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Abstract: Global ecosystems are facing challenges posed by warming and excessive carbon emissions.
Urban areas significantly contribute to carbon emissions, highlighting the urgent need to improve
their ability to sequester carbon. While prior studies have primarily examined the carbon sequestra-
tion benefits of single green or blue spaces, the combined impact of urban blue–green spaces (UBGSs)
on carbon sequestration remains underexplored. Meanwhile, the rise of machine learning provides
new possibilities for assessing this nonlinear relationship. We conducted a study in the Yangzhou
urban area, collecting Landsat remote sensing data and net primary productivity (NPP) data at five-
year intervals from 2001 to 2021. We applied the LightGBM-SHAP model to systematically analyze
the correlation between UBGSs and NPP, extracting key landscape metrics. The results indicated
that landscape metrics had varying impacts on NPP. At the patch and type level, the Percentage of
Landscape was significantly positively correlated with NPP in green space, while the contiguity index
and fractal dimension index favored carbon sequestration under certain conditions. The contribution
of blue space was lower, with some indicators exhibiting negative correlations. At the landscape level,
the contagion index and aggregation index of UBGS had positive effects on NPP, while the division
index and landscape shape index were negatively correlated with NPP. The results enhance the
understanding of the relationship between UBGS and carbon sequestration, and provide a reference
for urban planning.

Keywords: urban blue–green space; carbon sequestration; landscape metrics; LightGBM; SHAP

1. Introduction

Climate change has emerged as a critical global ecological issue, with carbon emissions
being regarded as its main driver [1]. Cities serve as hubs for human economic activities and
are significant contributors to fossil energy use and carbon emissions. As the gathering place
of human production activities, cities are an important source of fossil energy consumption
and carbon emissions [2,3], contributing about 70% of global CO2 emissions [4], and even
up to 80% in China [5]. In its Sixth Assessment Report (AR6), the Intergovernmental Panel
on Climate Change (IPCC) emphasized the urgency of cutting urban carbon emissions, in
order to achieve the goal of limiting global temperature rise to 1.5 ◦C by 2025. China, being
one of the largest carbon emitters, has pledged to reach a carbon peak by 2030 and attain
carbon neutrality by 2060 [6], and has constructed a series of ‘1 + N’ policy systems [7].
Enhancing the carbon sequestration capacity of cities can facilitate offsetting part of the
carbon emissions and represents a crucial effort in addressing climate change [8].

Urban Blue–Green Spaces (UBGSs) is a general term for blue spaces and green spaces.
Commonly, blue spaces include water bodies such as rivers, lakes, wetlands, and coastal
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regions; green spaces encompass woodlands, grasslands, croplands, urban parks, and
other vegetated areas [9]. With the rapid progress of urbanization, the urbanization rate
in China has reached 66.16%, with the greening rate in built-up areas standing at 39.94%,
and the area designated for water bodies and water infrastructure covering 36.296 million
hectares [10–12]. The ecological functions of UBGSs have become increasingly signif-
icant [13,14]. Although carbon sequestration functions of large-scale ecosystems (e.g.,
forests, grasslands, and oceans) have been extensively studied [15–17], research on carbon
sequestration at the urban scale have primarily focused on individual types of green spaces,
often overlooking the synergistic effects of UBGSs [18]. Therefore, it is of great significance
to investigate the carbon sequestration benefits of UBGSs.

Gaining a deep understanding of the role of UBGSs in carbon sequestration requires
analyzing the factors that influence it. Vegetation types and community structure are
widely recognized as key factors affecting carbon storage. For example, Gratani et al. [19]
found that the differences in carbon sequestration capacity of urban parks were primarily
due to variations in vegetation types; Jo et al. [20] indicated that green spaces with fast
growth rates, high density, and diverse structures have stronger carbon storage and ab-
sorption capacities. In addition, landscape patterns also play a significant role in carbon
sequestration. Ahern [21] pointed out that optimizing the spatial structure and layout of
green spaces can enhance carbon sinks and other ecological benefits; Grafius et al. [22]
found a positive correlation between patch area of green spaces and carbon sequestration;
Godwin et al. [23] revealed a negative correlation between patch edge complexity and
carbon density. However, most of the existing studies have focused on single types of
green spaces and lack a comprehensive investigation of the synergistic effects of blue–green
spaces. In fact, there exists a coupling feedback mechanism between terrestrial carbon
absorption and water body availability [24,25], which enhances carbon flux and promotes
the carbon cycle [26]. Furthermore, the composite structure of blue–green spaces can fur-
ther increase carbon sequestration capacity by enhancing biomass accumulation and soil
carbon sequestration effects [27,28]. This synergistic effect has been validated in several
studies. For example, Jiang et al. [29] found that the importance of waterfront distance
factors in carbon sinks reached 28.88%. Li et al. [30] demonstrated that coordinated layouts
of blue–green spaces enhance carbon sequestration efficiency. Therefore, a comprehensive
study of the synergistic effects of urban blue–green space patterns (UBGSPs) will contribute
to a deeper understanding of their role in carbon sequestration.

Carbon sequestration accounting methods mainly include sample plot measurements,
model calculations, micrometeorological methods, and remote sensing (RS) estimation
methods. Sample plot measurements estimate carbon storage through data collection and
formula calculations, but are limited by their inability to provide continuous observation
and require destructive experimentation [31]. Model calculations combine plot data with
environmental variables (e.g., vegetation characteristics, meteorological data) to assess
carbon sequestration. However, common models such as Citygreen, I-Tree Eco, and
NTBC require validation when applied to regions with different climatic and physiological
conditions [32,33]. Micrometeorological methods estimate carbon flux by measuring CO2
concentration and meteorological parameters, with Eddy covariance (EC) being a common
approach, though it is sensitive to climate and topography [34]. The remote sensing (RS)
method estimates regional carbon storage by collecting surface vegetation data via satellites
or sensors, offering broader coverage and stronger spatial–temporal continuity compared
to ground-based methods, making it ideal for dynamic monitoring of regional carbon
sequestration [35,36]. For this study, the RS estimation method was selected to obtain
carbon sequestration data at the urban scale.

Although the factors influencing the carbon sequestration capacity of UBGSs have
been widely discussed, accurately characterizing the complex relationship between UBGSs
and carbon sequestration remains a challenge. The relationship between UBGSs and carbon
sequestration is multidimensional and dynamic, influenced not only by temporal and
spatial variations [37] but also by environmental threshold effects [38]. Specifically, when
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certain ecological conditions or land use changes exceed a critical threshold, the carbon
sequestration capacity may undergo abrupt shifts or reversals. Therefore, capturing these
nonlinear dynamic features is crucial for understanding the carbon sequestration role
of UBGS. Traditional methods, such as Pearson correlation coefficient and Spearman’s
rank correlation coefficient [39,40], assume linear relationships, often oversimplifying the
complex dynamics within ecosystems [41]. In contrast, machine learning methods are
able to flexibly capture the relationships between variables, making them better suited
for handling complex, large-scale, multidimensional data. In particular, gradient boosting
algorithms like LightGBM [42], by capturing complex interactions between variables, can
accurately reveal ecological processes, providing more precise modeling methods for
understanding carbon sequestration benefits.

While machine learning performs well in complex tasks, it often faces the “black-
box” issue [43], which makes it difficult to interpret the model’s predictions. Widely used
interpretation methods include the Partial Dependence Plot (PDP), Local Interpretable
Model-agnostic Explanations (LIMEs) and Shapley Additive Explanations (SHAP). PDP can
demonstrate the impact of individual features or feature combinations, but it is limited in
capturing complex feature interactions [44]. LIMEs explain individual predictions through
local linear approximations but may overlook global patterns [45]. In contrast, SHAP offers
both local and global interpretability by quantifying feature contributions to individual
predictions and the overall model [46], making it particularly suitable for understanding
complex relationships, such as the one between UBGSs and carbon sequestration.

Yangzhou is a typical water town in China, renowned for its abundant blue–green
resources. In recent years, with rapid urban expansion, the carbon emission pressure in
Yangzhou has gradually increased [47], posing challenges to the ecosystem. Maintaining
ecological balance in Yangzhou and enhancing the city’s carbon sink capacity have become
urgent priorities.

This study aims to:

1. Explore the complex correlation between UBGSPs and carbon sequestration efficiency.
2. Identify key landscape metrics influencing carbon sequestration in UBGSs.
3. Propose spatial patterns for high carbon sequestration UBGSs, providing scientific

references for optimizing UBGSs configurations and enhancing carbon sequestra-
tion potential.

2. Materials and Methods
2.1. Study Area

Located in central Jiangsu Province, Yangzhou (32◦15′ N–32◦25′ N, 119◦01′ E–119◦54′ E)
spans an area of 6591.21 square kilometers. It is an important city in the Yangtze River Delta
urban agglomeration and Nanjing Metropolitan Circle. By the end of 2023, Yangzhou’s urban-
ization rate had reached 72.79%, with a permanent population of 4.585 million. Yangzhou
has a subtropical monsoon climate, marked by mild and humid conditions, with an average
annual precipitation of 1020 mm. As a water source for the Eastern Route of the South-to-
North Water Diversion Project, the city’s water area accounts for over 25%. The Grand Canal,
a UNESCO World Heritage site, runs through the city, earning Yangzhou the title of “the
First City of the Grand Canal in China”. The city’s green space coverage reaches 44.9%, with
vegetation comprising deciduous broad-leaf forests and evergreen broad-leaf mixed forest
belts, forming a favorable blue–green natural landscape.

According to the Territorial Spatial Planning of Yangzhou (2021–2035) [48], the city
plans to establish an overall spatial pattern comprising “one district, one belt, one center,
and three zones”. “One district” refers to the Yangzhou metropolitan area, “one belt” to
the cultural charm belt along the Grand Canal, and “one center” to the ecological green
heart of Gaoyou Lake. The “three zones” are composed of distinctive agricultural regions,
including the northern Lixiahe region, the southern Yangtze River region, and the western
hilly region. We selected the Yangzhou metropolitan area as the research site (Figure 1),
characterized by a dense population and frequent human activities. The specific area
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includes the municipal districts of Yangzhou (Guangling District, Hanjiang District, and
Jiangdu District) and Yizheng City, covering a total of 3162.07 square kilometers.
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2.2. Data Acquisition and Pretreatment
2.2.1. Remote Sensing

Remote sensing images with a 30 m spatial resolution from the Landsat-5 and Landsat-
8 satellites were used [49], covering five periods of multi-band remote sensing data in
2001, 2006, 2011, 2016, and 2021. The combination of Landsat-5 and Landsat-8 ensured
data continuity from 2001 to 2021 maintained consistent image quality [50,51]. To balance
monitoring requirements and data management needs, a five-year interval was selected
to capture long-term trends [52,53]. Next, we used the Seamless Mosaic tool in ENVI
5.6z software to stitch the images from two-track numbers, followed by radiometric cali-
bration and atmospheric geometric correction, to ultimately achieve high-quality remote
sensing images.

2.2.2. NPP

The MOD17A3H product from the National Aeronautics and Space Administration
(NASA) served as the source for NPP data. This product is based on the Terra/MODIS
satellite and provides annual vegetation productivity data at 500 m resolution on a global
scale [54]. The dataset is rigorously calibrated for high accuracy and covers multiple
years, facilitating long-term time series analyses. It has found extensive application in
research fields including ecological monitoring, land use change, and carbon sequestration
assessment. We used MRT 4.0 software to process, convert, project, mosaic, and batch
process the acquired NPP data. Then, we applied ArcGIS 10.3 to clip the data according
to the study area, resulting in the spatial distribution of net primary productivity in the
Yangzhou metropolitan area for several specific years between 2001 and 2021 (Figure 2).
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2.2.3. Land Use and Blue–Green Spatial Data

The Support Vector Machine (SVM) in the ENVI 5.6 software was used to perform
supervised classification on the processed Landsat remote sensing images. SVM is a
widely used model for classifying hyperspectral remote sensing images [55], offering high
classification accuracy and strong generalization ability, which enables effective distinction
of land cover types in high-dimensional data [56]. Moreover, through structural risk
minimization, SVM reduces the risk of overfitting, ensuring high reliability and stability in
classification tasks [57]. Based on the current land use classification standard (GB/T 21010-
2017) [58], land types were classified into five categories: built-up land, forest and grassland,
cropland, water bodies, and unused land. The classification results were evaluated using
a Confusion Matrix. The Kappa coefficients for the five years ranged from 0.86 to 0.91,
meeting the accuracy requirements of the study. Using the reclassification tool in ArcGIS
10.3, water bodies were classified as blue space, while forest, grassland, and cropland land
were classified as green space. Built-up land and unused land were categorized as other
spaces, resulting in the blue–green space layout of the Yangzhou metropolitan area for the
five periods (Figure 3).
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2.3. Methods
2.3.1. Landscape Metrics

Landscape metrics are quantitative indicators that condense landscape information [59],
and are used to reflect landscape characteristics and their trends. They are applicable to
various ecological environment studies, including urban blue–green spaces. Drawing on prior
research [22,60,61] and taking into account the unique characteristics of the study area, we
selected a total of 12 landscape metrics at three levels: patch, type, and landscape (Table 1).

Table 1. Blue–green space landscape metrics.

Classification Metrics Abbreviations Formula Description

Patch level

Dimensionality index FRAC FRAC =
2 ln

(
0.25pij

)
ln(aij)

Quantifying the shape
complexity of patches.

Related
circumscribing circle CIRCLE CIRCLE = 1 −

[
aij
as

ij

] Assessing the degree of
circularity of patches.

Proximity index CONTIG
CONTIG =

[
∑z

r=1 Cijr
aij

]
−1

v−1

Reflecting the spatial
connectivity

between patches.

Class level

Area proportion PLAND PLAND =
∑n

j=1 aij
A × 100

Patch area percentage,
with the largest patch

representing the
dominant landscape.

Maximum plaque index LPI LPI =
maxn

j=1(aij)
A × 100

The proportion of the
largest patch to the total

landscape area.

Edge density ED ED =
∑m

k=1 eik
A × 10000

Characterizing the
complexity of patch edges.

Landscape level

Separation index DIVISION DIVISION =

[
1 −

m
∑

i=1

n
∑

j=1

(
aij

A

)2
] Indicates the degree of

fragmentation of the
landscape; a higher value

signifies
greater fragmentation.

Perimeter-area
fractal dimension PAFRAC

PAFRAC =
2/

{
N∑n

j=1 ln pij×ln aij−
(

∑m
i=1 ∑n

j=1 ln pij

)(
∑m

i=1 ∑n
j=1 ln aij

)}
(

N∑m
i=1 ∑n

j=1 ln p2
ij

)
−
(

∑m
i=1 ∑n

j=1 ln pij

)2

Measures the complexity
of landscape boundaries

and the irregularity
of shapes.

Aggregation index AI AI =
[

m
∑

i=1

(
gii

maxgii

)
pi

]
× 100

The degree of landscape
patch aggregation, with

higher aggregation aiding
in maintaining

ecological connectivity.

Landscape Shape
Indicators LSI LSI = E

minE

Indicates the complexity
of the overall shape of

blue–green space; a higher
value signifies

increased complexity.

Average patch size AREA_MN AREA_MN = A
N 106 Calculates the average size

of patches.

Contagion index CONTAG

CONTAG =1 +
∑m

i=1 ∑m
k=1

[
pi

〈
gik

∑m
k=1 gik

〉]
·
[

lnpi

〈
gik

∑m
k=1 gik

〉]
2ln(m)

×

100

Characterizes the
aggregation and

connectivity of different
patches within
the landscape.

2.3.2. Selection of Optimal Grain Size and the Moving Window Method

The UBGSPs exhibit complexity and multiscale properties, and their impacts on
ecological processes or ecosystem services change at different spatial scales [62]. Therefore,
selecting the appropriate analysis scale is crucial for accurately capturing how spatial
patterns influence ecological processes. To identify an appropriate grain size for UBGSPs,



Land 2024, 13, 1965 7 of 21

we selected 19 grain sizes for data resampling within the range of 30 m to 150 m and
calculated 15 landscape metrics with Fragstats 4.2. By analyzing the curves of the landscape
grain size for seven key indices (TA, LPI, SHAPE_MN, COHESION, SPLIT, DIVISION,
MESH) [63], we found that most indices stabilized between 45 and 60 m. Combined with
the landscape area loss curve (Appendix A), we identified 50 m as the optimal analysis
grain size. Based on this, we used the moving window method [64], setting different
window radii to calculate landscape metrics. Combined with the semi-variogram [65], we
determined the optimal analysis extent. The analysis indicated that a window size of 800 m
resulted in minimal spatial variability and strong autocorrelation of the landscape metrics
(Appendix A).

2.3.3. LightGBM-SHAP Model

LightGBM (Light Gradient Boosting Machine) is an efficient machine learning al-
gorithm based on the Gradient Boosting Decision Tree (GBDT), developed by Microsoft.
It captures complex nonlinear relationships through a progressively weighted decision
tree, and shows significant advantages in computational efficiency, accuracy, and noise
resistance. LightGBM introduces a histogram-based algorithm [66] that discretizes con-
tinuous features into histogram bins for splitting (Figure 4a). This significantly reduces
computation time, making it particularly suitable for high-dimensional data and large-scale
samples. Unlike traditional level-wise growth strategies, LightGBM adopts a leaf-wise
growth strategy (Figure 4b), where it prioritizes expanding leaf nodes that minimize loss
the most [67]. This enables the construction of more complex models at the same depth,
improving its ability to capture nonlinear features. By combining Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB) techniques [68], LightGBM en-
hances computational efficiency and effectively reduces noise, resulting in exceptionally
high accuracy and robustness.
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This study constructed datasets based on landscape metrics and NPP data from 2001, 2006,
2011, 2016, and 2021. Using ArcGIS 10.3, we created 10,000 random sampling points in green
space and 5000 in blue space. We extracted landscape metrics and NPP values at both the patch
and class levels for the sampling points, removing outliers to build 10 datasets. In Fragstats, we
adjusted the parameters of the classification definition profile to ensure only blue–green spaces
were included, creating 15,000 random sampling points and extracting corresponding data at the
landscape level to build 5 additional datasets. To guarantee the model’s capacity for generalization,
eighty percent of the sampling points were allocated to the training set, while the remaining
twenty percent were set aside for the testing set.

The model was optimized through Bayesian opti mization [69]. Key parameters
included n_estimators, max_depth, and learning_rate to identify the optimal parameter
combination in fewer iterations. Model performance was evaluated using three metrics:
R-squared coefficient of determination (R2), mean squared error (MSE), and mean absolute
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error (MAE), with ten-fold cross-validation used to assess the model’s generalization ability.
The formulae for the indicators are as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

MES =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

MAE =
1
n

n

∑
i=1

|yi − ŷi

∣∣∣∣∣ (3)

where yi is the actual value, ŷi is the predicted value, y is the mean of the actual values, and
n is the sample size.

The results showed that both MSE and MAE were low across the 15 datasets, with
R2 values ranging from 0.856 to 0.922. Results from the ten-fold cross-validation varied
between 0.786 and 0.906, demonstrating that the developed LightGBM model met the
expected accuracy for both the training and testing sets.

Shapley Additive Explanations (SHAP) is a method for interpreting machine learning
model outputs, addressing the “black box” problem. It is based on Shapley values from
cooperative game theory [46], assigning importance weights to features and quantifying
their contribution to the model’s predictions whether positive or negative. In this study,
SHAP was applied to interpret the prediction results of the LightGBM model, aiding in the
identification of contributions to carbon sequestration under various landscape features.
The formula is as follows:

ϕi(v) = ∑S⊆N\{i}
|S|!(|N| − |S| − 1)!

|N|! [v(S ∪ {i})− v(S)] (4)

where ϕi (v) is the Shapley value for feature i; N is the set of all features; Si is the set of
variable rankings, and v(s) is the optimal value of the set S.

3. Results
3.1. Spatiotemporal Variation in NPP

From 2001 to 2021, NPP in the study area exhibited a general upward trend (Figure 5a),
reflecting an improvement in vegetation growth over the 20-year period. The spatial distribution
of NPP was significantly heterogeneous, with high-value areas gradually expanding, particularly
in the suburbs and towns in the eastern and northern regions, which were primarily characterized
by cropland, forests, and protected areas. The Theil–Sen slope calculation (Figure 5b) and Mann–
Kendall test (Figure 5c) [70] revealed that 63.39% of the pixels exhibited a significant increasing
trend in NPP, while 3.29% showed a significant decreasing trend. The decreasing pixels were
clustered at the boundaries of the central urban area and its sub-districts, indicating that urban
expansion negatively influences NPP. Overall, although most regions in the study area experienced
an increase in NPP, spatial heterogeneity remained due to urban expansion.
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3.2. Variation in Blue–Green Space Spatial Pattern

The findings for UBGSP variation in the study area (Appendix B) indicate that, at the
patch level, changes in indices for green space and blue space were not significant at the
patch level. At the class level, the PLAND, LPI, and ED of green space declined overall,
reflecting reduced fragmentation and alleviated edge effects. In contrast, three indices for
blue space slightly increased, indicating improvements in area and connectivity, along
with enhanced edge effects. At the landscape level, AREA_MN increased, suggesting an
overall reduction in fragmentation. The increasing and then decreasing trend of LSI and
PAFRAC indicated a decrease in the degree of discreteness. CONTAG showed a decreasing
trend, suggesting a weakening of patch connectivity in the UBGSs. Overall, through
the integration of urban green spaces and water bodies, Yangzhou reduced landscape
fragmentation and improved the connectivity and aggregation of blue–green spaces.

3.3. The Correlation Between UBGSs and Carbon Sequestration Based on LightGBM-SHAP
3.3.1. Global Interpretation

The results of the LightGBM-SHAP model were as follows. The SHAP summary
plot (Figure 6) was used for global interpretation of the model, displaying the importance
ranking of features within the dataset. The ranking indicated importance from high to low.

In green space, the top three important indices from 2006 to 2016 were PLAND,
CONTIG, and FRAC, while in 2001 and 2021, they were PLAND, CONTIG, and ED.
In general, PLAND had the greatest influence on NPP, demonstrating a clear positive
correlation, highlighting the beneficial impact of large green patches on NPP. CONTIG
ranked second in contribution, also exerting a positive effect on NPP. The SHAP value
rankings for FRAC and ED indicated that both of them had a strong influence on NPP
across different years.

In the blue space, the top three contributing indices in 2001, 2011, and 2016 were
CONTIG, PLAND, and LPI, while in 2006, they were PLAND, CONTIG, and ED, and in
2021, CONTIG, PLAND, and FRAC. Overall, the CONTIG index exerted the strongest
influence on NPP, with PLAND and LPI following in impact.

The landscape-level indices of blue–green space displayed a complex relationship with
NPP. In the SHAP summary plot from 2001 to 2021, the three most important contributing
indices were DIVISION, LSI, and CONTAG, with LSI declining in 2021, when AREA_MN
became the third most important index. This indicated that the fragmentation, shape
complexity, and connectivity of UBGS were key factors influencing NPP.
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3.3.2. Local Interpretation

The SHAP dependence plot provided a local interpretation, illustrating how individual
features influenced the prediction results and revealing interactions between features.
We selected the metrics with higher contribution rankings from each year in the summary
plot for analysis.

(1) Patch and class level analyses

In green space (Figure 7), a significant positive relationship was observed between
PLAND and NPP, indicating a beneficial effect. The trend of CONTIG was not significant
when its value was low, but a clear positive trend was observed within the range of [0.7, 1].
The FRAC values took 1.2 as the critical point, with opposite trends on either side affecting
NPP. When FRAC < 1.2, the SHAP value gradually decreased as FRAC increased; conversely,
when FRAC > 1.2, the SHAP value increased, moving towards positive values. The trend
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of ED was more significant in 2001 and 2021; as ED increased, the SHAP value decreased,
indicating a negative impact on NPP.
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Compared to green space, the overall effect of blue space on NPP was weaker (Figure 8).
CONTIG contributed positively to NPP in the low to medium value range; however, when
it exceeded 0.9, it had a significant negative impact. Although some PLAND values were
dispersed, there was an overall negative linear trend with NPP. Low LPI values clustered
around a SHAP value of 0, and as the LPI increased, its SHAP value exhibited an upward
trend, though this was not significant. When the ED value was below 40, most SHAP
values were greater than 0. With an increase in the ED value, the SHAP value exhibited a
downward trend.

At the patch and class level, the relationship between landscape metrics and NPP was
stronger in green space than in blue space. Given the complex interactions between green
and blue spaces, their effects on NPP are not isolated. Therefore, taking a landscape-level
perspective is crucial for a more comprehensive understanding of how combinations of
UBGSs impact carbon sequestration.

(2) Landscape level analyses

The SHAP dependence plot analysis revealed the contribution mechanisms of UBGSP
to NPP (Figure 9), which we analyzed according to the comprehensive ranking of contribu-
tion from highest to lowest in the summary plot.
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The DIVISION value represented the separation degree of patches, ranging from 0 to 1.
This range indicated a transition from a single green or blue patch to an increasing number
of both types, eventually becoming fragmented by other patch types. DIVISION showed
a significant negative correlation with SHAP values, suggesting a negative effect on NPP.
LSI measured the complexity of patch shapes and was typically associated with landscape
fragmentation. It influenced NPP similarly to DIVISION; when the value was around three,
it served as a boundary point for SHAP values. Higher LSI values corresponded to lower
SHAP values, demonstrating a negative correlation. The trend of CONTAG fluctuated over
the years, with a more marked positive effect on NPP during the notable years of 2001,
2011, and 2021. AI was used to measure the aggregation degree of a particular type of
patch (green space or blue space), and it showed a typical threshold effect. When the AI
value was in the range of [71,72], the SHAP value was relatively high and positive. As the
AI values deviated from this range, SHAP values decreased. AREA_AM was positively
correlated with NPP overall, with higher AREA_AM values typically corresponding to
higher NPP values. In addition, the contribution of PAFRAC to NPP was low, with no clear
trend in its effect.

In summary, the connectivity and aggregation of blue–green spaces positively influ-
enced NPP, while fragmentation and high separation brought negative impacts. Compared
to isolated green or blue spaces, the synergistic interaction of UBGS produced more favor-
able effects. In the integrated ecological environment where green and blue spaces coexist,
a more conducive habitat for plant growth is created, thereby enhancing carbon sequestra-
tion capacity. This highlights the importance of optimizing the layout and comprehensive
management of UBGSs.



Land 2024, 13, 1965 13 of 21

Land 2024, 13, x FOR PEER REVIEW 13 of 21 
 

coexist, a more conducive habitat for plant growth is created, thereby enhancing carbon 
sequestration capacity. This highlights the importance of optimizing the layout and com-
prehensive management of UBGSs. 

 
Figure 9. Dependence plot for blue–green space at landscape level. 

4. Discussion 
4.1. Impact of Green Space and Blue Space Spatial Patterns on Carbon Sequestration 

Numerous studies have confirmed the positive influence of green space on NPP. We 
found that PLAND, CONTIG, FRAC, and LPI in green spaces exhibited positive correla-
tions with NPP, while PLAND and CONTIG having the strongest impacts. This indicates 
that larger patch sizes and higher connectivity can greatly improve carbon sequestration 
capacity [61,73]. Large green patches provide plants with more sunlight, water, and nu-
trients, creating stable habitats, while high connectivity promotes material flow within the 
ecosystem. Together, these factors greatly enhance NPP. On the other hand, the results for 
FRAC indicate that higher patch complexity contributes to enhanced carbon sequestration 
capacity. This is primarily because complex patch boundaries are more irregular, creating 
diverse habitats that facilitate vegetation growth and carbon storage. In contrast, ED was 
negatively correlated with NPP, indicating that edge effects may hinder carbon seques-
tration. This supports the results of Meeussen et al. [74], who observed that edge effects 
can have negative impacts on carbon sequestration under specific conditions. Due to the 
swift urban growth in recent years, green spaces located on the outskirts of Yangzhou’s 
urban areas, despite having long interfaces, have been more susceptible to human degra-
dation, leading to suboptimal NPP outcomes. 

Our findings on the relationship between blue space connectivity and NPP differ 
from previous studies [75]. The analysis revealed that highly connected water systems do 

Figure 9. Dependence plot for blue–green space at landscape level.

4. Discussion
4.1. Impact of Green Space and Blue Space Spatial Patterns on Carbon Sequestration

Numerous studies have confirmed the positive influence of green space on NPP.
We found that PLAND, CONTIG, FRAC, and LPI in green spaces exhibited positive corre-
lations with NPP, while PLAND and CONTIG having the strongest impacts. This indicates
that larger patch sizes and higher connectivity can greatly improve carbon sequestration
capacity [61,73]. Large green patches provide plants with more sunlight, water, and nutri-
ents, creating stable habitats, while high connectivity promotes material flow within the
ecosystem. Together, these factors greatly enhance NPP. On the other hand, the results for
FRAC indicate that higher patch complexity contributes to enhanced carbon sequestration
capacity. This is primarily because complex patch boundaries are more irregular, creating
diverse habitats that facilitate vegetation growth and carbon storage. In contrast, ED was
negatively correlated with NPP, indicating that edge effects may hinder carbon sequestra-
tion. This supports the results of Meeussen et al. [74], who observed that edge effects can
have negative impacts on carbon sequestration under specific conditions. Due to the swift
urban growth in recent years, green spaces located on the outskirts of Yangzhou’s urban
areas, despite having long interfaces, have been more susceptible to human degradation,
leading to suboptimal NPP outcomes.

Our findings on the relationship between blue space connectivity and NPP differ
from previous studies [75]. The analysis revealed that highly connected water systems
do not always correlate with higher NPP. Although the Grand Canal in Yangzhou is
well-connected, human disturbances have affected it. The hardened banks hinder the
exchange between blue and green spaces, limiting vegetation growth and resulting in
habitat simplification, which lowers NPP values. The findings align with those of Wohl
et al. [76], who noted that human activities disrupt natural flow patterns, weakening the



Land 2024, 13, 1965 14 of 21

organic carbon storage capacity of river corridors. This also explains why edge benefits are
negatively correlated with NPP. Additionally, the negative correlation between PLAND
and NPP may be attributed to the dominant role of green plants in carbon sequestration,
while the amount of vegetation in blue space is limited. Even with an expansion of water
areas, the increase in aquatic plant biomass is minimal, which could lead to insufficient
NPP growth.

4.2. Impact of Blue–Green Space Spatial Patterns on Carbon Sequestration

The impact of spatial patterns in combined UBGSs on NPP has been less explored in
the existing literature, our study offers new insights into this area. The results for UBGSs
confirmed the positive impact of their synergy on carbon sequestration. DIVISION was
negatively correlated with NPP, indicating that fragmentation of UBGSs reduces carbon
sequestration capacity. Higher DIVISION typically corresponds to smaller patches, which
are more vulnerable to the island effect, such as reduced species diversity and weakened
ecological functions. The northern area of Yangzhou Biodiverse and Sci-Tech City once had
large patches of wetlands and farmland. However, with urbanization and the development
of infrastructure like roads, blue–green spaces were fragmented into smaller patches, result-
ing in a decrease in NPP in this region. On the other hand, when the AI value was in the
middle range, the aggregation of blue–green spaces was highest, and NPP peaked. In these
spaces, the intermixing of water bodies, wetlands, and vegetation expanded the core areas,
minimizing edge effects. This promotes a stable ecological environment and increases
biodiversity, ultimately enhancing carbon sequestration by vegetation [71,77]. Slender
West Lake in Yangzhou serves as a typical example. In addition, the negative correlation
of LSI with NPP is in agreement with the results reported by Yuan et al. [60] in Nanjing.
Complex, irregularly shaped patches have longer edges, making them more susceptible to
external factors, which weaken the stability of internal habitats. This explains the lower
NPP observed in Yangzhou’s urban expansion areas. Furthermore, the high connectivity of
blue–green spaces contributes to enhanced carbon sequestration, aligning with previous
research in ecosystems such as forests, grasslands, and rivers [78,79]. For example, along
the Yangtze River, certain areas have maintained a natural ecological environment with
good connectivity. This promotes the flow of ecological materials, improving resource
utilization efficiency and thus supporting the carbon sequestration effect of vegetation.
AREA_AM and NPP showed a positive connection, suggesting that larger blue–green
space patches were more beneficial for NPP accumulation. We believe that larger patches
provide more extensive habitats and richer resources, while also reducing the impact of
edge effects and enhancing ecological stability, all of which contribute to vegetation’s
capacity for carbon sequestration [80]. The limited contribution of PAFRAC may be due to
the fact that the carbon sequestration capacity of the UBGSs relies more on the combined
effects of terrestrial and aquatic ecosystems, rather than the shape of the patches being a
key factor.

4.3. Optimization Strategies for UBGSP

Achieving “carbon neutrality” and a “carbon peak” has become a strategic goal for
nations in addressing global warming, with UBGSs playing a key role in this effort. Using
Yangzhou’s 2021 blue–green spatial layout as an example, we extracted typical high-carbon
sequestration UBGS units with a 5 km × 5 km window (Table 2) and analyzed their
spatial pattern characteristics. Based on these findings, optimization strategies for UBGSs
are proposed.
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Table 2. Typical high-carbon sequestration UBGS units in study area.

UBGS Characteristics 5 km × 5 km Unit Green Space Patch and
Class-Level Metrics

Blue Space Patch and
Class-Level Metrics

Blue–Green Space
LANDSCAPE-Level

Metrics

Large-scale UBGSs
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(1) Enhancing the aggregation and connectivity of UBGSs

The degree of aggregation and connectivity of UBGSs is crucial for ecosystem stability
and carbon sink capacity. During urban development, emphasis should be placed on
maintaining extensive, concentrated blue and green spaces. The existing key areas, such as
parks and wetlands, should be protected from the interference of non-ecological land ex-
pansion by designating ecological protection areas [81]. In addition, the urban construction
process should focus on the construction of ecological corridors [72]. By integrating urban
greenways and rivers, ecological patches such as scattered green spaces, wetlands, and
water bodies can be organically connected. Ecological tunnels should be set up in areas
separated by roads and bridges to avoid the division of UBGSs by infrastructure. This will
result in blue–green spaces with stronger carbon sequestration capacity.

(2) Optimizing the shape and structure of UBGSs

To improve the carbon sequestration capacity of UBGSs, natural shorelines should
be protected and restored in areas along lakes and rivers, preserving natural slopes with
vegetation cover [67]. In areas requiring flood control, the use of hard engineering can be
reduced through resilient landscape design. The design of UBGSs should focus on a stag-
gered land–water layout, creating moderate zigzag transition zones, to enhance ecological
functions. Care should be taken to avoid overly complex shoreline designs, as it may lead
to space fragmentation. Additionally, UBGS boundaries should be delineated as ecological
buffer zones with multi-layered vegetation, such as grass, shrubs, and trees. This action
helps shield the core area from the harmful effects of edge effects and human activities.

(3) Establishing a multi-scale integrated UBGS network

At the macroscopic level, a continuous urban ecological network [82] can be created by
integrating large-scale ecological corridors, green spaces, and water systems, to effectively
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connect the city with surrounding natural areas. At the meso level, the layout of UBGSs
between urban functional areas should be optimized to reduce ecological interference
between different land use types. At the micro level, local facilities such as community
parks, green roofs [83], and vertical greening can connect scattered ecological patches,
enhancing the clustering and ecological value of blue–green spaces. This multi-scale
strategy not only increases the carbon Sequestration potential of cities, but also enhances
their ecological resilience and provide more social service functions.

4.4. Limitations and Future Research Directions

This study has some limitations. First, the relatively low spatial resolution of MODIS
limits the accurate capture of small-scale landscape changes, which could affect the preci-
sion of carbon sequestration estimates. Second, while the analytical framework of this study
primarily focused on the relationship between UBGSPs and carbon sequestration, carbon
sequestration is influenced by other factors such as climate conditions, soil properties,
plant species, and vegetative, which were not fully considered in this framework. Lastly,
although this study provides theoretical support for research on carbon sequestration
in UBGSs, translating the findings into specific policy recommendations and planning
guidelines remains challenging.

As technology continues to advance, future research could improve the accuracy and
reliability of carbon sequestration estimates by utilizing higher-resolution remote sens-
ing data, combining ecosystem carbon simulation models, and employing multi-source
data [84]. Additionally, by incorporating more environmental variables, a comprehensive
carbon sequestration evaluation framework could be developed, enabling integrated analy-
sis across spatial and temporal scales. Moreover, future studies should also focus on the
translation of research into practical applications, establishing coordination mechanisms
among urban management departments (e.g., urban construction, water resources, agricul-
ture, forestry, etc.) to facilitate the integration of carbon sequestration insights into urban
policy and planning processes.

5. Conclusions

This study focused on the metropolitan area of Yangzhou and employed the LightGBM-
SHAP model to explore the relationship between UBGS and carbon sequestration. Based
on typical high-carbon sequestration units, optimization strategies for the UBGS layout in
Yangzhou were proposed. The main findings are as follows:

(1) The relationship between UBGSPs and carbon sequestration was nonlinear, with
different landscape metrics demonstrating varying effects at different levels. At the
patch and class levels, PLAND, CONTIG, FRAC, and LPI had a more significant effect
on carbon sequestration; at the landscape level, DIVISION, LSI, and CONTAG played
an important role in carbon sequestration.

(2) Compared to single green or blue spaces, the synergistic effects of blue–green spaces
had a more positive impact on carbon sequestration. UBGSPs with high connectivity
(CONTAG) and large areas (AREA_MN) were positively correlated with NPP, while
the aggregation index (AI) specifically exhibited a significant threshold effect, with
NPP reaching its maximum within the [71,72] range. Conversely, higher values
of DIVISION and LSI (>3) were negatively correlated with NPP, indicating that
fragmented and irregular blue–green space patches were unfavorable for carbon
sequestration.

(3) Large-scale, high-density, and highly aggregated UBGSs were typical high-carbon
sink areas. Under the premise of ensuring appropriate aggregation and connectivity,
optimizing patch shape and improving the connectivity and stability of the ecological
network helped enhance carbon sequestration capacity of UBGSs.

This study fills the gap in urban carbon sequestration research by incorporating the
synergies of UBGS, highlighting their positive impact on carbon sequestration. This find-
ing contributes to carbon sequestration theory, advances urban ecosystem research, and
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provides a new framework for exploring the interactions between UBGS. Furthermore, the
results offer valuable scientific support for urban planning and ecological development,
promoting green, low-carbon urbanization, especially in rapidly urbanizing countries
like China.
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Table A1. Landscape Pattern Indices at the Patch Level for Green Space and Blue Space.

Years Spatial Type
FRAC CIRCLE CONTIG

Maximum
Value

Average
Value

Maximum
Value

Average
Value

Maximum
Value

Average
Value

2001
Green space 1.445 1.030 0.927 0.326 0.877 0.181
Blue space 1.286 1.028 0.986 0.332 0.939 0.170

2006
Green space 1.449 1.041 0.951 0.381 0.901 0.244
Blue space 1.281 1.029 0.988 0.336 0.942 0.177

2011
Green space 1.455 1.035 0.939 0.341 0.896 0.205
Blue space 1.287 1.027 0.987 0.317 0.931 0.161

2016
Green space 1.449 1.041 0.951 0.381 0.901 0.244
Blue space 1.281 1.029 0.988 0.336 0.942 0.177

2021
Green space 1.429 1.037 0.931 0.372 0.877 0.230
Blue space 1.271 1.027 0.987 0.333 0.937 0.172
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Table A2. Landscape Pattern Indices at the Class Level for Green Space and Blue Space.

Years Spatial Type PLAND (%) LPI (%) ED (m/ha)

2001
Green space 65.695 29.361 78.443
Blue space 6.836 3.468 9.690

2006
Green space 50.690 13.196 76.890
Blue space 6.522 2.497 7.609

2011
Green space 53.583 18.598 75.921
Blue space 7.528 3.640 12.064

2016
Green space 50.690 13.196 76.890
Blue space 6.523 2.497 7.609

2021
Green space 57.086 23.775 67.911
Blue space 7.471 3.859 10.743

Table A3. Landscape Pattern Indices at the Landscape Level for Blue–Green Space.

Years LSI DIVISION AREA_MN
(ha) PAFRAC CONTAG

(%) AI (%)

2001 118.467 0.826 10.5776 1.470 38.343 79.341
2006 119.613 0.922 16.857 1.464 34.678 79.142
2011 122.224 0.918 12.1365 1.480 33.143 78.680
2016 119.615 0.922 16.857 1.464 34.678 79.142
2021 109.462 0.879 12.203 1.472 35.683 80.937
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