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Abstract: Quantifying landscape features and linking them to ecological processes is a key goal of
landscape ecology. Urbanization, socio-economic growth, political influences, and morphology have
extended built-up and urban regions from the core to the boundaries. Population expansion and
human activity in districts have increased outlying areas and living space borders, segmenting the
urban area and affecting the local ecosystem. Current space-based remote sensing (RS) techniques
could be used to visualize conditions and future prognoses for district growth to plan the infrastruc-
ture. The Land Use Land Cover (LULC) patterns in the Sonipat district, located within the National
Capital Region (NCR), were examined using RS data from 2011 (Landsat 7) and 2021 (Sentinel-2)
and analyzed on the Google Earth Engine (GEE) cloud platform. LULC datasets for both years were
generated, followed by calculations of landscape metrics to evaluate changes across the study area.
These metrics, computed using R software version 4.4.2, include analyses at three levels: five metrics
at the patch level, five at the landscape level, and nine at the class level. This paper provides detailed
insights into these landscape metrics, illustrating the extent and nature of landscape changes within
the study area over the decade. Aggregation and fragmentation are observed in the study area, as
the results indicate that urban, fallow, and barren areas have merged into larger, contiguous patches
over time. This shows a consolidation of smaller patches into more extensive, connected land cover
areas. Fragmentation is described as occurring between 2011 and 2021, especially in the cropland
LULC class, where the landscape was divided into smaller, isolated patches. This means that larger,
continuous land cover types were broken down into numerous smaller patches, increasing the overall
patchiness and separation across the area, which might have an ecological impact. Landscape metrics
and spatial-temporal monitoring of the landscape would aid the district council and planners in
better planning and livelihood sustainability.

Keywords: LULC change; landscape metrics; fragmentation; urbanization; landscape

1. Introduction

Landscapes have changed drastically through various anthropogenic activities since
the start of industrialization [1]. Urban ecosystems have supplanted natural ecosystems,
and numerous alien species have been introduced [2]. Forests have diminished in number
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and are now only found in highland locations with higher slopes [3]. The amount of
shrubland has grown [4]. Croplands, plantation fields, and urban areas [5], among other
non-native ecosystems [6], currently cover large areas, especially areas near megacities [7].
These changes are affecting native species’ living conditions [8], such as the volume, distri-
bution, and availability of resources [9], the presence of new rivals or predators, the loss
of co-developed species [10], and the growth of social networks [11]. Land use is one of
the most important ways that humans [12] have an impact on the environment [13]. The
clearance of forest land for agricultural purposes and the establishment of communities
have historically [14] been the most significant man-made land-use changes [15]. Later
technological advancements in the 19th and 20th centuries [16], combined with popula-
tion growth [17], increased people’s need for and ability to change the environment [18]
to meet their requirements; urban sprawl [19] is a major contributor to environmental
degradation [20]. Spatial heterogeneity, or the diversity in physical and biological features
within a landscape, is a key concept in understanding ecological health and landscape
dynamics. It refers to the variation in the arrangement, size, and composition of different
land elements, such as vegetation, waterbodies, and built environments, across a given
area. Higher spatial heterogeneity generally supports greater biodiversity, as it provides
diverse habitats and resources for various species. Conversely, lower spatial heterogeneity,
often resulting from large-scale agricultural fields, urbanization, or industrial expansion,
can reduce ecological resilience, making the landscape more vulnerable to environmental
stressors. Understanding the landscape [21], landscape patterns, and information about
features and their drivers can be improved by changing LULC [22] and modeling with spa-
tial metrics [23]. The use of RS and geographic information systems (GIS) aids in the study
of changing landscape spatial patterns [24]. The core data for landscape pattern research
come mostly from categorization maps like plant, soil, and LULC maps [25]. Landscape
ecologists can quickly obtain metrics for a given landscape thanks to the rapid develop-
ment of GIS and RS technologies [26] and the availability of free [18] and updated software
packages such as R and others [27]. Landscapes consist of a human-modified mosaic of
spots, the spatial arrangement of which is referred to as a landscape pattern [28]. Landscape
patterns are measured on patch, class, and landscape levels. In landscape-level surveys,
patch-level metrics are quite important for giving critical information. Edges influence
several species, and they are strongly related to patch interiors. This aids in the comparison
of available neighborhood patches, which aids in the understanding of the patch and the
degree of contrast between the patch and the surrounding area [29]. Metrics at the class
level are averaged across all patches of a given type. This aids in determining how large
patches contribute to the overall index. Habitat fragmentation is an example of this. Habitat
fragmentation is a landscape-level process [30]. Here, it is broken down into smaller habitat
fragments in metrics at the class level. This typically involves a variation in the structure
and functions of the landscape composition. A single type of habitat patch, such as forest
or grassland, that is demarcated in a GIS land use layer is commonly characterized as a
class habitat, which is a unit between patch and mosaic [31] in landscape ecology. Because
of their significant connections with numerous ecological processes, single-class spatial
patterns have proven to be relevant in studies on species protection [32] and population
dynamics [33]. As a result, many ecological studies [34] are interested in spatial trends at the
class level. Metrics at the landscape level are the next level up in the hierarchy. These can
be merged into a weighted average or used to represent aggregated patch mosaic features.
The importance of landscape ecology has been influenced by this appraisal of the terrain’s
richness [35]. With different natural algorithms, these landscape-level measures can yield
comparable or duplicate information. The amount and spatial distribution of a single patch
are represented by landscape-level metrics, which can be considered as a fragmentation
index [36]. As a result, it is critical to understand what kind of measure we are dealing
with (patch, class, and landscape). Even though they are all relevant, changes in land
use/cover are a major environmental issue that contributes to landscape fragmentation,
habitat loss, and climate change [37,38]. Since the 1990s, landscape metrics have become
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ubiquitous instruments for monitoring, analyzing, and planning landscape patterns, thanks
to substantial improvements in landscape ecology. Landscape metrics are widely acknowl-
edged as a helpful and significant tool for tracking, identifying, and assessing the types of
changes that occur in the landscape [39]. Landscape metrics are quantitative indicators of a
landscape’s structural composition and spatial organization. Landscape metrics analysis is
the most essential tool for studying landscape patterns and quantifying spatial variation in
landscape ecology [40]. In this paper, we conduct a comprehensive analysis of landscape
fragmentation in the Sonipat district by calculating landscape metrics at three distinct
levels: patch, class, and landscape. These metrics encompass various landscape pattern
indicators that are crucial for understanding and managing ecosystem processes. Such pro-
cesses are essential for the long-term sustainability of local natural resources, particularly
in regions experiencing rapid urbanization and land use changes. By combining several
landscape pattern metrics, we develop a detailed typology that captures the complexities
of landscape fragmentation. This typology serves as a valuable tool for evaluating and
guiding policies and programs aimed at managing and maintaining the minor yet critical
characteristics of the landscape. Our study provides insights into how urban expansion
and population growth impact natural resources, helping policymakers and stakeholders
implement more effective strategies for sustainable land management and conservation in
the Sonipat district and similar rapidly developing areas.

While this study focuses on the spatial heterogeneity of the Sonipat district, the
analytical approach and insights have broader applicability across diverse geographical
regions and contexts. In rapidly developing areas worldwide, shifts in spatial heterogeneity
often signal underlying changes in land use patterns, biodiversity, and ecological resilience.
By quantifying spatial heterogeneity through metrics such as fragmentation, patch size,
and edge density, this research provides a framework that can be adapted to various
landscapes facing developmental pressures, from urban expansion in metropolitan regions
to agricultural intensification in rural areas.

2. Study Area and Datasets

The study area, the Sonipat district, extends into the NCR (Figure 1). The Sonipat
district covers an area of 2213 km2 and borders the states of Delhi and Uttar Pradesh. The
district is part of the Indo-Gangetic Plains, formed during the Pleistocene epoch of the
Quaternary period. The elevation across Sonipat varies, with an average altitude of ap-
proximately 224 m. Sonipat’s unique blend of rapid urbanization, agricultural dependency,
and diverse landscape typologies within the NCR exemplifies challenges faced by many
developing regions globally. Studying these dynamics allows for the generalization of
findings to similarly urbanizing and agrarian areas, thereby informing sustainable land
management practices across diverse contexts. In Haryana, the Yamuna River and irrigation
canals flowing from it make up the district’s main water supply system. The district does
not have perennial rivers, and different areas have different underground water resources.
The Khader area along the Yamuna has the lowest water table depth, at 10 feet. Some
western and southeastern parts of the district have depths of 30 to 40 feet. Certain areas
have brackish and saline groundwater. In some places, the area is not level, but overall,
it is a continuous part of the Haryana–Punjab plain. The soil is fine loam with rich color
throughout the district. However, some areas have sandy soil, while others have Kallar.
The plain slopes gently to the south and east. The district can be divided into three distinct
regions: khadar, upland plain, and sandy region. The district’s climate is dry in summer
and cold in winter, and the monsoon comes in July and remains until September. December
marks the beginning of the winter season. The month with the lowest temperatures is
January, while the months with the highest temperatures are May and June. In December,
January, and February, there is light rainfall.
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Figure 1. Geographical location of the Sonipat district.

Data Used

Two separate RS images were used in this study, taken in February 2011 (Landsat
7 image with 30 m spatial resolution) and February 2021 (Sentinel 10 m spatial resolution).
The selected images have been classified as free from haze and clouds. The linear artifacts
observed in the 2011 LULC map are due to the scanline corrector malfunction in the Landsat
7 satellite imagery. After the failure of Landsat 7’s scanline corrector in 2003, all subsequent
images contained these distinctive linear gaps. However, these artifacts were addressed by
applying standard correction techniques to reconstruct the image as accurately as possible
without compromising data integrity. The corrected images maintained their overall spatial
accuracy, which was essential for consistency in calculating LULC metrics. Additionally,
these artifacts do not reflect any systematic bias in our analysis, as the correction techniques
used ensure that these gaps did not alter or bias the spatial structure and metrics of the
LULC classes in the 2011 map. A summary of the satellite data used is shown in Table 1.

Table 1. Summary of satellite data.

Datasets Month and Year of Acquisition Cloud Cover Spatial Resolution Temporal Resolution

Landsat-7 ETM+ February 2011 less than 10% 30 m 16 days

Sentinel-2 February 2021 less than 10% 10 m 5 days revised time

3. Methodology

This study aims to identify landscape metrics using RS data and GIS applications. R
software was used for landscape metric measurements, and the supervised classification
was carried out in GEE to create a LULC map. The software and cloud platform used for
this study are listed in Table 2, and the main R packages used in this study are listed in
Table 3.
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Table 2. Used software and cloud platform.

Software and Cloud Platform Script Use Source Websites

Google Earth Engine (GEE) Java Google Cloud Platform Open https://code.earthengine.google.com/,
accessed on 8 October 2024

RStudio (4.1.1) R script Desktop Open https://www.rstudio.com/products/
rstudio/, accessed on 8 October 2024

Table 3. R packages used for evaluating landscape metrics.

S. No. Packages Description

1 landscape metrics Landscape metrics calculation

2 raster Spatial raster data reading and handling

3 sf Spatial vector data reading and handling

4 dplyr Data manipulation

5 bench High-precision timing of R expressions

The method flow chart (Figure 2) illustrates the main steps of the general workflow,
which are implemented in GEE and R. Explained below.
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3.1. LULC Classification in Google Earth Engine

The landscape metrics evaluation was undertaken based on the prepared LULC map.
A vital stage in every LULC classification is the preparation of the basis dataset. The
creation of this dataset for the Landsat 7 and Sentinel-2 (Figure 2) data in this application
begins in GEE with a filtered, cloud-masked image collection, and the median bands
were computed. The LULC classification is based on a supervised technique, which, as is
customary, requires gathering the essential information from the training points in order to

https://code.earthengine.google.com/
https://www.rstudio.com/products/rstudio/
https://www.rstudio.com/products/rstudio/
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train the classifiers. The random forest (RF) classifier was trained and subsequently applied
to the filtered, cloud-masked image collections from Landsat 7 and Sentinel-2, with median
composite bands computed to optimize classification accuracy. Further, after collecting the
samples and merging the class names, code running was performed, and finally, a classified
map of the study area was generated, and this classified image was used for the accuracy
assessments. For validation and to determine the accuracy of the classified map, training
samples were taken again. For the purpose of LULC classification, four key LULC classes
were identified: cropland, waterbodies, built-up, and other. Major crop-sown areas and
cultivable lands were included in the layout of cropland. Natural waterbodies, small to
large reservoirs, and canals were among the waterbodies. Others were fallow and barren
ground, bare soil with very little flora, and drylands. Settlements, roads, railways, and
industrial sites were mostly included in the built-up area. The final map layout, including
legends and spatial details, was created using ArcMap 10.8 to enhance the presentation of
the classified outputs.

3.2. Calculation of Landscape Metrics in R

Landscape metrics are made up of functions that calculate landscape metrics and take
raster data as input. The study is primarily based on the well-known raster package. Metrics
on all available levels, including patch, class, and landscape level, are included in the study.
Patch-level metrics are used to describe each patch in a landscape (a patch being defined as
contiguous cells belonging to the same land-cover class). All patches belonging to a specific
land-cover class are described by class-level metrics. Finally, landscape-level measurements
represent the landscape’s overall properties. Landscape metrics can also be categorized
based on the qualities of the landscape they (conceptually) describe. Shape metrics, core
area metrics, aggregation metrics, diversity metrics, and complexity metrics are all examples
of area and edge metrics. The script was created in R software. First, a reading of the input
raster was conducted, and then a grid (50 × 50 cells) was created to create the boundaries
of a landscape. Creating a 50 × 50 grid for computing landscape metrics standardizes
spatial units and simplifies the analysis by dividing a complex landscape into smaller,
manageable cells. This grid setup allows for a uniform approach to calculating metrics
like patch density and edge length within each cell rather than across the entire landscape,
making it possible to capture and interpret natural variability more effectively. A grid also
maintains scale consistency, ensuring that each metric is based on an equal area size, which
is crucial for comparing patterns across cells. Additionally, grids facilitate spatial analysis
by providing a framework to track ecological patterns and changes systematically across
space, which is essential for understanding how landscape features influence ecological
processes. Using a 50 × 50 grid, in particular, balances detail with broader landscape
coverage, enabling insights at a practical scale for multi-scale or comparative analyses.
After that, an overlay was placed on the newly created grid on top of the input raster.
The calculation of landscape metrics for each cell can be performed, and selected metrics
specified according to the study area in the script and calculated metrics. Next, to visualize
the results, values were connected to the grid. Selected metrics are discussed below in
the tables.

The landscape heterogeneity was analyzed with R software. Five patch-level measures,
five landscape-level measures, and nine class-level measures were selected, as shown in
Tables 4–6. These measures were chosen because of their widespread usage in landscape
research and well-documented effectiveness in characterizing spatial patterns. The per-
centage of each land cover class’ area occupied in each pixel was used to determine the
landscape composition of each pixel. A broader set of variables was used to quantify
the landscape layout. In this study, graphical and pictorial descriptions of landscape
fragmentation were compiled.



Land 2024, 13, 1989 7 of 26

Table 4. List of patch-level landscape metrics.

Patch Level Formula Ranges of Change Unit

Core area index

CAI =
(

acore
ij
aij

)
× 100

where
acore

ij Core area in square meters;
aij Area in square meters;
CAI Core area metric [41].

0 ≤ CAI ≤ 100 Percent

Euclidean nearest-neighbor
distance

ENN = hij
where
hij Distance to the nearest neighbor;
ENN Aggregation metric [42].

ENN > 0 Meters

Fractal dimension index

FRAC =
2∗In∗(0.25∗ρij)

In ai j
where
ρij Perimeter in meters;
ai j Area in square meters;
FRAC Shape metric [43].

1 ≤ FRAC ≤ 2 None

Related circumscribing circle

CIRCLE = 1 −
(

aij

acircle
ij

)
where
aij Area in square meters;
acircle

ij Area of the smallest circumscribing circle;
CIRCLE Shape metric [44].

0 ≤ CIRCLE < 1 None

Shape index

SHAPE =
P ij

minPij

where
P ij Perimeter in terms of cell surfaces;
minPij The minimum area of the patch in relation
to the cell surfaces;
SHAPE Shape metric [45].

SHAPE ≥ 1 None

Table 5. List of class-level landscape metrics.

Class Level Formula Ranges of Change Unit

Aggregation index

AI =
[

gii
max−g

i
.
i

]
(100)

where
AREA[patchij] Area of each patch in hectares;
CA Area and edge metric [46].

0 ≤ AI ≤ 100 Percent

Total (class) area

CA = sum(AREA[patchij])

where
AREA[patchij] Area of each patch in hectares;
CA Area and edge metric [47].

CA > 0 Hectares

Clumpiness index

CLUMPY =
⌊

Gi−Pi
Pi

f orGi < Pi&Pi < 0.5; else Gi−Pi
Pi

⌋
where
gii Number of like adjacencies;
gik Number of all neighborhoods by class, including
the focus class;
minei Minimum size of the overall class based on the
cell areas, assuming complete clumping;
Pi Proportion of the landscape occupied by each class;
CLUMPY Aggregation metric [48].

−1 ≤ CLUMPY ≤ 1 None
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Table 5. Cont.

Class Level Formula Ranges of Change Unit

Core area percentage of
landscape

CPLAND =

(
∑n

j=1 acore
ij

A

)
∗ 100

where
acore

ij Core area in square meters;
A Total landscape area in square meters;
CPLAND Core area metric [49].

0 ≤ CPLAND < 100 Percentage

Landscape division index

DIVISION = (1 − ∑n
j=i

(
aij
A

)
2)

where
aij Area in square meters;
A Total landscape area in square meters;
DIVISION Aggregation metric [48].

0 ≤ Division < 1 Proportion

Edge density

ED = ∑m
K=1 eik

A ∗ 10, 000
where
eik Total edge length in meters;
A Total landscape area in square meters;
ED Area and Edge metric.

ED ≥ 0
Meters
per
hectare

Normalized landscape
shape index

nLSI =
ei−minei

max ei−minei
where
ei Total edge length in cell surface;
min ei maxei Minimum and maximum total edge
length in cell surfaces;
nLSI Aggregation metric.

0 ≤ nlsi ≤ 1 None

Perimeter-area fractal
dimension

PAFRAC = 2
β

where
β Slope of the regression of the surface against the
perimeter. (logarithm) ni ∑n

ji
In aij

= a + β ni ∑n
ji

Inaij
;

PAFRAC Shape metric.

1 ≤ PAFRAC ≤ 2 None

Total (class) edge

TE =
M
∑

K=1
eik

where
eik Edge lengths in meters;
TE Area and edge metric;
Total (class) edge includes all edges between class i
and all other classes k.

TE ≥ 0 Meters

Table 6. List of landscape-level landscape metrics.

Landscape Level Formula Ranges of Change Unit

Aggregation index

AI =
[

m
∑

i=1

(
gii

max − gii

)
pi

]
(100)

where
gii Number of like adjacencies;
max − gii Classwise maximum number of like
adjacencies;
pi Proportion of landscape compromised.
AI Aggregation metric.

0 ≤ AI ≤ 100 Percent
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Table 6. Cont.

Landscape Level Formula Ranges of Change Unit

Contagion

CONTAG = 1 + ∑na
q=1 pq In(pq)

2In(t)
where
pq Adjacency table for all classes divided by the sum
of that table;
t Number of classes in the landscape;
CONTAG Aggregation metric.

0 < Contag ≤ 100 Percent

Disjunct core area density

DCAD =

(
∑m

i=1 ∑n
j=1 ncore

ij
A

)
∗ 10, 000 ∗ 100

where
n core ij Number of disjunct core areas;
A Total landscape area in square meters;
DCAD Core area metric.

DCAD ≥ 0
Number
per 100
hectares

Edge density

ED = E
A ∗ 10, 000

where
E Total landscape edge in meters;
A Total landscape area in square meters;
ED Area and Edge metric.

ED ≥ 0
Meters
per
hectare

Marginal entropy Measures a diversity of the landscape classes. None log2

4. Results and Discussion
4.1. LULC Classification

The maximum region of the study area is covered by cropland, which is 83% of the
total study area, although between 2011 and 2021, cropland declined from 83% to 72% of
the total area. This declining trend is shown in Table 7 and Figure 3a,b.

Table 7. Area covered by different classes in the Sonipat district in 2011 and 2021.

Land Use Land Cover (LULC) Sonipat District

LULC Classes Area_km2 2011 Frequency 2011 Area_km2 2021 Frequency 2021 Change

Urban and Built-Up 234.80 11% 319.87 14% 3% Increase

Waterbodies 22.81 1% 30.55 1% 1% Constant

Cropland 1843.60 83% 1595.10 72% 11% Decrease

Other 112.14 5% 267.84 12% 7% Increase

Total 2213.37 100% 2213.37 100%

Land 2024, 13, x FOR PEER REVIEW 9 of 26 
 

𝐴𝐼 Aggregation metric. 

Contagion 

𝐶𝑂𝑁𝑇𝐴𝐺 = 1 + ∑ 𝑝𝐼𝑛(𝑝𝑞)ୀଵ2𝐼𝑛(𝑡)  

where 𝑝 Adjacency table for all classes divided by 
the sum of that table; 𝑡 Number of classes in the landscape; 𝐶𝑂𝑁𝑇𝐴𝐺 Aggregation metric.  

0 < Contag ≤ 100 Percent 

Disjunct core area density 

𝐷𝐶𝐴𝐷 = ቆ∑ ∑ 𝑛ୀଵୀଵ 𝐴 ቇ ∗ 10000 ∗ 100 

where 
n core 𝑖𝑗 Number of disjunct core areas; 𝐴 Total landscape area in square meters;  𝐷𝐶𝐴𝐷 Core area metric.  

DCAD ≥ 0 Number per 100 hec-
tares 

Edge density 

𝐸𝐷 =  𝐸𝐴 ∗ 10000 

where 𝐸 Total landscape edge in meters; 𝐴 Total landscape area in square meters; 𝐸𝐷 Area and Edge metric.  

ED ≥ 0 Meters per hectare 

Marginal entropy Measures a diversity of the landscape classes. None log2 

4. Results and Discussion 
4.1. LULC Classification 

The maximum region of the study area is covered by cropland, which is 83% of the 
total study area, although between 2011 and 2021, cropland declined from 83% to 72% of 
the total area. This declining trend is shown in Table 7 and Figure 3a,b. 

  
(a) (b) 

Figure 3. LULC map of Sonipat district, (a) 2011, (b) 2021. 

The study area comes under the NCR, and year by year, the influence of India’s cap-
ital, i.e., Delhi, can be seen in this region. Due to several developmental activities like in-
dustrialization, construction work, and an increase in residential areas, urban and built-
up areas increased in the study area from 2011 to 2021, especially the parallel development 
along the NH-44, where urban patches increased. The urban and built-up area in 2011 was 
11%, which increased to 14% in 2021, i.e., 3%. A new expressway has been constructed to 
improve transportation and connectivity with the capital and to reduce traffic in the 

Figure 3. LULC map of Sonipat district, (a) 2011, (b) 2021.



Land 2024, 13, 1989 10 of 26

The study area comes under the NCR, and year by year, the influence of India’s
capital, i.e., Delhi, can be seen in this region. Due to several developmental activities like
industrialization, construction work, and an increase in residential areas, urban and built-
up areas increased in the study area from 2011 to 2021, especially the parallel development
along the NH-44, where urban patches increased. The urban and built-up area in 2011 was
11%, which increased to 14% in 2021, i.e., 3%. A new expressway has been constructed to
improve transportation and connectivity with the capital and to reduce traffic in the capital
by diverting traffic flow to the outskirts of the capital. Fallow land and barren land classes
are included in other LULC classes. Other LULC classes increased from 5% to 12% during
2011–2021. The cropland started to convert into barren land due to different activities like
the development of brick factories, construction work, etc. Waterbodies remained at 1% of
the study area during 2011–2021, which covered the least area among other classes. These
changes are clearly visible in Figure 4.
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4.2. Sample Code for Accuracy Assessment

In this study, a confusion matrix is used to evaluate the accuracy of a classifier. The
sample code in Figure 5 is used to validate data from a Landsat 7 and Sentinel-2 reference
image. The results of the validation error matrix and overall validation accuracy are shown
in Figure 6. The overall accuracy of the classified maps was 0.98 in both years.
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4.3. Landscape Metrics
4.3.1. Patch Level

• CAI: The core area index indicates what percentage of a patch is made up of the
core region. The CAI values range from 0 to 100, where 0 indicates no core area, and
100 indicates a core area. Here, when values increase from 0 to 100, it indicates increas-
ing values in different variables and vice versa. In the study area during 2011–2021,
the values of CAI ranged almost identically in waterbodies (7.69, 8.48), cropland (23.01,
23.48), and other classes (4.31, 6.02). However, in 2021, the urban and built-up class
values (11.90) increased, as shown in Figure 7. The urban land patches [50] grew larger.
This increase in the CAI for urban and built-up areas reflects the rapid urbanization
occurring in the NCR, indicating a significant transformation of the landscape. As
urban land patches expand, they encroach upon surrounding areas, potentially leading
to habitat fragmentation and altered ecological dynamics. These changes underscore
the need for effective urban planning and land management strategies to mitigate
negative impacts on the environment. The results align with findings from [51], which
reported similar patterns of urban growth and its implications for landscape ecology.
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• CIRCLE: A related circumscribing circle metric is the ratio of the patch area to the
patch’s smallest circumscribing circle [52]. The diameter of the patch connecting the
opposite corner points of the two farthest cells equals the diameter of the smallest
circumscribing circle. The value ranges from 0 to 1, where 0 indicates the circular patch,
and 1 indicates the linear patch. Here, values increase from 0 to 1. This indicates the
changing pattern in given variables, i.e., from circular to linear and vice versa. Figure 8
shows that the urban and built-up class had the lowest value (0.50) in 2011, and the
other class showed the highest value (0.55). Fragmentation occurred in 2021 because
the values of the classes increased except for waterbodies. The increase in values
across most classes by 2021, particularly for cropland and other land uses, signifies
a transition from circular to more linear configurations. This shift highlights the
fragmentation of the landscape, driven by urban expansion and the encroachment of
development on previously contiguous patches. The decrease in waterbodies indicates
their relative stability amidst increasing fragmentation elsewhere. Similar studies, such
as those by [53], have documented these trends, emphasizing the interconnectedness
of urbanization and land use changes in shaping ecological patterns.
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Figure 8. Graphical and pictorial representation of the highest and lowest values of a CIRCLE,
patch-level landscape metric.

• ENN: ENN shows the distance between the patch and the nearest patch of the same
class. The value range starts at zero and goes to unlimited. Here, when value ranges
are equal to zero, the distance to the neighbor is the least, but when it increases above
zero, it shows the more isolated patches. The lowest nearest-neighbor values of 2021
suggest that the distance to the nearest neighbor is decreasing, as compared to the
values from 2011. Figure 9 shows that the patches were more isolated in 2011 than
in 2021.
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level landscape metric.

• SHAPE: The shape index value ranges from 1 and increases without limits. When
values increase above 1, the patch shape becomes more complex. The values of the
study area indicate that all values increase without limit. Since the patch shape of the
landscape was more complex in 2011, the values of some classes, such as waterbodies
(1.29) and cropland (1.47), decreased in 2021 (Figure 10).
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Figure 10. Graphical and pictorial representation of the highest and lowest values of a SHAPE,
patch-level landscape metric.

• FRAC: The patch complexity is described by FRAC, which is based on the patch
perimeter and patch area. Here, the range remains between 1 and 2, where 1 indicates
the squared patch, and 2 indicates the irregular patch. When the range moves toward
2 from 1, it tends to indicate irregular patches. The results show that the landscape
of the study area has an irregular patch shape in both years, as the values increase in
each LULC class shown in Figure 11. The lowest and highest values were observed in
other classes in both years, 2011 (1.04) and 2021 (1.07).
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Figure 11. Graphical and pictorial representation of the highest and lowest values of a FRAC,
patch-level landscape metric.

4.3.2. Class Level

• CA: The total area of all patches in the corresponding land class is the class area. This
metric was used to calculate all class patches. Here, the range starts at 0 and increases
without limit; 0 indicates the patch area of the class, and when it increases from 0, it
indicates the decreasing size of the patch area. However, when it increases without
limits, the patch area becomes larger. Figure 12 shows the largest cropland area (135.40)
in 2011 and the lesser waterbodies area (2.52) in 2021.

Land 2024, 13, x FOR PEER REVIEW 14 of 26 
 

 
Figure 11. Graphical and pictorial representation of the highest and lowest values of a FRAC, patch-
level landscape metric. 

4.3.2. Class Level 
• CA: The total area of all patches in the corresponding land class is the class area. This 

metric was used to calculate all class patches. Here, the range starts at 0 and increases 
without limit; 0 indicates the patch area of the class, and when it increases from 0, it 
indicates the decreasing size of the patch area. However, when it increases without 
limits, the patch area becomes larger. Figure 12 shows the largest cropland area 
(135.40) in 2011 and the lesser waterbodies area (2.52) in 2021. 

 
Figure 12. Graphical and pictorial representation of the highest and lowest values of a CA, class-
level landscape metric. 

• Aggregation index (AI): This index measures the district’s aggregation. The higher 
the value of the AI, the more aggregated it is, and the lower the value, the more 

Figure 12. Graphical and pictorial representation of the highest and lowest values of a CA, class-level
landscape metric.

• Aggregation index (AI): This index measures the district’s aggregation. The higher
the value of the AI, the more aggregated it is, and the lower the value, the more
disaggregated it is. Here, the range lies between 0 and 100; 0 indicates the maximum
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disaggregated class, and 100 indicates maximally aggregated classes. Figure 13 depicts
the fact that cropland patches were compact or aggregated in nature in both years, but
fragmentation occurred in the landscape with lower values, implying urban patch
desegregation in 2011. Finally, in 2021, small fragmented areas in waterbodies were
observed, and in 2011, small fragmented patches were observed in other classes.
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• CLUMPY: The aggregation of class patches is estimated by CLUPMY. CLUMPY has a
range of −1 to 1, where −1 indicates maximally disaggregated, 0 indicates randomly
distributed, and 1 indicates maximally aggregated classes. In this study, cropland was
more aggregated in 2021 with a value of 0.87, whereas the value increased from 2011
to 2021 (0.66–0.87), indicating disaggregation or fragmentation, as shown in Figure 14.

Land 2024, 13, x FOR PEER REVIEW 15 of 26 
 

disaggregated it is. Here, the range lies between 0 and 100; 0 indicates the maximum 
disaggregated class, and 100 indicates maximally aggregated classes. Figure 13 de-
picts the fact that cropland patches were compact or aggregated in nature in both 
years, but fragmentation occurred in the landscape with lower values, implying ur-
ban patch desegregation in 2011. Finally, in 2021, small fragmented areas in water-
bodies were observed, and in 2011, small fragmented patches were observed in other 
classes. 

 
Figure 13. Graphical and pictorial representation of the highest and lowest values of an AI, class-
level landscape metric. 

• CLUMPY: The aggregation of class patches is estimated by CLUPMY. CLUMPY has 
a range of −1 to 1, where −1 indicates maximally disaggregated, 0 indicates randomly 
distributed, and 1 indicates maximally aggregated classes. In this study, cropland 
was more aggregated in 2021 with a value of 0.87, whereas the value increased from 
2011 to 2021 (0.66–0.87), indicating disaggregation or fragmentation, as shown in Fig-
ure 14. 

 Figure 14. Graphical and pictorial representation of the highest and lowest values of a CLUMPY,
class-level landscape metric.



Land 2024, 13, 1989 16 of 26

• ED: ED is also used to assess the fragmentation and spatial heterogeneity of the
landscape. Here, the range starts at 0 and increases without limits; 0 denotes that only
one patch is present (and the landscape boundary is not included), and it increases
without limits, indicating that the landscape has become patchier. During the study
period of 2011–2021, the value of edge density was higher in barren and fallow land
(124.87) than in the other classes that compute the level of fragmentation. In 2021,
compact or clumped urban growth experienced relatively higher values (74.78) in
urban and built-up class areas, as shown in Figure 15.
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• DIVISION: Division is a metric for aggregation. It can be defined as the probability
that two randomly selected cells are not in the same class patch. The landscape
division index has a negative relationship with effective patch size. Here, the range
starts at 0 and goes to 1. Here, 0 indicates only one present patch, which means equally
divided cells, and 1 indicates that all patches of the class are single cells, which means
approaching division. Cropland is close to zero in both years in Figure 16 because it is
the dominant class in the study area.



Land 2024, 13, 1989 17 of 26
Land 2024, 13, x FOR PEER REVIEW 17 of 26 
 

 
Figure 16. Graphical and pictorial representation of the highest and lowest values of a DIVISION, 
class-level landscape metric. 

• CPLAND: CPLAND is the percentage of the class core area in relation to the total 
landscape area. The value of CPLAND lies between 0 and 100, as 0 indicates all 
patches, and it increases toward 100, indicating patches that are larger while being 
rather simple in shape. The PLAND values show a growth trend in the urban and 
built-up classes over the last decade. The higher percentage growth of built-up area 
(8.90%) from 2011 to 2021 is shown in Figure 17. 

 
Figure 17. Graphical and pictorial representation of the highest and lowest values of a CPLAND, 
class-level landscape metric. 

Figure 16. Graphical and pictorial representation of the highest and lowest values of a DIVISION,
class-level landscape metric.

• CPLAND: CPLAND is the percentage of the class core area in relation to the total
landscape area. The value of CPLAND lies between 0 and 100, as 0 indicates all
patches, and it increases toward 100, indicating patches that are larger while being
rather simple in shape. The PLAND values show a growth trend in the urban and
built-up classes over the last decade. The higher percentage growth of built-up area
(8.90%) from 2011 to 2021 is shown in Figure 17.
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• NLSI: NLSI is a metric for aggregation. It has a lot in common with the landscape
shape index. NLSI values lie between 0 and 1; 0 indicates only one squared patch, and
1 indicates the maximum disaggregated patch. When the value increases from 0 to 1,
disaggregation increases. Patches that are closer to zero are compact, while those that
are further away from zero are disaggregated (Figure 18). The NLSI quantified the
district’s compactness with lower values in 2021, but the value was higher in 2011,
indicating landscape fragmentation and disaggregation in all classes.
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• TE: The TE metric is an area and edge metric. The value of TE starts at 0 and increases
without limit; 0 indicates all cells are edge cells, and 1 indicates the landscape has
become more fragmented. When the value increases, the landscape starts to become
fragmented. Figure 19 shows that the study area is highly fragmented, and the
landscape has many edges. All values that increased in 2021 show more fragmentation
in the Sonipat district.
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• PAFRAC: PAFRAC describes the patch complexity of the class. Here, the values lie
between 1 and 2, where 1 indicates patches with simple shapes, and 2 indicates patches
with irregular shapes. Where values increase from 1 to 2, shapes begin to become
irregular. PAFRAC results show that patches of other classes (1.41) are irregular in
shape, and cropland (1.26) has simple-shaped patches in 2021, as shown in Figure 20.
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4.3.3. Landscape Level

• AI: The landscape’s configuration is measured by AI. The values lie between 0 and 100;
0 indicates maximally disaggregated classes, and 100 indicates maximally aggregated
classes. When the value increases from 0 to 100, maximally aggregated classes begin
to develop. Figure 21 and Figure 26 depict a fragmented landscape with many edges.
AI values for both years are nearly identical.

• CONTAG: CONTAG was used to measure the landscape structure at the landscape
level. Here, values lie between 0 and 100; 0 indicates that all cells are unevenly
distributed, and 100 indicates that all cells are equally adjacent to all other classes.
CONTAG values in 2011 were 69.94 and 65.19 in 2021, as shown in Figure 22 and
Figure 26, which describe the cells of the classes as being equally adjacent to all other
classes in the landscape, but the values are reduced in 2021 because the study area is
degrading, on average.

• DCAD: DCAD is a core area metric. DCAD values lie below 0, and 0 indicates that
no patch contains a disjunct core area. It increases without limit as disjunct core areas
become more present, i.e., patches become larger and less complex. Figure 23 and
Figure 26 show that patches of the study area become larger because the DCAD values
increased in 2021 (44.86), as there are more disjoint core areas in 2021 than in 2011.

• ED: ED is a metric that measures both area and edge. Here, values lie above 0 and
increase without limits; 0 indicates only one patch, and when they increase above
0 without limit, the landscape becomes patchier. The edge density corresponds to
the density of edges in the landscape in relation to the area of the landscape. Metrics
describe the configuration of the landscape. The edge density of the landscape is
increased so that the landscape of the study area was patchier in 2021 than in 2011, as
shown in Figure 24 and Figure 26.

• ENT: The ENT assesses landscape class diversity (thematic complexity). The calculated
marginal entropy of the measured landscape ranges from 0.642376459 (2011) to 0.97
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(2021), as shown in Figures 25 and 26. This directly implies that the complexity of the
landscape is more complex in 2021.
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Figure 26. Graphical representation of the results of a landscape metric at landscape level.

All metrics indicate that landscape degradation and fragmentation are based on
observable shifts toward reduced spatial heterogeneity, which are influenced by specific
developments in the study area. Figure 27 illustrates that large agricultural patches have
been fragmented due to infrastructure expansion, including the construction of canals,
new road networks, and industrial zones. This leads to increased barren and fallow land
patches and a notable rise in urban and built-up areas. While fragmentation can sometimes
contribute to biodiversity by creating ecotones, in this context, it indicates a decline in
agricultural continuity and habitat connectivity. The transformation from contiguous
cropland to smaller, disconnected patches disrupts the traditional agricultural landscape
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and increases the likelihood of habitat fragmentation, especially in the eastern part of the
study area. Therefore, the observed fragmentation is less about ecological enrichment and
more about land use changes that compromise landscape integrity and spatial continuity.
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The observed changes in the landscape structure across patch, class, and landscape
levels highlight the critical importance of taking proactive measures to prevent further
degradation. Metrics such as increased fragmentation, reduced core areas, and irregular
patch shapes signal ecological stress, which, if left unchecked, could lead to the erosion of
biodiversity, loss of agricultural productivity, and disruption of ecosystem services. The
findings underscore the urgent need to integrate these metrics into local policy frameworks
to develop targeted interventions, such as reforestation programs, sustainable agriculture
practices, and the creation of ecological corridors to restore connectivity. Managing these
changes effectively is essential to preserving the natural landscape and ensuring the long-
term sustainability of natural resources in the Sonipat district.

As discussed in the Methodology, the 30 m (Landsat) and 10 m (Sentinel-2) raster data
were harmonized to a consistent 30 m resolution, ensuring compatibility for calculating
shape and edge metrics across years, specifically from 2011 to 2021. This resampling process
minimizes discrepancies in spatial scale, allowing direct comparison over time. Although
downscaling to a coarser resolution may cause minor edge blurring, this harmonization
was essential for accurately analyzing landscape metrics without bias from differing reso-
lutions. Figure 26 demonstrates that this approach preserved the integrity of calculated
metrics, enabling the attribution of changes observed in 2021 primarily to actual landscape
transformation rather than to resolution discrepancies.

The landscape’s spatial and structural changes, particularly how fragmentation and
patch metrics, reflect the ecological shifts within the study area. For example, the increase
in edge density and decrease in patch size across cropland areas from 2011 to 2021 indicate
a rise in landscape fragmentation. This fragmentation can disrupt habitat connectivity,
reduce biodiversity, and create barriers to species movement, ultimately leading to eco-
logical degradation. Furthermore, the metrics highlight a decline in spatial heterogeneity,
especially in regions where urban expansion and infrastructure developments are prevalent.
This loss of heterogeneity reflects reduced resilience in the landscape, as smaller, more
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isolated patches provide fewer resources and habitat diversity than larger, contiguous
ecosystems. Consequently, our metrics offer insights into how land use changes impact
ecological stability, suggesting a trend toward increased vulnerability to environmental
pressures within the study area.

5. Conclusions

In the last few decades, the NCR has experienced rapid urbanization, and the study
area includes this region, raising concerns about associated environmental problems and
the degradation of economic sustainability. Land change monitoring can thus contribute
to better regional management and planning as well as a better understanding of the
underlying socio-economic and biophysical processes that shape observed land changes
in urban areas. RS from space allows for a retrospective, synoptic view of large areas. It
can effectively assess land changes in urban areas in both spatial and temporal terms when
used in conjunction with other spatial data technologies. Understanding and forecasting
the accessibility of food resources, the amount and fragmentation of habitats for animal
species, biodiversity, and the environment in landscapes all require an understanding
of the heterogeneity of landscape patterns and their changes over time. Ecological and
anthropogenic processes shape and change such landscape patterns. The current research
investigates the effects and mechanisms of ecological processes on landscape patterns
and how they change over time. We found that one of the main processes that leads to
different patterns in landscapes is human land use. Using RS data and GIS techniques, we
investigated the LULC phenomenon and computed landscape metrics. The main findings
show that the extent of urban and built-up areas has grown significantly over time while
cropland has decreased significantly, which has a negative impact on the environment,
particularly from an ecological standpoint. Calculations of landscape metrics were also
carried out, which can assist in revealing land change patterns in a quantitative manner.
To fully capture the underlying processes behind the observed land changes, we need to
include additional data, ancillary data, in situ observations, and qualitative methods. The
landscape metrics used in this study were chosen based on some general measurements of
land use area fragmentation, spread, and compactness. Different types of spatial patterns
associated with different analysis scales necessitate specific measurements. In this study,
metrics such as CAI, CIRCLE, ENN, FRAC, SHAPE, CA, CLUMPY, CPLAND, DIVISION,
ED, NLSI, TE, and others indicated fragmentation. Landscape monitoring, which con-
tributes to sustainable landscape management, would benefit from more information on
the relative sensitivity of similar metrics to real land use changes over time. Finally, our
research demonstrates the landscape of the Sonipat district’s coupling effects of human
land use. Cropland is the most common land use in the landscape, but due to urbaniza-
tion, it is deteriorating. Despite the fact that urban and built-up patches have grown in
recent decades, there is no uniformity among the various land cover classes. As a main
conclusion, it was discovered that land use intensity is influenced by human factors such
as cropland conversion to barren and built-up land, resulting in landscape heterogeneity.
As a result, this study demonstrates the effects of various types of human land use on
landscape heterogeneity. The observed landscape dynamics, quantified through various
metrics, reveal patterns of fragmentation that, if not addressed, could significantly impact
the region’s ecological health and productivity. These metrics serve as essential tools to
identify vulnerable areas requiring immediate attention, guiding policymakers in designing
targeted strategies for conservation and land management. Implementing such measures
is crucial to protecting the landscape from further erosion, maintaining biodiversity, and
securing ecosystem services for future generations. Incorporating these findings into re-
gional development plans will ensure sustainable growth while preserving the integrity of
natural resources. Future research should integrate advanced remote sensing technologies
with socio-economic analyses to understand the drivers of land use change in the NCR.
Additionally, longitudinal studies on the impacts of urbanization on ecosystem services
will inform sustainable land management practices.



Land 2024, 13, 1989 24 of 26

Author Contributions: Conceptualization, D., M.K. and M.Z.; methodology, D.; software, D.; valida-
tion, D., V.N.M. and M.K.; formal analysis, D., V.N.M. and M.K.; investigation, D., V.N.M., D.K., M.K.
and M.Z.; data curation, D. and M.K.; writing—original draft preparation, D.; writing—review and
editing, V.N.M., D.K., M.K., B.B., M.P. and M.Z.; visualization, V.N.M., D.K. and M.K.; supervision,
M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Researchers Supporting Project (Grant number
RSP2024R296), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Torres-Romero, E.J.; Nijman, V.; Fernández, D.; Eppley, T.M. Human-modified landscapes driving the global primate extinction

crisis. Glob. Chang. Biol. 2023, 29, 5775–5787. [CrossRef] [PubMed]
2. Gwate, O.; Dube, H.; Sibanda, M.; Dube, T.; Chisadza, B.; Nyikadzino, B. Understanding the influence of land cover change and

landscape pattern change on evapotranspiration variations in Gwayi catchment of Zimbabwe. Geocarto Int. 2022, 37, 10016–10032.
[CrossRef]

3. Rana, D.; Kumari, M.; Kumari, R. Quantitative Estimation of Land Surface Temperature and Its Relationship with Land Use/Cover
around Sonipat District, Haryana, India. Eng. Proc. 2021, 8, 31. [CrossRef]
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