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Abstract: This study focused on the land use (LU) structure and carbon emissions (CEs) in the Jiangsu,
Zhejiang, Anhui, and Shanghai provinces of the Yangtze River Delta (YRD) in China from 2000 to
2020, using the STIRPAT model and scenario analysis (SA). We conducted an analysis of the influence
exerted by relevant factors on land use carbon emissions (LUCEs) and made forecasts regarding
the diverse development scenarios of CE trends, aiming to provide methodological guidance for
validating the effectiveness of existing policies in reducing CEs and offer direction for achieving
the peak CO2 emissions target as soon as possible. It also constitutes a significant reference for the
early realization of the peak CO2 emissions target. The results indicated the following: (1) Between
2000 and 2020, CEs resulting from LU in the YRD rose from 2.70 × 108 t to 9.10 × 108 t, marking an
increase of 243.77%. In 2020, the built-up area was the predominant contributor to CEs, representing
99.15% of the overall carbon sources, whereas forests served as the main carbon sink, comprising
92.37% of the total carbon sinks (CSs) for that year. (2) For each percent increase in the parameters
considered in this study, the corresponding increases in LU CO2 emissions were estimated to be:
1.932% (population), 0.241% (GDP per capita), −0.141% (energy intensity), 0.043% (consumption
structure), 1.045% (industrial structure), and 0.975% (urbanization). (3) According to the existing
policy framework and development plans, the YRD is expected to achieve peaking carbon dioxide
emissions by 2030. If energy conservation and carbon reduction strategies are implemented, this peak
could be achieved as early as 2025. However, if economic growth continues to depend primarily on
fossil fuel consumption, the region may not hit its carbon peak until 2035. (4) The low-carbon scenario,
which considers the needs of social progress alongside the intensity of carbon emission reductions,
represents the most effective development strategy for reaching a carbon peak in LU within the YRD.
Effectively managing population size and facilitating the upgrading of industrial structures are key
strategies to hasten the achievement of peaking carbon dioxide emissions in the region.

Keywords: Yangtze River Delta; land use; carbon emissions; STIRPAT; scenario analysis

1. Introduction

As the global economy rapidly develops, the influence exerted by humanity on the
Earth’s environment has been increasingly manifested. The issues of global warming
resulting from greenhouse gas emissions and the rising frequency of extreme weather
events are becoming more serious [1,2]. The Paris Agreement, established in 2015, aimed to
restrict the rise in global average temperature to no more than 1.5 ◦C. However, the situation
remains severe, and the continued release of greenhouse gasses will lead to further global
warming. There are worrying signs that critical thresholds may already have been passed,
making the Paris Agreement’s targets difficult to achieve [3]. Approximately one-third of
the current global warming is linked to non-CO2 greenhouse gasses (NCGGs) like methane
(CH4); however, carbon dioxide remains the main factor driving global warming [4]. China
accounts for one-third of global carbon emissions (CEs), making it the world’s largest
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carbon emitter [5]. Consequently, China’s initiatives to lower CEs are crucial for controlling
global emissions and improving the global environment.

Land serves as a natural medium for carbon sinks (CSs) within terrestrial ecosystems
and is a social–economic spatial carrier of human-produced CEs. Land use (LU) change
influences the natural and anthropogenic carbon flux processes carried out by various types
of LU by changing the natural surface cover and the intensity of human activities [6]. It is
one of the most direct and significant anthropogenic driving factors affecting the carbon
cycle in terrestrial ecosystems [7,8].Therefore, this research centers on land use carbon
emissions (LUCEs) as its primary point of analysis.

Since the 1990s, the topic of CEs generated by LU has progressively garnered greater
interest among researchers globally. The mechanisms and accounting [9–13] as well as the
analysis of influential factors [14–17] of LUCEs have been one of the key research directions.
For instance, Zhang et al. assessed the carbon sources and sinks associated with LU in
China between 1999 and 2014 by employing the carbon emission coefficient, utilizing data
on LU and energy consumption. The findings indicate that built-up area was the primary
contributor to CEs and forest was the main CS [13]. Hung et al. estimated 10-year CEs
based on land cover change in the Vietnamese region from 2002 to 2012 relying on land
cover classification results [12]. These studies analyzed the main components of LUCEs
through different calculation methods and models, providing important references for the
development of scientific management policies.

In recent years, research estimating CO2 emissions has emerged as a prominent area
of study both domestically and internationally. In China, models employed in this field of
research are commonly referred to as carbon emission prediction models (CEPMs), and
an overview of the field in the Chinese context is provided by Jin et al. [18]. Such models
include the IPAT model [19,20], STIRPAT model [21–24], Gray model [25–27], ARIMA
model [28,29], neural network model [30], Logistic model [31], and the environmental
Kuznets model [32].

For instance, Ye et al. investigated how economic, energy, population and LU structure
influence LUCEs in Zhejiang Province, and applied the STIRPAT model to simulate and
forecast the future trend in LUCEs. The results show that under the current economic
development scenario, Zhejiang Province will achieve peaking carbon dioxide emissions
by 2030 [24]. Fang et al. explored the pathway to achieving peaking CO2 emissions in
30 Chinese provinces by establishing an extended STIRPAT model, analyzing the key
factors that affect CEs in each province and forecasting the time of CO2 emissions’ peak
with scenario analyses (SAs) [21]. Malik et al. applied the ARIMA model to project carbon
dioxide emissions in Pakistan through 2030, yielding results with high accuracy [29]. Huang
et al. used LSTM to estimate China’s CEs and found that CO2 emissions per unit GDP were
expected to decrease by 30% from 2015 to 2020 [30].

Although existing research has achieved many important results, there are two inade-
quacies. Firstly, current studies that estimate CEs in the Chinese context primarily focus on
estimating the emissions from urban areas or energy sources. These investigations typically
only account for CO2 emissions resulting from fossil fuel use and electricity generation,
neglecting the CO2 released during LU change processes. In China, this growing field
generally does not integrate LU change and the socioeconomic development process to
holistically consider CEs. Therefore, there remains a notable gap in the research forecasting
LUCEs, and the lack of integration of LU structure and energy use carbon emission fore-
cast analysis. Moreover, this strand of research does not allow decision-makers to verify
whether peak CO2 emissions and carbon neutrality goals can be achieved on time under
existing policies.

Therefore, in order to have a more comprehensive understanding of the future trend
of CEs under policy constraints and to assess the effectiveness of strategies aimed at
social and economic development in reducing CEs, it is necessary to estimate the time
of peak CO2 emissions based on the calculation of LUCEs, combined with the social and
economic development policies. As one of the most economically dynamic regions in
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China, and featuring the highest intensity of energy consumption [33,34], the LU in the
YRD is closely linked to social development, economic growth, industrial distribution,
urban sprawl, and energy consumption. This study provides methodological guidance
for validating the effectiveness of existing policies in reducing CEs for the government,
provides direction for formulating effective carbon reduction policies for the government
in different socioeconomic development scenarios in the future, and provides direction for
achieving the peak CO2 emissions target as soon as possible.

2. Materials and Methods
2.1. Study Area

The study area of this paper is situated in the YRD of China. (Figure 1). As per
the “Development Plan Outline for the Integrated Development of the YRD”, which was
sanctioned by China’s State Council in 2019, the YRD encompasses Jiangsu, Zhejiang,
Anhui provinces, and Shanghai. This region consists of 41 cities and covers an area of
358,000 square kilometers. The study region is primarily composed of cropland, forest,
and built-up area, which account for approximately 52%, 30%, and 12.5% of the total area,
respectively. The YRD stands out as one of the most dynamic, accessible, and innovation-
driven areas in China’s economic growth. In 2022, the gross domestic product of the region
amounted to 29.03 trillion yuan, which occupies a pivotal position in the national economy.
However, the YRD is also one of the largest energy consumption and carbon emission
regions in China [35]. Therefore, the study of LU and carbon emission in the YRD holds
significant research value.
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Figure 1. Schematic diagram of study area. (The data are derived from https://www.gscloud.cn/
home, accessed on 25 October 2023).

2.2. Data Source

The data in this study mainly consists of three types (Table 1): LU data, socioeconomic
development data, and energy consumption data. The LU data are derived from the 30 m
land cover dataset developed by the research team of Yang Jie and Huang Xin from Wuhan
University in China [36]. Using Landsat data, they achieved a continuous classification of
LU for multiple years, with an overall classification accuracy of 80%. We selected 21 years of
data from 2000 to 2020, and transformed the coordinate system of the remote sensing image
into an Albers projection with the geographic coordinate system set to WGS1984. The LU

https://www.gscloud.cn/home
https://www.gscloud.cn/home
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data includes six categories: built-up area, cropland, forest, grassland, water, and barren
land. We used ArcGIS 10.6 to calculate the area of each LU type (see Section 3.1 below).
This allowed us to calculate both changes over the twenty-year period in absolute terms,
and the rates of change. The socioeconomic development data and energy consumption
data were obtained from the statistical yearbooks for the period 2000–2020 for Shanghai,
Zhejiang, Jiangsu, and Anhui, as well as the “China Energy Statistical Yearbook for the
period 2000–2020.

Table 1. Data sources.

Data Type Data Name Year Data Sources
URL (accessed on 25 October 2023)

LU data
LU 2000–2020

https:
//zenodo.org/records/12779975,

(accessed on 25 October 2023)

Dem 2000–2020 https://www.gscloud.cn/,
(accessed on 25 October 2023)

socioeconomic
development data

Shanghai Statistical Yearbook 2000–2020 https://tjj.sh.gov.cn/tjnj/index.html,
(accessed on 25 October 2023)

Zhejiang Statistical Yearbook 2000–2020
https://tjj.zj.gov.cn/col/col1525563

/index.html, (accessed on
25 October 2023)

Jiangsu Statistical Yearbook 2000–2020
https://www.jiangsu.gov.cn/col/col8

4736/index.html, (accessed on
25 October 2023)

Anhui Statistical Yearbook 2000–2020
http://tjj.ah.gov.cn/ssah/qwfbjd/tjnj/

index.html, (accessed on
25 October 2023)

Outline of the 14th FYP for National
Economic and Social Development of

Jiangsu Province

https://www.jiangsu.gov.cn/art/2021
/3/2/art_46143_9684719.html,
(accessed on 25 October 2023)

The 14th FYP for Resource conservation
and Circular Economy development

in Shanghai

https://www.shanghai.gov.cn/nw123
44/20220509/a00971c96ede444eade8

000cb9c12766.html, (accessed on
25 October 2023)

The 14th FYP for the Development of the
Circular Economy in Jiangsu Province

https://fzggw.jiangsu.gov.cn/art/20
21/9/16/art_83783_10124063.html,

(accessed on 25 October 2023)

energy
consumption data

China Energy Statistical Yearbook 2000–2020 https://www.stats.gov.cn/,
(accessed on 25 October 2023)

The 14th FYP for Energy Saving and
Emissions Reduction in

Zhejiang Province

https://fzggw.zj.gov.cn/art/2022/9/6
/art_1621019_58934758.html,
(accessed on 25 October 2023)

The 14th FYP for Energy Saving and
Emissions Reduction in Anhui Province

https://wjw.ah.gov.cn/group4/M00/
03/D1/wKg862LFNjWAesFoAAgU0

2_m3TU850.pdf, (accessed on
25 October 2023)

2.3. Methods

This study first analyzes the changes in LU in the YRD from 2000 to 2020 utilizing
LU data and the LU transfer matrix. Then, by combining energy consumption data with
socioeconomic data, the CEs from direct and indirect LU are calculated, applying carbon
emission coefficients. Finally, utilizing the extended STIRPAT model along with ridge
regression analysis, a carbon emission prediction model in the YRD is constructed by
considering the impact of LUCE factors. Using SAs, low-carbon, normal-carbon, and
high-carbon situations for LUCE factors from 2021 to 2040 are set based on national policies
and previous research results. The prediction model is then used to forecast the time of
peak CO2 emission in diverse scenarios (Figure 2).
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2.3.1. Carbon Emission Calculation for Land Use

LUCEs can be categorized into direct and indirect emissions [37]. The formula for
calculation is presented as follows:

I = Id + Ik (1)

I represents total CEs, Id represents direct CEs, and Ik represents indirect CEs. Direct
CEs are defined as the CEs produced by specific land types that are directly involved in
production, mainly referring to CEs from cropland, forests, grassland, water, and barren
lands. The other part is anthropogenic source emissions on the land, that is, indirect
CEs [38]. In general, cropland and built-up area are carbon sources, which emit CEs while
forest, grassland, water, and barren land are CSs, playing a role in carbon absorption in the
carbon cycle [39–41].

With reference to the research outcomes of Fan J, Yuan S, and others [42,43], and
combining with the actual circumstances in the YRD, the carbon emission coefficients of
cropland, forest, grassland, water and barren land were, respectively, set as 0.422 t/(hm2·a),
−0.644 t/(hm2·a), −0.021 t/(hm2·a), −0.253 t/(hm2·a), −0.005 t/(hm2·a). The formula for
calculation is presented as follows:

Id = ∑(Si × δi) (2)

Si denotes the area of the i-th type of LU, and δi is the carbon emission coefficient of
the i-th LU type.

A large number of production and living activities are carried out on built-up area, so
it is impossible to simply and accurately calculate directly.

Instead, It should be calculated by the energy consumption in the use of built-up
area [44]; namely, it is characterized through the amount of carbon dioxide generated by
energy consumption in production and life. In line with previous studies [45–47], this paper
selects nine types of energy sources, including coal, coke, crude oil, gasoline, kerosene,
diesel, fuel oil, natural gas, and electricity, to calculate the CEs of built-up area use (Table 2).
In China, energy consumption is generally measured in standard coal equivalents. The
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energy consumption of the above-mentioned energy sources is therefore first converted
into standard coal consumption. CO2 emissions resulting from energy consumption are
then calculated using the following equation:

Ik = ∑(Ei × θi × fi) (3)

Ei represents the consumption of various energy sources, θi represents their coal
equivalent coefficients, and fi represents their carbon emission coefficients.

Table 2. Table of carbon emission coefficients for energy.

Type of Energy Standard Coal Reference Factor
(kgce/kg) Carbon Emission Factor (tC/tce)

Coal 0.7143 0.7476
Coke 0.9714 0.1128

Crude oil 1.4286 0.5854
Gasoline 1.4714 0.5532
Kerosene 1.4571 0.3416

Diesel 1.4571 0.5913
Fuel oil 1.4286 0.6176

Natural gas 0.13300 kgce/m3 0.4479
Electricity 0.1229 kgce/kwh

Source China Energy Statistical Yearbook
IPCC Guidelines for National

Greenhouse Gas
Emission Inventories

2.3.2. STIRPAT Model

STIRPAT models are derived from IPAT [48]. The IPAT model was one of the pio-
neering models to explicitly illustrate how human factors can influence environmental
impacts. Ehrlich and Holdren [49] established the theoretical and algebraic foundation for
the IPAT, defining total emissions (I) as the product of population (P), per capita GDP (A),
and the CEs per unit of GDP (T). The IPAT model succinctly links environmental pressure
to these three major factors. However, the IPAT model exhibits constraints in elucidating
variations in environmental impacts, as it assumes that the effects of these three factors on
environmental impact are linear and proportional [48]. To address this issue, Dietz and
Rosa [50] introduced stochastic error terms and variable elasticities in 1994, and proposed
the STIRPAT model that enables researchers to more accurately analyze the contributions
of different factors to environmental impact and their non-linear relationships, reducing
the limitations of the original model. Our study utilizes a STIRPAT model in combination
with ridge regression to investigate the elastic correlations among diverse determinants
affecting LUCEs in the YRD, and thereby establishes a foundation for forecasting the trends
of CEs under various scenarios [51].

(1) Indicator Selection

Based on findings from several previous studies, the driving factors of CO2 emissions
can be summarized into several aspects: economic development level, industrial structure,
energy consumption structure, energy efficiency, population size, urbanization rate, and
urban-rural structure [15,52–54]. Consequently, this study utilizes the STIRPAT model to
analyze the influence of population, GDP per capita, energy intensity, urbanization rate,
industrial structure, and energy consumption structure on LUCEs in the YRD (Table 3).

(2) Construction of STIRPAT Model

STIRPAT models are typically based on the following equation [48]:

I = aPb AcTde (4)
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Table 3. Definition of various variables in the model.

Actual Variable Symbol Interpreted Variable Unit

Population size P Residential population in the region 10,000 persons
Affluence A GDP per capita 10,000 CNY/person

Energy intensity T Energy consumption per unit of regional GDP Ton of standard coal/CNY 10,000

Energy structure Es Coal consumption as a proportion of total
energy consumption %

Industrial structure Is The ratio of the value of the secondary industry
to the regional GDP %

Urbanization level U Urban population as a percentage of
residential population %

In this context, I, P, A, and T denote environmental impact, population size, affluence
level, and technological advancement, respectively; a represents the model coefficient; b, c,
and d are the estimated indices; and e signifies the error term. Applying the logarithm to
both sides of Equation (4) yields:

lnI = lna + bln P+cln A+dln T+lne (5)

To study the influencing factors of LUCEs in the YRD and based on the actual situation
of the region [55], the following model is constructed by extending Equation (5):

lnI = lna + bln P+cln A+dln T+ f ln Es+gln Is+hln U+lne (6)

where I represents the LUCEs in the YRD (in ten thousand tons); P represents the population
size (in ten thousand people); A represents affluence; T represents energy intensity; Es
represents the energy structure; Is represents the industrial structure; U denotes the level
of urbanization; b, c, d, f, g, and h are the elasticity coefficients that reflect the percentage
change in I when P, A, T, Es, Is, and U each increase by 1%; lna represents the constant term;
and lne signifies the error term.

(3) Ridge Regression

As there may be multicollinearity among variables, having an adverse effect on the
model’s accuracy or precision of estimation, the ridge regression method specialized in ana-
lyzing collinear data is adopted in this paper to eliminate the collinearity between variables
and ensure that the fitting results are more in line with the actual circumstances [56]. This
method estimates the standard regression coefficients by adding a set of penalty coefficients
k (i.e., the ridge parameter) on the diagonal of the centered explanatory variable matrix.
If the ridge parameter k can be reasonably chosen, the mean square error of the result of
ridge regression will be significantly reduced. The range of k values varies from 0 to 1,
and the smaller the k value, the less information loss and the more accurate the estimation
precision. In this study, the distribution range of 0–0.4 was ultimately selected with a search
step length of 0.01 to obtain the ridge trace map, when each variable tends to be stable, the
corresponding k value is the optimal value.

2.3.3. Scenario Simulation

The SA method refers to assuming multiple possible trends for the forecasted object
and conducting forecasts on the development trend in the future [57,58]. This study adopts
the SA method to establish low-carbon, normal-carbon, and high-carbon scenarios for the
influential factors for LUCEs in the Yangtze River Delta from 2021 to 2040. The first stage is
from 2021 to 2025, the second stage is from 2026 to 2030, the third stage is from 2031 to 2035,
and the fourth stage is from 2036 to 2040.

For the present study, the normal-carbon scenario is based on the “14th FYP” and the
“Long-Range Objectives Through the Year 2035” as well as on the observed change rate in
the past decade, to estimate the CEs in each city under the current policy scenario [59,60]. To
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model a low-carbon scenario, we set parameters so that they would correspond to relatively
minor efforts in terms of taking certain energy conservation and emissions reduction
strategies on the basis of current policies from the perspective of sustainable development.
Similarly, we set parameters for the high-carbon scenario so that they would correspond to
relatively minor failures to meet emission reduction tasks stipulated by current policies. Our
choice in setting parameters for the low-carbon scenario was motivated by the assumption
that minor improvements would be more feasible and likely to be implemented. For the
high-carbon scenario, it was also assumed that minor deviations from policy targets would
be more likely to occur, and that it was therefore important to assess the consequences of
such deviations in terms of meeting emissions goals. Parameters for the scenarios were set
according to the assumptions and metrics described below.

Parameter Setting

This study analyzed the changes in six variables in the STIRPAT model, namely
population size (P), affluence (A), energy intensity (T), energy consumption structure (ES),
industrial structure (IS), and urbanization level (U), under different scenarios (Table 4).

Table 4. Model variable setting under different scenarios.

Scenario Year P (%) A (%) T (%) U (%) IS (%) ES (%)

low-
carbon

2020–2025 0.12 4.96 −3.37 0.87 −1.5 −3.60
2025–2030 −0.13 4.03 −3.07 0.78 −1.3 −3.10
2030–2035 −0.28 2.68 −2.87 0.78 −0.9 −3.10
2035–2040 −0.38 2.48 −2.67 - −0.5 −2.47

normal-
carbon

2020–2025 0.17 5.42 −2.97 0.87 −1.4 −3.40
2025–2030 −0.12 4.00 −2.67 0.78 −1.2 −2.90
2030–2035 −0.27 2.61 −2.47 0.78 −0.9 −2.90
2035–2040 −0.34 2.17 −2.27 - −0.5 −2.27

high-
carbon

2020–2025 0.13 4.60 −2.57 1.41 −1.2 −3.20
2025–2030 −0.12 3.86 −2.27 0.76 −0.9 −2.70
2030–2035 −0.26 2.89 −2.07 0.76 −0.7 −2.70
2035–2040 −0.35 2.58 −1.87 - −0.3 −2.07

(1) Population size

From 2016 to 2020, the average natural population growth rate in Shanghai, Zhejiang,
Jiangsu, and Anhui was 0.19%, 1.34%, 0.35%, and 0.32%, respectively. Meanwhile, popula-
tion economists forecast that China will begin to experience negative population growth
by 2030. Combined with Wang Can’s [61] population forecast for China’s provinces for
2010–2100 under five socioeconomic development scenarios, this study used SSP1 as the
low-carbon scenario, SSP2 as the normal-carbon scenario, and SSP5 as the high-carbon
scenario. The average annual growth rate of population size is set as 0.17%, −0.12%,
−0.27%, and −0.34% for 2020–2025, 2025–2030, 2030–2035, and 2035–2040, respectively,
in the normal-carbon scenario. For the low-carbon scenario, the rates are 0.12%, −0.13%,
−0.28%, and −0.38%, respectively, while for the high-carbon scenario, they are 0.13%,
−0.12%, −0.26%, and −0.35%.

(2) Affluence

According to the “Outline of the 14th Five-Year Plan (FYP) for National Economic and
Social Development of Jiangsu Province” (2020–2025), the GDP per capita is expected to
exceed CNY 150,000 by 2025. Anhui Province has set a goal of CNY 90,000 for GDP per
capita by 2025 with an annual growth rate of 5.6%, while Zhejiang Province aims to exceed
CNY 130,000. Combining Jiang Tong and Zhao Jing’s [62] economic forecast results for
each province under the shared socioeconomic development path, as well as Wang Can’s
population forecast, the average annual growth rates of GDP per capita are set as 5.42%,
4.00%, 2.61%, and 2.17% for 2020–2025, 2025–2030, 2030–2035, and 2035–2040, respectively,
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in the normal-carbon scenario. For the low-carbon scenario, the rates are 4.96%, 4.03%,
2.68%, and 2.48%, respectively, and for the high-carbon scenario, they are 4.60%, 3.86%,
2.89%, and 2.58%, respectively.

(3) Energy intensity

According to “The 14th FYP for Resource conservation and Circular Economy devel-
opment in Shanghai”, the energy consumption per unit of GDP is expected to decrease
by 14% from 2020 to 2025. The “14th FYP for the Development of the Circular Economy
in Jiangsu Province” stipulates that the energy consumption per unit of land GDP will
decrease by 15% in 2025 compared to 2020. The “14th FYP for Energy Saving and Emissions
Reduction in Zhejiang Province” requires that the energy consumption per unit of GDP
will decrease by 14.5% in 2025 compared to 2020, and the “14th FYP for Energy Saving and
Emissions Reduction in Anhui Province” aims to reduce energy consumption per unit of
land GDP by 14% by 2025, striving to decrease by 14.5%. Therefore, in the normal-carbon
scenario, the average annual change rate of energy intensity in the YRD from 2020 to 2025
is set to decrease by 14%, with an annual change rate of −2.97%. As energy structure
adjustment and energy utilization efficiency improve, the decrease rate of energy intensity
will gradually slow down. Following the mainstream setting method of declining annual
change rates across the period [63–65], the annual change rate will increase by 0.3%, 0.5%,
and 0.7% from 2026 to 2030, 2031 to 2035, and 2036 to 2040, respectively. The energy
intensity change rates for the high-carbon (+0.4%) and low-carbon (−0.4%) scenarios are
also established based on the normal-carbon scenario.

(4) Urbanization level

According to the “14th FYP for Economic and Social Development” in Shanghai,
Zhejiang, Jiangsu, and Anhui provinces, the urbanization rate target for 2025 is 90%, 75%,
75%, and 65%, respectively. The urbanization rates in each province are projected to
attain 90%, 80%, 80%, and 70% by 2035, respectively, in accordance with the long-term
development targets. Therefore, the urbanization rate is set to 74% in the low-carbon and
normal-carbon scenarios for 2025, with an annual growth rate of 0.87%, and the rate is
set to 80% in 2035, with an annual growth rate of 0.78%. In the high-carbon scenario, the
urbanization rate is set to 76% in 2025 and 82% in 2035, with annual growth rates of 1.41%
and 0.76%, respectively, while the urbanization rate remains stable from 2035 to 2040.

(5) Industrial structure

From 2015 to 2020, the changes in the proportion of the second industry to the GDP
in Shanghai, Jiangsu, Zhejiang, Anhui, and the entire YRD are −3.38%, −1.51%, −2.96%,
−2.55%, and −2.27%, respectively. Combined with the long-term development goals for
2035 and the ideal proportion of the secondary industry to GDP of 35% in developed
countries, the average annual change rate of the proportion of the secondary industry
to GDP is set as −1.4%, −1.2%, −0.9%, and −0.5% for 2020–2025, 2025–2030, 2030–2035,
and 2035–2040, respectively, in the normal-carbon scenario. For the low-carbon scenario,
the corresponding rates are −1.5%, −1.3%, −0.9%, and −0.5%, while for the high-carbon
scenario, they are −1.2%, −0.9%, −0.7%, and −0.3%, respectively.

(6) Energy consumption structure

According to the “China Energy Revolution Progress Report (2020)”, the proportion of
coal in primary energy consumption was approximately 57.7% in 2019 [66], with an average
annual decrease rate of 2.44% from 2015. It is expected that the proportion of coal will drop
to below 50% by the end of the “14th FYP” (2025), with an average annual decrease rate of
2.36%. Global and China Energy Outlook (2050) estimates that the proportion of coal and
carbon in China will be around 30.7% in 2050 [67], with an average annual decrease rate of
1.93% from 2025. The data indicates that between 2015 and 2020, the annual rate of decline
in coal consumption in the YRD was 3.52%. Therefore, the energy consumption structure
change rate in the YRD from 2020 to 2025 in the normal-carbon scenario is set to be −3.40%,
and that from 2025 to 2035 is −2.90%. The change rate from 2035 to 2040 is −2.27%. The
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high-carbon (+0.2%) and low-carbon (−0.2%) scenarios for energy consumption structure
are also established based on the normal-carbon scenario.

3. Results
3.1. Land Use Structure Characteristics

LU classification maps were generated using ArcGIS 10.6 (Figure 3), and the area for
each LU type was computed to create Table 5. The area change rate in Table 5 is the ratio of
the changed area of different LUs in the past 20 years to the area in 2000.
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Table 5. Land use structure of the YRD.

Unit: Hectares Cropland Forest Grassland Water Barren Land Built-Up Area Total Area

2000 19,825,127.64 10,801,425.69 18,417.33 2,257,165.89 1980.00 2,425,394.70 35,329,511.70
56.11% 30.57% 0.05% 6.39% 0.01% 6.87%

2005 19,163,908.35 10,902,312.99 15,719.85 2,405,254.59 956.25 2,841,359.58 35,329,511.70
54.24% 30.86% 0.04% 6.81% 0.00% 8.04%

2010 18,593,248.14 10,923,399.90 16,518.60 2,414,010.51 676.71 3,381,657.84 35,329,511.70
52.63% 30.92% 0.05% 6.83% 0.00% 9.57%

2015 18,304,264.80 10,618,661.97 10,739.43 2,381,475.78 474.48 4,013,895.24 35,329,511.70
51.81% 30.06% 0.03% 6.74% 0.00% 11.36%

2020 18,247,108.14 10,506,782.43 5084.55 2,209,391.55 424.71 4,360,720.32 35,329,511.70
51.65% 29.74% 0.01% 6.25% 0.00% 12.34%

20-year area
change −1,578,019.5 −294,643.26 −13,332.78 −47,774.34 −1555.29 1,935,325.62

Rate of area
change −7.96% −2.73% −72.39% −2.12% −78.55% 79.79%

From Table 5, it can be discerned that the principal LU types in the YRD are cropland,
forest, and built-up area. Cropland is the largest, with an area of 18,247,108.14 hectares
in 2020, representing approximately fifty percent of the overall area of the study region.
However, the area of cropland has been declining annually and is primarily located in the
northern section of the YRD, specifically in Jiangsu and Anhui provinces. The second is
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forest; its area was 10,506,782.43 hectares in 2020, constituting approximately 30% of the
overall area. Between 2000 and 2010, the forested area experienced a gradual increase, but
it began to decrease gradually after 2010, chiefly distributed in the southern portion of
the YRD urban agglomeration. (Zhejiang Province). The built-up area is centered around
Shanghai and radiates continuously from the water system along the river, with its area
increasing from 6.87% of the total area in 2000 to 12.34%, reaching 4,360,720.32 hectares in
2020. The rate of change in the built-up area is as high as 79.79%. Within the six categories
of LU, only the area of built-up area increased, and all other types of land decreased, with
the largest decrease being in barren land and grassland, with area change rates of −78.55%
and −72.39%, respectively.

3.2. Land Use Change Characteristics

Based on ArcGIS 10.6, a quantitative analysis was conducted on the characteristics
of LU changes in the study area, and the LU transition matrixes from 2000 to 2005, from
2005 to 2010, from 2010 to 2015, from 2015 to 2020, and from 2000 to 2020 were obtained
(Table 6 and Figure 4). For the aspect of LU transition direction, a total of 3,970,175.13 hectares
of land were mutually converted between 2000 and 2020. In the LU outbound transition
process, cropland had the largest converted area, followed by forest, water, built-up area,
and grassland, while the converted area of barren land was the smallest. In the LU inbound
transition process, built-up area had the largest converted area, followed by cropland, water,
forest, and grassland. From the perspective of the net converted area, only the extent of built-
up area significantly increased, whilst all other LU categories witnessed a decrease. (Table 6).

From 2000 to 2020, built-up area expanded considerably, by a total of 1,935,325.62
hectares (Table 5). Specifically, the area of added built-up area increased every five years
from 2000 to 2015, reaching a peak in 2010–2015, before declining slightly in 2015–2020
with a 44.53% decrease compared to the previous period. As shown in Table 5, the major-
ity (around 90%) of the converted built-up area came from cropland due to accelerated
urbanization and industrialization with the start of the 1990s. This resulted in a large
number of croplands being converted to built-up areas as agricultural land was transferred.
Additionally, waters accounted for 6–10% of the converted land while 2% was converted
from forest.

Between 2000 and 2020, a total of 2,497,602.60 hectares of cropland flowed into built-up
area, with the percentage flowing to built-up area increasing from 44.91% in 2000–2005
to 55.61% in 2005–2010, and further to 68.25% in 2010–2015, before dropping to 55.75% in
2015–2020. During the same period, some cropland was also converted into forest and
waters. The proportion of cropland converted to forest decreased gradually from 28.14%
in 2000–2005 to 13.22% in 2010–2015 before sharply increasing to 29.26% in 2015–2020
due to the implementation of the “Regulations on Returning Cropland to Forests” [68] in
2002. However, in 2007, the State Council issued a notice to suspend this policy in order
to avoid encroaching on the red line of 1.8 billion mu of cropland. It was not until 2014
that the policy was restarted under the “Overall Plan for Returning Cropland to Forests
and Grasslands”. Consequently, the primary factor behind the decrease in cropland is
the transformation of agricultural land into built-up areas, along with the national policy
aimed at converting cropland back to forested areas, which also plays a role in this decline.

3.3. Composition and Trend of LUCEs

Between 2000 and 2020, the LUCEs in the YRD manifested a continuous upward
trajectory, escalating from 2.70 × 108 t in 2000 to 9.10 × 108 t in 2020, with an increase of
about 6.4 × 108 t, an increase rate of 243.77%. However, the increase rate for every five
years showed a significant downward trend, being 75.16%, 46.78%, 18.08%, and 13.24%,
respectively, indicating that the CEs problem has been paid attention to for a long time.
When considering the carbon sources, human activities in the built-up area were the
dominant carbon source, accounting for 96.90% of the total CEs in 2000. The emissions
showed a constant growth trend over the past 20 years, breaking through 98% of total CEs
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in 2005, and accounting for 99.15% of total CEs in 2020. It can be seen that almost all CEs
are derived from built-up areas. Looking at the CSs, forests were the primary contributors,
representing over 90% of the overall carbon sink. Due to its strong carbon sink capacity,
and the forest maintaining at around 30% of the regional total area, its carbon absorption
effect is very significant. (Table 7).

Table 6. 2000–2020 land use transfer matrix.

Unit: Hectares 2005

LU Type Cropland Forest Grassland Water Barren Land Built-Up
Area

Transfer-Out
Area

2000

Cropland 18,887,908.14 263,699.73 2808.81 249,769.62 4.14 420,937.2 937,219.5
Forest 155,996.73 10,635,583.59 70.65 152.46 0 9622.26 165,842.1

Grassland 3904.83 669.51 12,627.99 154.08 35.82 1025.1 5789.34
Water 114,509.61 2359.35 75.87 2,112,064.83 94.77 28,061.82 145,101.42

Barren land 175.77 0 136.53 357.12 820.71 489.87 1159.29
Built-up area 1413.27 0.81 0 42,756.48 0.81 2,381,223.33 44,171.37
Transfer-in

area 276,000.21 266,729.4 3091.86 293,189.76 135.54 460,136.25 1,299,283.02

2010

2005

Cropland 18,249,230.34 222,782.67 5012.64 178,225.29 21.87 508,635.54 914,678.01
Forest 191,744.28 10,698,219.9 168.57 182.79 0 11,997.45 204,093.09

Grassland 2433.6 596.61 11,168.46 81.36 177.66 1262.16 4551.39
Water 148,982.49 1795.14 139.77 2,204,361.27 138.78 49,837.14 200,893.32

Barren land 66.96 0 28.8 132.84 338.22 389.43 618.03
Built-up area 789.84 4.05 0.36 31,026.78 0.18 2,809,538.37 31,821.21
Transfer-in

area 344,017.17 225,178.47 5350.14 209,649.06 338.49 572,121.72 1,356,655.05

2015

2010

Cropland 17,733,922.65 166,901.67 515.88 84,959.73 1.89 317,960.1 570,339.27
Forest 273,837.33 10,338,709.95 104.85 122.94 0 5886.63 279,951.75

Grassland 4490.01 971.91 4446.18 27.27 69.21 734.94 6293.34
Water 234,345.96 198.36 6.48 2,109,282.57 137.16 37,504.62 272,192.58

Barren land 62.55 0.09 10.98 23.22 215.91 161.73 258.57
Built-up area 446.85 0.81 0.18 14,975.64 0.54 3,998,474.82 15,424.02
Transfer-in

area 513,182.7 168,072.84 638.37 100,108.8 208.8 362,248.02 1,144,459.53

2020

2015

Cropland 17,733,922.65 166,901.67 515.88 84,959.73 1.89 317,960.1 570,339.27
Forest 273,837.33 10,338,709.95 104.85 122.94 0 5886.63 279,951.75

Grassland 4490.01 971.91 4446.18 27.27 69.21 734.94 6293.34
Water 234,345.96 198.36 6.48 2,109,282.57 137.16 37,504.62 272,192.58

Barren land 62.55 0.09 10.98 23.22 215.91 161.73 258.57
Built-up area 446.85 0.81 0.18 14,975.64 0.54 3,998,474.82 15,424.02
Transfer-in

area 513,182.7 168,072.84 638.37 100,108.8 208.8 362,248.02 1,144,459.53

2020

2000

Cropland 17,327,525.04 347,408.64 535.50 340,071.48 122.85 1,809,464.13 2,497,602.60
Forest 586,735.38 10,152,806.04 925.38 3231.81 20.52 57,706.56 648,619.65

Grassland 9195.21 2854.35 3593.97 337.59 48.51 2387.70 14,823.36
Water 302,284.89 3795.12 18.90 1,810,406.52 140,660.82 280,618.20 727,377.93

Barren land 365.67 0.27 8.28 742.77 8207.10 4898.70 6015.69
Built-up area 20,999.16 69.84 2.52 54,601.20 63.18 799.83 75,735.90
Transfer-in

area 919,580.31 354,128.22 1490.58 398,984.85 140,915.88 2,155,075.29 3,970,175.13
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Table 7. LUCEs/carbon absorption.

Year
LUCEs/Carbon Sequestration (t)

Net CEsCarbon
Source Built-Up Area Cropland Carbon Sink Forest Grassland Water Barren Land

2000 270,122,768.2 261,756,564.3 8,366,203.9 −7,527,577.8 −6,956,118.1 −386.8 −571,063.0 −9.9 262,595,190.4
96.903% 3.097% 92.41% 0.005% 7.586% 0.000%

2005 467,593,483.8 459,506,314.5 8,087,169.3 −7,629,953.9 −7,021,089.6 −330.1 −608,529.4 −4.8 459,963,529.9
98.270% 1.730% 92.02% 0.004% 7.976% 0.000%

2010 682,774,771.4 674,928,420.7 7,846,350.7 −7,645,764.5 −7,034,669.5 −346.9 −610,744.7 3.4 675,129,006.9
98.851% 1.149% 92.01% 0.005% 7.988% 0.000%

2015 804,606,581.1 796,882,181.4 7,724,399.7 −7,441,159.6 −6,838,418.3 −225.5 −602,513.4 −2.4 797,165,421.5
99.040% 0.960% 91.90% 0.003% 8.097% 0.000%

2020 910,036,908.1 902,336,628.5 7,700,279.6 −7,325,452.8 −6,766,367.9 −106.8 −558,976.1 −2.1 902,711,455.3
99.154% 0.846% 92.37% 0.001% 7.631% 0.000%

Focusing solely on the changes in carbon sources, emissions from built-up areas
rose sharply from 2.62 × 108 t in 2000 to 9.02 × 108 t by 2020, representing an increase
of approximately 6.41 × 108 t and a growth rate of 244.72%. The increase rates in the
past two decades were 75.55%, 46.88%, 18.07%, and 13.23%, respectively. Meanwhile, the
carbon emission coefficients for built-up area were 10.79 kg·m−2·a−1, 16.17 kg·m−2·a−1,
19.96 kg·m−2·a−1, 19.85 kg·m−2·a−1, and 20.69 kg·m−2·a−1 in 2000, 2005, 2010, 2015, and
2020, respectively, with an always increasing trend. However, the increasing trend in
2010–2020 was significantly reduced. It is evident that the rate of increase in CEs from
the built-up area is essentially in accordance with the trend of net LUCEs. In addition,
according to Table 2, built-up area increased by about 79.79% between 2000 and 2020, while
CEs from this area rose by around 244.72%, which is much larger than the change in area.
This implies that the enlargement of the area is not the predominant cause for the rise in
CEs from built-up areas. CEs from agricultural land exhibited a gradual decline, decreasing
from 8.37 × 106 t in 2000 to 7.70 × 106 t in 2020, with a decrease of about 6.66 × 105 t,
a decrease rate of 8.65%. This is primarily attributed to the reduction in cropland area
resulting from urbanization, leading to a reduction in CEs from cropland.

Regarding the CSs, the total quantity of carbon absorption manifested a slow upward
trend and then a downward trend, rising by only 11.81 × 104 tons from 2000 to 2010. After
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2010, the total amount of carbon absorption began to decline and decreased by 32.03 × 104 t
compared with the amount in 2010 by 2020.

3.4. Peak CO2 Emission Forecast
3.4.1. Impact Mechanism of Carbon Emissions

To eliminate the multicollinearity and accurately estimate the regression coefficients,
testing for multicollinearity among the explanatory variables is important. In this study,
SPSS 25 was used to diagnose the collinearity among the variables. Should the results
indicate that the VIF of each variable is greater than 10, it indicates that there are significant
correlations among them (Table 8). Therefore, we employed ridge regression to analyze the
variables and improve the accuracy of the fit.

Table 8. LUCEs/carbon absorption.

Coefficient a

Model
Unstandardized Coefficient Standardized Coefficient

t Significance
Collinearity Statistics

B Standard Error Beta Tolerance VIF

(Constant) −7.257 5.030 −1.443 0.171
lnP 1.853 0.506 0.263 3.662 0.003 0.003 373.481
lnA 0.692 0.081 1.102 8.530 0.000 0.001 1207.704
lnT 0.615 0.090 0.621 6.827 0.000 0.002 599.258
lnEs 0.355 0.071 0.076 5.015 0.000 0.061 16.499
lnIs 0.456 0.142 0.100 3.269 0.00 6 0.015 67.377
lnU 0.921 0.201 0.367 4.578 0.000 0.002 465.864

a Dependent variable: lnI.

Based on the ridge trace graph and ridge regression estimates, when the value of k
was around 0.02, the ridge trace graph became stable (Figure 5), with R2 = 0.997, F value
= 1312.596, and Sig F = 0.000 (Table 9). It can be seen that when k is equal to 0.02, ridge
regression demonstrates a relatively strong fitting effect, and the model performs well.
Therefore, the STIRPAT model equation can be established that:

lnI = −7.055 + 1.932lnP + 0.241lnA − 0.141lnT + 0.043lnEs + 1.440lnIs + 1.045lnU (7)

According to the regression equation, population size, GDP per capita, energy con-
sumption structure, industrial structure, and urbanization rate all significantly promote
LUCEs in the YRD. Meanwhile, the elasticity coefficients of each variable are different.
Population and industrial structure exert a predominant role in promoting CEs, with cor-
relation coefficients of 1.932 and 1.440, respectively, and only energy intensity exhibits a
negative relationship, indicated by a correlation coefficient of −0.141.

The real values of the six variables were substituted into the equation, and the fitted
values during the study period were compared with the actual values. The findings suggest
that the errors were within reasonable ranges, demonstrating a high estimated accuracy for
the equation (Table 10).

The growth of the population size constitutes a decisive element giving rise to the
rise in LUCEs in the YRD. This is due to the coordinated development of the YRD, which
makes the region have a strong comprehensive competitiveness, and excellent economic
and social development conditions. On the one hand, the high level of urban development
attracts a large number of outstanding talents and external population inflows, thereby
increasing energy consumption in industries such as electricity, transportation, and real
estate, which gives rise to an escalation in CEs. On the other hand, the abundant labor force
stimulates the region’s economic level and the increases in residents’ living standards, and
as such the consumption of living resources and the utilization of production materials
have significantly increased, thereby driving an increase in the social carbon footprint. The
industrial structure constitutes the second principal factor impacting the augmentation of
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LUCEs in the YRD, so optimization of industrial-structure adjustment remains as having
significant potential. At the same time, the CEs produced by land designated for the
secondary industry exceed those from land allocated to the tertiary industry, so shifting
from secondary to tertiary industry can be a useful industrial development strategy to
achieve the objectives of energy efficiency and emission reduction. Reducing energy
intensity is the primary method for decreasing CEs. This is due to the enhancement
of technological advancements, and can augment the efficiency of energy consumption,
thus decreasing energy usage per unit of production and reducing the production of
greenhouse gasses from both the perspective of reducing energy use and increasing energy
utilization efficiency.
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Table 9. Ridge regression estimation results.

K = 0.02
Unstandardized Coefficient Standardized Coefficient

t P R2
Adjusted

R2 F
B Standard Error Beta

lne −7.055 1.457 - −4.841 0.000 **

0.998 0.997
1312.596
(0.000 ***)

lnP 1.932 0.147 0.274 13.171 0.000 **
lnA 0.241 0.008 0.384 28.429 0.000 **
lnT −0.141 0.021 −0.143 −6.700 0.000 **
lnEs 0.043 0.123 0.009 0.350 0.731
lnIs 1.440 0.107 0.309 13.460 0.000 **
lnU 1.045 0.053 0.417 19.599 0.000 **

Sig F = 0.000 Dependent variable: lnI. ***, ** represent significance levels of 1%, 5%, respectively.

3.4.2. Estimated Results

In the contexts of low-carbon, normal-carbon, and high-carbon scenarios, peak carbon
dioxide emission years for land use emission are 2025, 2030, and 2035, respectively, with
peak values of 9.10 × 108 t, 9.25 × 108 t, and 9.73 × 108 t (Figure 6). By comparing the
trends of LUCEs across the three scenarios, it was observed that the overall trends of CEs
are similar, with varying degrees of growth before peaking, influenced by multiple driving
factors. From 2021 to 2025, LUCEs rose considerably across all scenarios, with the highest
increase observed in the high-carbon scenario, while the low-carbon scenario exhibited
the smallest increase and peaked in 2025. The normal-carbon scenario’s growth rate was
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between the high-carbon and low-carbon scenarios. From 2025 to 2030, LUCEs continued
to surge in the high-carbon scenario, but growth rates reduced compared to 2021–2025. The
normal-carbon scenario also witnessed a surge, but the growth rate significantly slowed
down until reaching its peak in 2030. In the period 2030–2035, only the high-carbon scenario
experienced further carbon emission growth, reaching its peak in 2035.

Table 10. Comparison of actual and model-fitted values for LUCEs.

Year Estimated Value (10,000 t) Actual Value (10,000 t) Error (10,000 t) Error Rate

2000 26,708.27682 26,259.51904 448.757783 1.71%
2001 28,049.94751 27,552.99544 496.9520668 1.80%
2002 30,388.69287 30,325.19704 63.49583408 0.21%
2003 35,207.96022 34,725.96306 481.9971626 1.39%
2004 39,987.67096 39,698.80429 288.8666693 0.73%
2005 44,608.30471 45,996.35299 −1388.048287 3.02%
2006 49,190.87637 50,234.03399 −1043.157616 2.08%
2007 53,857.97537 55,305.93724 −1447.961871 2.62%
2008 57,855.52602 58,118.93629 −263.4102744 0.45%
2009 58,969.61993 60,949.58582 −1979.96589 3.25%
2010 67,178.07468 67,512.90069 −334.8260093 0.50%
2011 73,138.92969 73,735.02692 −596.097226 0.81%
2012 75,047.18413 75,403.41951 −356.2353785 0.47%
2013 77,245.17226 78,938.74086 −1693.568593 2.15%
2014 80,152.61260 78,487.29450 1665.3181040 2.12%
2015 80,109.09632 79,716.54215 392.5541658 0.49%
2016 80,425.21205 82,763.35098 −2338.13893 2.83%
2017 84,981.86767 85,339.10985 −357.2421739 0.42%
2018 88,627.34692 87,183.61181 1443.735117 1.66%
2019 88,835.10881 88,758.82526 76.28355544 0.09%
2020 88,862.12205 90,271.14553 −1409.023474 1.56%
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4. Discussion

(1) With the increasingly severe issue of CEs, it is crucial to establish effective carbon
emission prediction models (CEPM) to forecast emission trends in carbon dioxide. In
existing research on CE forecasts, different models use different conditions and exhibit
different performances. The Gray Forecast Model can be easily combined with other models,
has a simple calculation method, and high accuracy, but is suitable for forecasting only in
the short and medium term. The environmental Kuznets curve examines the connection
between economic growth and the quality of the environment, but the factors affecting
LUCEs are not exclusively linked to economic aspects. Although the ARIMA and neural
network models have the advantage of more accurate prediction results, they are relatively
weak in explaining the specific effects of emission reduction measures.
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The aim of our study was to assess the role of current policies in China in CE reduction,
test the effectiveness of policies, and use the STIRPAT model to quantitatively calculate the
impact of human behaviors, such as those regarding population, economy, and technology,
on the environment. The variables involved in the STIRPAT model are macro-variables,
making it convenient to set scenario parameters and possessing high flexibility and scala-
bility, making it more suitable for evaluating the effects of measures for reducing emissions.
Simultaneously, this model is capable of clearly revealing the most sensitive factors among
the factors that affect CEs and exerting a more significant role in policy guidance. However,
the scenario and parameter setting process is relatively complex and the parameters need
to be reasonably set according to a large number of recent and long-term policies.

(2) Due to the increasing attention and requirements for energy conservation and
emission reductions in current development policies, it is feasible to achieve the goal of
peaking carbon dioxide emissions in 2030, with the peak value of 9.10 × 108 t, under the
normal-carbon scenario. However, there are both mandatory and expected indicators in
the existing planning policies, which require strict adherence to planning requirements by
local governments in order to achieve China’s goal of peaking carbon dioxide emissions by
2030. In the low-carbon scenario, adjustments are made to energy and industrial structure,
and energy efficiency is improved through technological advancement. With sustained
economic development, population transformation, and upgrading, it would be possible
to achieve carbon peaking ahead of schedule in 2025, with the peak value of 9.25 × 108 t,
which is a 1.75% reduction compared to the normal-carbon scenario. However, in the
high-carbon scenario, if current policies were not to be effectively implemented, energy
efficiency were not improved, and if economic development were to rely on fossil fuels
to a greater extent than anticipated in policy targets, then the CEs from built-up areas
would not be effectively controlled, resulting in continuous increase in CEs. Under the
high-carbon scenario, carbon peaking would not be achieved until 2035, with the peak
value of 9.73 × 108 t, which is a 5.18% increase compared to the normal-carbon scenario.
Overall, both the normal-carbon and low-carbon scenarios are capable of achieving carbon
peaking in the YRD by 2030. However, as this paper only considers LUCEs, achieving
carbon peaking before 2030 is a better choice. The low-carbon scenario balances both social
development needs and CE reduction, which is a feasible low-carbon pathway for the
YRD. In addition, in the upcoming urbanization process in the region, there will inevitably
be a phenomenon of urban expansion encroaching on urban and rural ecological space.
Therefore, in the process of suppressing carbon source growth, the weakening of CSs
should also be avoided, and the maintenance of carbon sink capacity should be addressed.

(3) Compared with previous studies on LUCE estimation [12,13], despite differences
in study regions, scales, and estimation methods used, they all conclude that CEs from
built-up area are the main source of carbon and that forest land plays a dominant role in
carbon absorption. This paper further validates this conclusion through the utilization
of the carbon emission coefficient method for the calculation of LUCEs in the YRD. Ad-
ditionally, relevant studies have demonstrated that the factors influencing LUCEs in the
area comprise population size, urbanization rate, GDP per capita, industrial structure, and
energy consumption [24,69], with different intensities of influence attributed to disparate
levels of regional economic development, urbanization stages, and development models.
As for forecasting of CO2 emission peaks, studies have mainly focused on the normal-
carbon scenario within the region, with peak years ranging from 2025 to 2030 [24,51], and
cities with higher economic development levels tend to reach carbon peaking earlier. For
the YRD, previous studies have estimated that its CEs will peak in 2020, 2025, and 2040
under low-carbon, normal-carbon, and high-carbon scenarios, respectively [70]. However,
as this study did not solely take into account the CEs produced by energy use in built-up
areas, but also took into account the process of carbon cycling in other LU types, and as
such there may be differences in the estimated results.

(4) This study investigates CEs’ effect in terms of LU, clarifies the direction and inten-
sity of the factors influencing LUCEs in the YRD, and simplifies the complex mechanism of
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LUCE changes. By forecasting the trends in LUCEs at a macro level based on the changing
rates of various indicators according to the three scenarios set by local policies, this paper
provides an important intervention approach for regulating CEs from macro-level socioeco-
nomic activities. It could be a valuable reference for advancing carbon peaking and carbon
neutralization goals, improving LU management policies, and optimizing technological
conditions in order to achieve carbon reduction.

(5) However, the CE calculation presented in this paper merely considers diverse
LUCE coefficients and selected energy consumption data, disregarding the differences
in carbon emission coefficients caused by regional and temporal circumstances, as well
as all anthropogenic CEs on land carriers at a more comprehensive level, leading to a
certain level of discrepancy from actual CEs. In addition, this paper only selects macro-
level socioeconomic data as factors affecting LUCEs, weakening the impact of changes
in LU structures on CEs and failing to forecast future LUCEs by estimating future trends
in land structure changes. Nevertheless, this paper offers an occasion for subsequent
exploration, from the perspectives of human activities and natural processes, of how LU
changes influence the transformation of land management practices, alterations in the
patterns of artificial energy consumption, and the resultant variations in LUCEs, and for
in-depth examination of the underlying mechanism by which LU affects CEs. It also offers
novel research perspectives and directions for attaining a decrease in CEs going forward
from the perspectives of optimizing LU structure and territorial spatial layout.

5. Conclusions

(1) LU in the YRD is predominantly characterized by cropland, which accounts for over
50% of the total land area. From 2000 to 2020, the overall trend of LU change involves a
decrease in cropland, forest, grassland and water, with the largest decrease being in cropland.
Meanwhile, built-up area has increased, with a growth rate of 79.79% over the 20 years.
The main reason is the rapid economic development and urbanization process in the YRD,
which has led to accelerated expansion of urban areas and transfer of land from agriculture to
construction [71]. Built-up areas constitute the primary contributor to CEs, contributing more
than 96% to net CEs and demonstrating the highest correlation with total CEs. On the contrary,
the forest serves as the primary carbon sink, contributing over 91% to carbon sequestration.

(2) Over the course of the past two decades, the LUCEs in the YRD have manifested a
continuous upward tendency, yet the rate of escalation has gradually decelerated. Population
size, per capita GDP, energy consumption structure, industrial structure, and urbanization
rate all exert a positive promoting impact on LUCEs within the region, with population size
having the greatest effect, followed by industrial structure, urbanization rate, GDP per capita,
and energy consumption structure. Only energy intensity demonstrates a negative correlation
with the LUCEs.

(3) Under the low-carbon, normal-carbon, and high-carbon scenarios, the YRD will
achieve carbon peaking in 2025, 2030, and 2035, respectively, with peak values of 9.10 × 108 t,
9.25 × 108 t, and 9.73 × 108 t. It should also be noted that peaking CO2 emissions in China by
2030 may still be insufficient to remain within safe planetary boundaries.
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