ, HJ, BC, YT 25 7 25 160 17.07 13.51
Primary
beneficiary KEL, LT, SY, AKS, XH, YQ, KC, HS, YL 48 104 48 17 19.51 73.85

Agent HTC, AKT, HT, CL, TSK, WUS, PS, WS, YC,
WQ, KP 22 46 22 166 24.39 11.70

Bidirectional
overflow

MGT, AWT, JS, LP, MY, SF, ATS, KS, BAC, SC,
YJS, SL, YPH, ZP 113 207 113 21 31.71 84.33

In terms of temporal evolution, in 2002, the total number of plate relationships was
290, with the north-central counties along the mainstem of the Tarim River being the main
beneficiary blocks and the edge counties being the main blocks of factor overflow. The
reason for the numerical growth might be that the counties disseminated their capital,
technology, and experience to neighboring counties, with advancement in their own devel-
opment, thus influencing the land use patterns and energy consumption of their neighbors.
In 2022, the total number of plate relationships grew to 572, reflecting a further increase in
the attractiveness of the core cities, with the accumulation and siphoning effects becoming
more pronounced.

3.4. Spatial Optimization of Carbon Balance Zoning in the Tarim River Basin

First, we determined the carbon balance large region. Based on the calculation of ESC,
the Tarim River Basin was divided into two types of areas: overall carbon sink regions
and overall carbon emission regions. Then, by superimposing the empirical results of the
spatial autocorrelation and spatial correlation network, we divided the carbon balance
large region into six types of carbon balance functional zones (Figure 8): centralized carbon
sink region, local adjustment region, core–linked carbon emission region, dispersed–linked
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carbon emission region, general–linked carbon emission region, and general–island carbon
emission region. The basis for the carbon balance zoning is shown in Table 5.
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Table 5. Basis of carbon balance zoning.

Carbon Balanced
Large Region

Carbon Balance
Functional Region Criteria for Regionalization County

Overall global carbon
sink region

Centralized carbon
sink region

ESC > 1, and belonging to the carbon sink
H-H clustering area Aketao County

Local adjustment region ESC > 1, and belonging to areas outside the
H-H clustering of carbon sinks

Aheqi County, Atushi City, Baicheng County,
Bohu County, Cele County, Hejing County,
Heshuo County, Hotan County,
Koping County, Minfeng County, Pishan
County, Qiemo County, Ruoqiang County,
Tashkurgan Tajik Autonomous County,
Yuli County, Wensu County, Wuqia County,
Wushi County, Yecheng County,
Yutian County

Overall carbon
emission region

Core–linked carbon
emission region

ESC < 1, Both belonging to the carbon
emission H-H clusters and to the network
center nodes

Maigaiti County

Core–island carbon
emission region

ESC < 1, Belonging to carbon emission H-H
clusters, but not to the network core nodes

This type of area does not exist in the
study area.

Dispersed–linked carbon
emission region

ESC < 1, Both belonging to the carbon
emission L-L clusters and to the network
center nodes

Shufu County

Dispersed–island carbon
emission region

ESC < 1, Belonging to carbon emission L-L
clusters, but not to the network core nodes

This type of area does not exist in the
study area.

General–linked carbon
emission region

ESC < 1, Not belonging to the carbon
emissions H-H or L-L clusters, but
belonging to the network core nodes

Aksu City, Awati County, Bachu County,
Jiashi County, Hotan City, Kashi City, Kuche
City, Korla City, Shaya County

General–island carbon
emission region

ESC < 1, Not belonging to the carbon
emissions HH or LL clusters, nor to the
network core nodes

Luntai County, Lopu County, Moyu County,
Shache County, Shule County, Xinhe County,
Yanqi Hui Autonomous County, Yingjisha
County, Yupu Lake County, Zephyr County

The characteristics of each region were as follows: (1) The area of the centralized
carbon sink region accounted for 2.35% of the whole region. This region had a large
amount of carbon sink land, a more prominent carbon sink function than carbon source
function, and a higher ESC, and, thus, it undertook important ecological functions. In the
LUCE spatial correlation network, Aketao County showed absorption of carbon emissions
from other counties, which was conducive to alleviating the carbon pressure in the basin.
(2) The area of the local adjustment region accounted for 78.05% of the whole region. Its
regional carbon sink function was relatively strong, but the absolute amount of carbon sink
was relatively limited. This region had a low degree of development of secondary and
tertiary industries, cruder methods of energy utilization, and a slower pace of economic
development, and it mainly contained counties with a focus on agricultural production,
such as Aheqi, Hotan, Minfeng, and Ruoqiang counties. However, these counties were
located around the economic growth poles of Aksu City, Korla City, and Kashi City, and
showed spillover effects in the LUCE spatial correlation network, thus acting as linkages.
(3) The core-linked carbon emission region had a relatively small area, accounting for 1.06%
of the whole region. Maigaiti County, located in the transportation hub of the Tarim River
Basin, undertook the transfer of elements between Kashi City and Aksu City. Therefore,
it had a strong carbon emission function, showed significant spatial agglomeration and
correlation, and belonged to the region with the most intensive and active carbon emission
activities. (4) The area of the dispersed–linked carbon emission region accounted for 0.26%
of the whole region. With a large area of forest land and grassland and weak intensity of
human production activities, Shushi County had low overall carbon emissions. Located
around Kashi City, Shufu County undertook the transfer of carbon emission factor resources
between the Kizilsu Kyrgyz Autonomous Prefecture and Kashi Region, so it acted as a
network hub in the correlation network. (5) The area of the general-linked carbon emission
region accounted for 13.72% of the whole region. With developed heavy industries, this
region had much higher carbon emissions than carbon absorption, a low ESC, and a
closer correlation of carbon emission activities with other counties. In the carbon emission
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network, Aksu City and Korla City attracted the inflow of labor, information technology,
capital, and other factors from other regions due to their good economic fundamentals,
becoming the dominant beneficiaries in the network. (6) The area of the general–island
carbon emission region accounted for 4.55% of the whole region. This region had neither a
clustering effect on carbon emission activities nor a core area integrated into the carbon
emission network. Therefore, it was difficult for this region to perceive changes in the
carbon emission behavior of other counties, and its ability to reduce carbon emissions on
its own was weak.

4. Discussion
4.1. Spatial and Temporal Evolution of LUCE Spatial Correlation Network

In this study, we found that the LUCEs in the Tarim River Basin showed a general
trend of “high in the north-central part and low at the edge”, which was consistent with
the results of Zhang et al. [51]. North-central counties had more energy resources, more
developed economies, and denser populations, which led to an increase in carbon emissions,
with the LUCEs exceeding 18 million tons in 2022 in Aksu City and Korla City. From
2002 to 2012, the growth rate of LUCEs in each county was relatively fast. In the context
of the Western Development Policy, a large number of industries and capitals converged.
This promoted economic development and increased human activities (e.g., industrial
production, energy consumption, and living consumption), which required land resources,
thus leading to a rapid increase in LUCEs. From 2012 to 2022, the growth rate of LUCEs
decreased in all counties, with smaller growth rates in the more economically developed
regions of Korla City, Aksu City, Atushi City, Hotan City, Kuqa City, and Kashi City.
Since 2012, China has gradually transformed the economic development model from high-
speed development to high-quality development, to explore China’s low-carbon economic
development model [61]. The Tarim River Basin has actively responded to the national
call to slow down the growth rate of LUCEs by optimizing the industrial structure and
adjusting the energy structure while steadily developing the economy.

By studying the LUCE spatial correlation network structure in the Tarim River Basin
from 2000 to 2022, we found that the correlation and stability of the network continued
to increase, showing a decreasing trend of “core–periphery”, with Aksu City, Korla City,
Kashgar City, and Hotan City being located in the core’s leading position, and the edge
counties being located in the dominated position in the network. In addition, compared
with less developed regions in China, the LUCE spatial network structure in the Tarim
River Basin had distinct core and fringe regions. However, the rapid development of
transportation facilities and information networks promoted the exchange of elements
related to LUCEs, which brought about an increase in the mean value of gravitational
force between the nodes and made the determination of specific nodes within the spatial
correlation network more difficult. Compared with developed regions in China [62], the
LUCE spatial correlation network in the Tarim River Basin was still relatively weak, and
the development imbalance between regions was more prominent due to the low level of
urbanization and population density in some regions.

4.2. Optimization of Carbon Balance Zoning

Considering the LUCE, ESC, and LUCE spatial correlation network of the Tarim River
Basin, we divided the basin into six kinds of carbon balance functional zones based on the
existing bases and standards for carbon balance zoning, and we put forward the following
optimization proposals for each zone:

(1) Centralized carbon sink region (Aketao County): Aketao County had a large amount
of carbon sink land, a high ESC, low carbon footprint pressure, a high carbon sink
ecological function, and absorption of carbon overflow from other areas, and these
factors were beneficial to alleviating the carbon pressure in the basin. Therefore,
the future development of this region should focus on enhancing the ecological
conservation function, emphasizing the protection of and increase in forest land and
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grassland, strictly defining the regional development boundaries, and delineating the
ecological protection zones. At the same time, relying on the rich natural resources
of the county, it should promote the development of eco-tourism and facilitate the
growth of environmentally friendly new industries and new modes of development.

(2) Local adjustment region (Aheqi County, Atushi City, Baicheng County, Bohu County,
Cele County, Hejing County, Heshuo County, Hotan County, Koping County,
Minfeng County, Pishan County, Qiemo County, Ruoqiang County, Tashkurgan Tajik
Autonomous County, Yuli County, Wensu County, Wuqia County, Wushi County,
Yecheng County, and Yutian County): This region, which contained relatively abun-
dant energy resources and delivered energy to other regions with high energy depen-
dence, showed overflow effects in the carbon emission network, thereby playing a
connection role to a certain extent. In addition, the region showed high ecological
pressure as it received highly energy-consuming and polluting industries transferred
from economically developed regions. This region should endeavor to reduce the
impact of receiving resource-intensive and high-energy-carrying industries by raising
the entry thresholds for high-carbon industries, forming close interactions with devel-
oped regions to promote factors related to production and productive services, and
introducing new low-carbon technologies and production methods. At the same time,
the region needs to actively develop renewable and clean energy sources, such as solar,
hydro, and wind, to continuously deliver renewable energy sources to counties such
as Aksu, Korla, and Kashgar, which are unable to meet the economic development
due to their poor resource endowment.

(3) Core–linked carbon emission region (Maigaiti County): This region’s rapid economic
development, dense population, and high degree of industrialization and urbanization
has led to a high total volume and intensity of carbon emissions, and its local carbon
sink resources were far from being able to offset carbon emissions, resulting in a
serious ecological deficit. In addition to being at the center of the network, the
region had a high radiating impact capacity. Therefore, the region should focus on
and actively regulate its economic development model, readjust its overcrowded
industrial layout based on the concept of low-carbon development, and strengthen
the implementation of emission reduction measures for key industries. At the same
time, the region should utilize its own radiating impact capacity to encourage the
development of pilot work on carbon trading, as well as the enhancement of energy
efficiency and low-carbon clean energy substitution actions, so as to bring about
changes in the carbon emission behavior of surrounding areas.

(4) Dispersed–linked carbon emission region (Shufu County): This region had a large
area of forest and grassland, weak intensity of human production activities, and
a high amount of carbon emissions. Shufu County, located around the Kashi City,
undertook the transfer of carbon emission factor resources between the Kizilsu Kyrgyz
Autonomous Prefecture and the Kashi City, so it acted as a network hub in the
correlation network. Therefore, the region should promote the circulation speed of
low-carbon technologies by adjusting the energy consumption structure and playing
the intermediary role of inter-regional synergistic emission reduction, with orientation
toward the green development of industrial transformation.

(5) General–linked carbon emission region (Aksu City, Awati County, Bachu County,
Jiashi County, Hotan City, Kashi City, Kuche City, Korla City, and Shaya County):
In the LUCE correlation network, this region, located in a dominant position, had
a siphoning effect on the inflow of labor, information technology, capital, and other
factors from other regions and was the beneficiary in the network. Therefore, the
region should actively adjust the optimization and upgrading of industrial structure,
such as by vigorously developing tertiary and high-tech industries, reducing the
development of high-energy-consuming industries, and developing more productive
services and manufacturing industries based on low-carbon technologies. At the
same time, the region should strengthen its advanced demonstrative role in emis-
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sion reduction and energy structure transformation by capitalizing on the influence
and economic radiation of the core nodes, such as Aksu City and Kashi City, and
encouraging the pioneering application of mature green and low-carbon technologies,
experiences, and institutional designs; this will drive the low-carbon development of
the peripheral counties and help achieve effective synchronization of regional efforts
to promote synergistic emission reductions.

(6) General–island carbon emission region (Luntai County, Lopu County, Moyu County,
Shache County, Shule County, Xinhe County, Yanqi Hui Autonomous County, Yingjisha
County, Yupu Lake County, and Zephyr County): This region, with abundant energy
resources, a backward economy, remote geographical location, poor transportation
infrastructure, less interaction with other counties, and weak spillover effects from
other regions, took a “dominated” peripheral position in the network. Therefore, the
region needs certain financial and technical support from higher-level governments
to help it introduce advanced energy and low-carbon technologies and to guide it in
establishing and perfecting the carbon trading market. At the same time, the region
should be given appropriate preferential support from policies focusing on the estab-
lishment of channels of technological, energy, and industrial cooperation between
regions at different levels of economic development so as to strengthen its spatial
correlation with other regions.

Focusing on the Tarim River Basin, an oasis in an arid zone, this study revealed some
differences in carbon balance zoning delineation when compared with the results of other
studies. For example, in formulating a carbon-neutral zone for the Yangtze River Delta
region, Du et al. considered the study area a highly economically developed region [63]
and, therefore, proposed a national land optimization scheme focusing on measures such
as limiting urban sprawl, controlling population densities, and optimizing the spatial
structure of cities. In contrast, the Tarim River Basin has a relatively low population
density, more backward industrial processes, and a large number of ecological reserves.
Therefore, the pressure on carbon reduction and emission reduction is relatively small,
and the national spatial optimization plan should focus on industrial transformation and
ecological protection measures.

4.3. Limitations of the Study

There are two shortcomings to this study: (1) Due to the limitation of the data sources
and spatial algorithms, we only studied the LUCEs of the Tarim River Basin at the county
scale. In the future, we need to study the basin in more detail at lower scales and expand to
other dimensions not covered in this study. (2) The carbon emission (carbon absorption)
coefficients in this study were obtained by referencing previous studies. Therefore, future
research should use actual carbon emission monitoring data in the basin in the calculation
to improve the accuracy of the results.

5. Conclusions

By measuring the carbon source, carbon sink, and ESC of each county in the Tarim
River Basin, this study used Social Network Analysis (SNA) to analyze the structure
characteristics of the LUCE correlation network in the basin from 2002 to 2022, divided it
into different carbon balance regions, and proposed a low-carbon development strategy for
each region. The following conclusions are drawn from the results:

(1) The LUCE in the Tarim River Basin increased significantly from 1152.38 × 104 t in
2002 to 17,212.49 × 104 t in 2022. The absorption of carbon sinks was significantly
lower than the emission of carbon sources, and the growth rate of carbon sources was
higher than that of carbon sinks. Across the different areas, the LUCEs were relatively
large in Kuche City, Korla City, Luntai County, Shaya County, and Aksu City located
in the hinterland of Xinjiang. In addition, the ESC gradually decreased, showing the
characteristic of “low in the middle and high at the edge”.
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(2) During the period 2002–2022, the spatial correlation network of LUCEs in the Tarim
River Basin continued to increase in relevance and stability, with close relationships
and a large scale. The spatial distribution pattern was gradually clarified, showing a
decreasing trend of “core–edge”, with Aksu City, Korla City, Kashgar City, and Hotan
City being located in the core’s leading position in the network.

(3) Based on the ESC, LUCE spatial correlation network, and exploratory spatial data
analysis, the study area was divided into six types of carbon balance functional
zones: a centralized carbon sink region, a local adjustment region, a core–linked
carbon emission region, a dispersed–linked carbon emission region, a general–linked
carbon emission region, and a general–island carbon emission region. We put for-
ward suggestions for regionalized countermeasures to promote synergistic emission
reductions.
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