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Abstract: Soil fugitive dust (SFD) is a significant contributor to environmental particulate matter
(PM), which not only pollutes and affects air quality but also poses risks to human health. The
emission inventory can provide a basis for the effective prevention and control of SFD pollution.
However, current emission inventories with low resolution and frequency make it difficult to assess
dust emissions accurately. Obtaining monthly high-resolution bare soil information is one of the
solutions for compiling SFD emission inventories. Taking Daxing District, Beijing, as a case study, this
study first extracted bare soil for each month of 2020, 2021, and 2022, respectively, using high-spatial-
resolution remote sensing satellite data, and then constructed a 10 m-size emission grid and monthly
SFD emission inventories based on the wind erosion equation by inputting vegetation cover factor,
meteorological data, and soil erosion index. The total emissions of TSP, PM10, and PM2.5 in Daxing
District from 2020 to 2022 were 3996.54 tons, 359.26 tons, and 25.25 tons, respectively. Temporally, the
SFD emissions showed a decreasing trend over the years and were mainly concentrated in the winter
and spring seasons. Spatially, the SFD emissions were predominantly concentrated in the southern
and northern areas. And the emissions of PM10 exhibit a significantly stronger correlation with wind
speed and the extent of bare soil area.

Keywords: soil fugitive dust; bare soil; wind erosion equation; emission inventory; remote sensing;
high spatiotemporal resolution; air quality

1. Introduction

Bare soil areas are highly susceptible to soil erosion and serve as primary sources of pol-
lution in urban microenvironments. PM generated from wind erosion poses a direct threat
to environmental quality and public health [1–5]. SFD refers to PM originating directly from
bare soil such as farmland, bare hillsides, mudflats, dry river valleys, undeveloped or non-
vegetated land, etc., which form dust under the influence of natural forces or human activi-
ties (https://www.mee.gov.cn/gkml/hbb/bgth/201407/W020140708387894970380.pdf,
accessed on 10 November 2024). It is considered a significant source of PM in northern
China [6,7]. Unlike road and construction dust, the emission sources of soil dust are harder
to pinpoint due to the effect of plant phenology and human activities (planting, harvest-
ing), making it more difficult to identify the distribution of bare land [8]. Furthermore,
research indicates that the contribution of soil dust sources to local emission inventories
varies significantly across different regions, with discrepancies reaching up to four orders
of magnitude [9–13]. The lack of appropriate inventory compilation methods may be a
significant reason for the substantial discrepancies observed in these studies.
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In fact, as early as the 1960s, the first-generation wind erosion equation (WEQ) de-
veloped by the United States Department of Agriculture had already been used to study
dust emissions from bare land [14,15]. With a deeper understanding of wind erosion mech-
anisms, increasingly advanced models have been developed, such as the Revised Wind
Erosion Equation (RWEQ) [16], the Wind Erosion Prediction System (WEPS) [17], and the
Wind Erosion Model Simulation System (IWEMS) [18,19]. Although WEQ is less accurate
than the newer models, its simplicity and strong operability make it easier to be promoted
and applied [20]. WEQ was a recommended algorithm in its “Technical Guidelines for
the Compilation of Emission Inventories for Dust Sources (Trial Version)” published in
2014 (https://www.mee.gov.cn/gkml/hbb/bgth/201407/W020140708387894970380.pdf,
accessed on 10 November 2024). There are many application cases of WEQ in China [21–25],
but there are some deficiencies. When using WEQ to estimate dust emissions, most studies
adopted annual parameters (especially the area of soil dust sources); thereby, the sea-
sonal variations in bare soil area were ignored [21–23]. The research by Liu [8] shows that
the difference in bare soil area in the same region across different seasons can be up to
seven times. On the other hand, the spatial resolution of the WEQ parameters obtained
in research is relatively low, and the accuracy of the vegetation cover factor used in the
calculations is insufficient [19,23]. These limitations result in inadequate spatiotemporal
resolution of the WEQ, making it difficult to accurately estimate PM emissions in localized
areas. Therefore, to develop high-spatiotemporal-resolution SFD emission inventories
using WEQ, it is necessary to employ the appropriate methods to obtain parameters with
higher spatiotemporal resolution.

Currently, some researchers employ satellite remote sensing (RS) to obtain high-spatial-
resolution parameters and use geographic information systems (GISs) to process and
analyze the data [26–28]. The use of RS and GISs has improved the efficiency of inventory
compilation to a certain extent [20]. In order to accurately estimate the emissions of PM in
localized areas and to develop high-spatiotemporal-resolution SFD emission inventories,
this study has employed RS-GIS technology to obtain high-precision parameters, such as
the area of bare soil dust sources and vegetation cover factors. Additionally, a 10 m × 10 m
emission grid has been established to analyze the spatial distribution of bare soil dust
emissions. It is anticipated that the results of this study will provide a scientific basis for air
pollution control.

2. Materials and Methods
2.1. Study Area and Data Sources

Our study area is Daxing District, Beijing, which is located in the southern suburbs
of Beijing. Geographically, it ranges from 39◦26′ to 39◦50′ north latitude and from 116◦13′

to 116◦43′ east longitude, with a total area of 1036.33 km2. The soil in Daxing District is
soft and conducive to cultivation. The region experiences a warm temperate, semi-humid
continental monsoon climate with clearly defined seasonal variations. In spring, frequent
winds and fluctuating temperatures prevail; in summer, high temperatures and ample
rainfall dominate; in autumn, clear skies and minimal precipitation characterize the weather;
and in winter, cold, dry conditions are accompanied by frequent winds and occasional
snowfall [29]. As shown in Figure 1, the entire area of Daxing District is characterized by
flat terrain with an elevation difference not exceeding 100 m. The meteorological stations
within the district have good environmental representativeness, making them reliable
for representing the climatic conditions (temperature, wind speed, precipitation) of the
entire district [30]. The meteorological station in Daxing District is located in Jiugong Town,
Daxing District, Beijing, with the station number 54511 (longitude: 116◦28′, latitude: 39◦48′).
The built-up areas of Daxing District, including urban and industrial zones and roads, are
concentrated in the northern and central parts (https://esa-worldcover.org/en, accessed
on 10 November 2024), while Daxing International Airport is located in the southern
part. Significant areas of bare soil around the airport and construction sites pose notable
environmental challenges.

https://www.mee.gov.cn/gkml/hbb/bgth/201407/W020140708387894970380.pdf
https://esa-worldcover.org/en
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Considering the key parameters for the above wind erosion equation, the data required
are bare soil area, soil texture, wind speed, precipitation, and vegetation cover factor. Their
corresponding sources are as follows:

To obtain the high-accuracy bare soil data, we used the data acquired by BJ-2 and BJ-3
of Disaster Monitoring Constellation (DMC) with resolutions of 0.8 m and 0.5 m, respec-
tively, for each month of 2020 to 2022 (http://114.116.226.59/chinese/home/, accessed on
10 November 2024).

Soil texture data are available from the Harmonized World Soil Database (HWSD)
(https://www.fao.org/soils-portal/en/, accessed on 10 November 2024).

The temperature and precipitation data were provided by the Daxing District Meteoro-
logical Bureau, Beijing, and the wind speed data were obtained from the historical weather
network of Daxing District (https://www.tianqi24.com/daxing/history.html, accessed on
10 November 2024).

The vegetation cover factor was derived from the surface reflectance data (https://
developers.google.com/earth-engine/datasets/catalog/sentinel, accessed on 10 November
2024), with both near-infrared and red-edge bands of 10 m spatial resolution of Level-2A
data of Sentinel-2.

2.2. Wind Erosion Equation

This study utilizes the wind erosion equation as a model to estimate soil dust emissions,
with the specific formula detailed below:

Wsi = Esi × As (1)

In the equation, Wsi represents the total emissions of PMi (particulate matter with
an aerodynamic diameter between 0 and i µm, the same hereinafter) from bare SFD, in
tons per year (t/a). Esi is the emission factor of PMi from bare soil dust sources, in tons
per square meter per year, t/

(
104 m2 × a

)
. As is the area of bare soil sources in square

meters (m²).
Esi = a × Di × C × (1 − η)×10−4 (2)

Di = ki × Iwe × f × L × V (3)

In the equation, Di is the dust emission factor of PMi. C is the climate factor, repre-
senting the influence of meteorological factors on bare SFD [31,32] (Li Beibei et al. made
adjustments to the parameters in the soil wind erosion equation to localize it, so the mod-
ified climate factor is used for calculation [33]). η is the removal efficiency of dust by

http://114.116.226.59/chinese/home/
https://www.fao.org/soils-portal/en/
https://www.tianqi24.com/daxing/history.html
https://developers.google.com/earth-engine/datasets/catalog/sentinel
https://developers.google.com/earth-engine/datasets/catalog/sentinel
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pollution control technologies, in percentage (%). When multiple measures are imple-
mented simultaneously, the highest control efficiency is taken. ki indicates the percentage
content of PMi in bare soil dust, with recommended values of 1 for TSP, 0.30 for PM10,
and 0.05 for PM2.5. Iwe stands for the soil wind erosion index [34], f denotes the ground
roughness factor (assumed to be 0.5 in this study [33], or 1 in coastal, island, lakeshore, and
desert areas), and L represents the unshielded width factor, set at 0.85 in this research [35].
V is the vegetation cover factor, indicating the proportion of exposed soil area to the total
calculated area.

The climate factor C is an important indicator used to characterize the impact of meteo-
rological factors on SFD emissions. It is primarily determined by wind speed, precipitation,
evaporation, and temperature. Compared to annual climate factors, monthly climate factors
better reflect short-term climatic conditions. Therefore, for calculating soil dust emissions,
it is advisable to use monthly climate factors. The specific calculation formula is as follows:

C = 3.86 × µ3

PE2 (4)

PE = 3.16 ×
12
∑

j=1

[
Pj(

1.8Tj + 22
)]

10
9 (5)

In the equation, µ indicates the monthly average wind speed (m/s). PE represents
the Sáenz–Wittig precipitation–evaporation index. Pj denotes the monthly precipitation
amount in millimeters (mm), assumed to be 12.7 mm or less. Tj stands for the monthly
average temperature in degrees Celsius (◦C), assumed to be −1.7 ◦C or less [36,37].

The technical process employed in this study is outlined as follows: Firstly, the satellite
data from BJ-2, BJ-3, and Sentinel-2 were preprocessed through temporal filtering, image
clipping, and cloud cover removal. Next, the processed BJ-2 and BJ-3 images were visually
interpreted to extract monthly bare soil patches, with the authenticity of the data verified
through field surveys. For the processed Sentinel-2 images, the vegetation cover factor was
calculated monthly using the dimidiate pixel model (DPM). Subsequently, the calculated
bare soil area, vegetation cover factor, soil texture type data, meteorological data, and
empirical data were integrated into the wind erosion equation to estimate the monthly
emissions of fugitive dust from bare soil. Finally, a grid with a resolution of 10 m was
constructed to analyze the emissions of fugitive soil dust.

The specific process for establishing an SFD emission inventory is shown in Figure 2.
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2.3. Estimation of Bare Soil Patch

The bare soil patches in Daxing District were identified through visual interpretation of
high-resolution remote sensing imagery from Beijing-2 (0.8 m spatial resolution) and Beijing-
3 (0.5 m spatial resolution), supplemented by field validation. First, the high-resolution
remote sensing images were preprocessed, including fusion, clipping, and stitching, to
create a monthly high-definition base map of Daxing District. Visual interpretation was
then conducted based on this base map to accurately delineate the locations of the bare
soil patches. The identifiable bare soil mainly consisted of fallow farmland and undevel-
oped wasteland, which are areas with no surface cover. Additionally, field surveys were
conducted every month to ensure the accuracy of the bare soil patches. As a result, a set of
36 monthly vector-based bare soil patches for the years 2020–2022 was obtained.

For seasonal analysis, the bare soil areas for spring, summer, autumn, and winter are
defined by the sum of the bare soil areas in March, April, and May; June, July, and August;
September, October, and November; and December, January, and February, respectively. To
facilitate subsequent calculations, the bare soil patches were converted from vector format
to a 10 m-resolution raster format.

2.4. Estimation of Vegetation Cover Factor

The vegetation coverage factor (V) is one of the key parameters in the WEQ model,
representing the proportion of bare soil area per unit area. A higher value of the vegetation
coverage factor (V) indicates less vegetation cover and more exposed land. It is important
to note that (V) is closely related to vegetation coverage, but their meanings are entirely
opposite. Vegetation coverage (VC) is defined as the percentage of the area occupied by
vegetation (including leaves, stems, and branches) within a unit area [38], calculated using
a pixel-based binary model [39,40].

VC = (NDVI−NDVIsoil)

(NDVIveg−NDVIsoil)
(6)

V = 1 − VC (7)

In the equation, (V) represents the coverage factor of a pixel, (VC) denotes the vegeta-
tion coverage of the pixel, NDVI (Normalized Difference Vegetation Index) is the NDVI
value of that pixel, NDVIveg corresponds to the value of the vegetation-covered part in the
image, and NDVIsoil corresponds to the NDVI value of the bare soil part in the image [41].
Here, we use the NDVI histogram to determine confidence intervals, selecting NDVI
values at the 5th and 95th percentiles as the values for NDVIsoil and NDVIveg [33].

This study adopts the method proposed by Li et al. [28] to calculate vegetation cover-
age, using band 4 (infrared) and band 8 (near infrared) from Sentinel-2 Level-2A satellite
data to compute vegetation coverage information. Sentinel-2 satellites revisit every 5 days,
providing multiple images per month. We calculated the median composite of the images
obtained each month to mitigate extreme values (e.g., cloud cover) affecting vegetation
coverage factor calculations. Subsequently, the median composite images, already at-
mospherically corrected, are clipped and used to compute the Normalized Difference
Vegetation Index (NDVI) using the following formula:

NDVI = (NIR − R)(NIR + R) (8)

In the equation, (NIR) represents the near-infrared band (band 4 in Sentinel-2), and
(R) represents the red band (band 8 in Sentinel-2). This method calculates NDVI using
reflectance values from two bands, widely used for vegetation monitoring, with values
ranging from −1 to 1. Positive values indicate vegetation cover and vary proportionally
with vegetation density; a value of 0 represents rocks or bare soil; and negative values
indicate highly reflective objects like clouds, water, or snow [42].

Through the above calculations, we obtained the monthly vegetation coverage factor
for Daxing District with a spatial resolution of 10 m.
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2.5. Soil Types

The soil type data were sourced from the Harmonized World Soil Database, with a
spatial resolution of 1 km in raster format. Using the administrative boundary of Daxing
District as a mask, the soil type distribution for the district was extracted. For convenience
in subsequent calculations, the data were then resampled to a spatial resolution of 10 m.
Soils of different textures have different soil wind erosion index values, which are detailed
in Table 1 [33].

Table 1. Reference value of soil wind erosion index in study area (t/104 m2a).

Soil Type TSP PM10 PM2.5

Loam 911 273 46
Loamy sand 331 99 17
Sandy loam 447 134 22
Sandy clay 138 41 7

2.6. Grid-Based Estimation of Soil Dust Emissions

Firstly, we overlay the resampled bare soil patches with the soil type data to assign
a specific soil wind erosion index value to each bare soil pixel. Then, we utilized mete-
orological data from the Daxing District meteorological station to represent the climatic
conditions of the entire region. Finally, we constructed a 10 m × 10 m SFD emission grid,
integrating raster data on soil types, bare soil area, and vegetation cover factors. Using
the wind erosion equation, we calculated the monthly SFD emissions for 36 months from
2020 to 2022. Additionally, the calculation of quarterly SFD emissions follows the same
method as the calculation of bare soil area, where the total dust emissions for each season
are represented by the sum of the emissions for the months corresponding to that season.

3. Results
3.1. Values of Key Parameters
3.1.1. Bare Soil

Spatially, bare soil is distributed across the entire Daxing District, with the highest
concentrations found in the northern, northwestern, and southern regions (as shown in
Figure 3). Field surveys indicated that the northern and northwestern areas are predomi-
nantly undeveloped wasteland and farmland undergoing reclamation. The southern area,
however, contains bare soil resulting from the construction of Daxing International Airport.
These exposed areas remain largely idle for most of the year and are highly susceptible to
wind erosion, making them prone to dust emissions.

Temporally, the overall bare soil area in Daxing District has shown a decreasing trend
(as shown in Figure 4), with clear seasonal variations. Bare soil areas are larger in the spring
and winter seasons compared to the summer and autumn seasons (as shown in Figure 5).
This is linked to the seasonal cycle of crop planting and harvesting, as well as the seasonal
growth of vegetation on bare soil. Additionally, we observed a sharp reduction in the
bare soil area from 2020 to 2021, mainly due to the reclamation efforts in the northern and
northwestern regions. The Daxing District government implemented effective measures,
such as afforestation, surface hardening, and covering with tarps, to significantly reduce
the extent of bare soil.
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3.1.2. Vegetation Cover Factor

We utilized the pixel dichotomy method to estimate the monthly vegetation coverage
factors in Daxing District, Beijing, from 2020 to 2022. The vegetation cover factor ranges
from 0 to 1, where higher values indicate lower vegetation coverage and lower values
indicate higher vegetation coverage. Taking 2021 as an example, monthly changes in
vegetation coverage in Daxing District are illustrated in Figure 6. It is evident that vegetation
coverage in July, August, and September is higher than the other months of the same year
(shown by a larger proportion of green areas in the figure). Figure 7 further confirms
that, during 2020 and 2022, the vegetation cover factor in July, August, and September
was notably lower than that in the other months of the same year, indicating higher
vegetation coverage.
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Figure 8 shows that the vegetation cover factors in spring and winter are higher than
those of summer and autumn, which implies lower vegetation coverage rates in spring and
winter than those of summer and autumn of the same year.

Land 2024, 13, x FOR PEER REVIEW 10 of 19 
 

   
Figure 6. Quarterly vegetation cover factors in Daxing District from 2020 to 2022. 

 
Figure 7. Monthly vegetation cover factor line chart for Daxing District from 2020 to 2022. 

 
Figure 8. Quarterly average vegetation cover factor in Daxing District from 2020 to 2022. 

  

Figure 8. Quarterly average vegetation cover factor in Daxing District from 2020 to 2022.

3.1.3. Soil Types in Daxing District

The distribution of soil types in Daxing District, Beijing, is as in Figure 9: predomi-
nantly loam (80.3%), loam sand (18.79%), sandy loam with sand (0.59%), and sandy clay
(0.31%). The soil erosion index (Iwe) values vary for different soil types, with loam, the most
prevalent type, having the highest soil erosion index.
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3.1.4. Meteorological Data

The monthly meteorological data for the study area from 2020 to 2022 are shown in
Figure 10, which shows the distinct seasonal characteristics of temperature and precipi-
tation, with temperature rise and rainfall increase in summer and temperature drop and
rainfall decrease in winter. The wind speed did not show strong seasonality, but it was
generally higher in the spring of 2020 and 2021 and the winter of 2022 than those of the
other seasons of the same years. The dry condition and strong wind during winter and
spring contributed to the favorable condition for soil wind erosion.
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3.2. Soil Dust Emissions

The monthly TSP, PM10, and PM2.5 emissions in Daxing District from 2020 to 2022 are
presented in Table 2. The emissions of TSP, PM10, and PM2.5 exhibit a proportional relation-
ship. Additionally, the Kruskal–Wallis test results indicate that there is no significant differ-
ence among the three groups at the 5% significance level (H = 0.015, P = 0.99 > 0.05) [43].
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For the purpose of detailed analysis and discussion, this study takes PM10 as a representa-
tive example.

Table 2. Monthly Emissions of TSP, PM10, and PM2.5 for 2020 to 2022 in Daxing District.

Month–Year Emissions of TSP (t) Emissions of PM10 (t) Emissions of PM2.5 (t)

Jan 2020 72.94 6.56 0.46
Feb 2020 91.42 8.22 0.58
Mar 2020 371.08 33.36 2.34
Apr 2020 723.77 65.06 4.57
May 2020 534.60 48.06 3.38
Jun 2020 509.03 45.76 3.22
Jul 2020 124.23 11.17 0.78

Aug 2020 61.98 5.57 0.39
Sep 2020 42.03 3.78 0.27
Oct 2020 94.28 8.48 0.60
Nov 2020 56.59 5.09 0.36
Dec 2020 51.53 4.63 0.33
Jan 2021 88.31 7.94 0.56
Feb 2021 81.07 7.29 0.51
Mar 2021 54.86 4.93 0.35
Apr 2021 240.27 21.60 1.52
May 2021 209.98 18.88 1.33
Jun 2021 92.19 8.29 0.58
Jul 2021 33.79 3.04 0.21

Aug 2021 13.65 1.23 0.09
Sep 2021 5.11 0.46 0.03
Oct 2021 10.04 0.90 0.06
Nov 2021 37.57 3.38 0.24
Dec 2021 23.04 2.07 0.15
Jan 2022 43.39 3.90 0.27
Feb 2022 65.10 5.85 0.41
Mar 2022 36.75 3.30 0.23
Apr 2022 50.70 4.56 0.32
May 2022 15.28 1.37 0.10
Jun 2022 19.19 1.73 0.12
Jul 2022 5.56 0.50 0.04

Aug 2022 5.66 0.51 0.04
Sep 2022 5.15 0.46 0.03
Oct 2022 20.24 1.82 0.13
Nov 2022 25.64 2.30 0.16
Dec 2022 80.54 7.24 0.51

The spatial distribution of PM10 emissions is dependent on the distribution of bare soil
patches, with concentrations primarily in the northern, northwestern, and southern parts
of Daxing District (as shown in Figure 11). Overall, PM10 emissions show a decreasing
trend (as shown in Figure 12), which is mainly related to the reduction in bare soil area.
At the same time, emissions exhibit strong seasonality, with spring and winter emissions
significantly higher than those in summer and autumn (as shown in Figure 13). This is
partly due to seasonal variations in bare soil and partly due to the dry, windy meteorological
conditions in spring and winter. In 2020, the PM10 emissions in winter were lower than
in summer because the average wind speed in winter was lower than the average wind
speed in summer. As a result, wind speed became the dominant factor in the calculation of
emissions. This conclusion is explained in Section 3.3.
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Additionally, the SFD emission sources are not solely limited to bare soil with con-
stant soil properties. Some undeveloped wastelands (left idle for extended periods) are
initially SFD sources, but once construction begins, they become construction dust sources.
Although this study focuses on soil exposed to the air and affected by wind erosion, this
shift in land use could inevitably lead to an overestimation of the SFD emissions.

To assess the reliability of the estimated bare soil dust emissions, the results were
compared with those of studies from other cities. The comparison revealed no orders of
magnitude difference among the dust emissions from different urban areas, validating the
credibility of the calculated bare soil dust emissions in this study [12,21,28,35,44].

3.3. Correlation Analysis

Taking PM10 as an example (with TSP and PM2.5 being proportional to PM10), this
study investigates the correlation between soil dust emissions and bare soil area, vegetation
coverage factor, monthly average wind speed, monthly average temperature, and monthly
precipitation. From Figure 14, it can be concluded that PM10 emissions exhibit a signifi-
cantly strong correlation with monthly average wind speed (r = 0.81) and bare soil area
(r = 0.65). Additionally, at a 95% confidence level, the confidence interval for PM10 emis-
sions in relation to monthly average wind speed is 0.65–0.90, while the confidence interval
in relation to bare soil area is 0.40–0.80. Furthermore, the t-test results show p-values of
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less than 0.05 for both the monthly average wind speed and the bare soil area, confirming
the statistical significance of these correlations [45–47]. Thus, increases in monthly average
wind speed and bare soil area are significantly associated with higher PM10 emissions.
Additionally, we found that when different months have similar bare soil areas, even slight
differences in wind speed can lead to significant variations in emission levels. The impact
of wind speed on PM10 emissions is greater than that of bare soil area. Based on this
correlation analysis, it is recommended to adopt a dual strategy for soil dust pollution
control: reducing bare soil area and mitigating wind erosion. Enhancing vegetation and
implementing land stabilization measures can effectively reduce bare soil exposure. Ad-
ditionally, applying cover materials and constructing windbreaks can significantly limit
wind-induced soil erosion.

Land 2024, 13, x FOR PEER REVIEW 15 of 19 
 

Figure 13. Annual and quarterly emission stacked bar charts maps for Daxing District from 2020 to 
2022. 

3.3. Correlation Analysis 
Taking PM10 as an example (with TSP and PM2.5 being proportional to PM10), this 

study investigates the correlation between soil dust emissions and bare soil area, vegeta-
tion coverage factor, monthly average wind speed, monthly average temperature, and 
monthly precipitation. From Figure 14, it can be concluded that PM10 emissions exhibit a 
significantly strong correlation with monthly average wind speed (r = 0.81) and bare soil 
area (r = 0.65). Additionally, at a 95% confidence level, the confidence interval for PM10 
emissions in relation to monthly average wind speed is 0.65–0.90, while the confidence 
interval in relation to bare soil area is 0.40–0.80. Furthermore, the t-test results show p-
values of less than 0.05 for both the monthly average wind speed and the bare soil area, 
confirming the statistical significance of these correlations [45–47]. Thus, increases in 
monthly average wind speed and bare soil area are significantly associated with higher 
PM10 emissions. Additionally, we found that when different months have similar bare soil 
areas, even slight differences in wind speed can lead to significant variations in emission 
levels. The impact of wind speed on PM10 emissions is greater than that of bare soil area. 
Based on this correlation analysis, it is recommended to adopt a dual strategy for soil dust 
pollution control: reducing bare soil area and mitigating wind erosion. Enhancing vege-
tation and implementing land stabilization measures can effectively reduce bare soil ex-
posure. Additionally, applying cover materials and constructing windbreaks can signifi-
cantly limit wind-induced soil erosion. 

 
Figure 14. Heatmap of the correlation between emissions of PM10 and other factors. 

3.4. Uncertainty Analysis 
In the process of estimating SFD emissions for the study area, excluding the methods 

themselves, uncertainties arise primarily from the estimation of WEQ parameters, which 
stem mainly from empirical values and data accuracy. 

Figure 14. Heatmap of the correlation between emissions of PM10 and other factors.

3.4. Uncertainty Analysis

In the process of estimating SFD emissions for the study area, excluding the methods
themselves, uncertainties arise primarily from the estimation of WEQ parameters, which
stem mainly from empirical values and data accuracy.

• Uncertainty from Empirical Values:

The determination of values such as the unshielded width factor (L), the ground
roughness factor ( f ), and the removal efficiency of dust by pollution control technologies
(η) relies on recommended empirical values, introducing uncertainty and potential errors
into the calculations. Additionally, the soil wind erosion index (Iwe) is dependent on soil
type; however, even within the same soil type, there are still differences in soil particle
composition between urban and agricultural areas over time [48].

• Uncertainty from Data Accuracy:

The spatial resolution of soil type data and meteorological data is insufficient, affecting
the precision of SFD emissions and introducing uncertainty into the results. While meteoro-
logical stations provide good environmental representativeness, the temporal resolution
of meteorological data can also impact its accuracy, especially during extreme weather
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events. Additionally, the bare soil data from the “Daxing District Bare Soil Dynamic Remote
Sensing Monitoring Project” are used for estimating bare soil areas. However, bare soil due
to permanent basic farmland may not be fully accounted for, and seasonal variations affect
the identification of bare soil, which may lead to an underestimation of the emissions. At
the same time, a small portion of construction dust sources was included in the soil dust
sources, which could lead to an overestimation of the emissions. The interaction of these
factors increases the uncertainty in the soil dust emission calculations.

4. Conclusions

This study proposed a method for compiling SFD inventories with high spatiotemporal
resolution. Unlike other research studies, high-spatial-resolution remote sensing imagery
was employed to extract bare soil and calculate vegetation coverage factors in this study, and
estimates of SFD emissions were computed on the scale of individual pixels (10 m × 10 m)
monthly. The integration of high temporal and spatial resolution can more accurately reveal
the characteristics of SFD emissions in the study area.

The results indicate that from 2020 to 2022, the bare soil area in Daxing District
generally decreased, with clear seasonal variation, as the bare soil area in spring and winter
is larger than that in summer and autumn. The overall reduction in bare soil area indicates
that the Daxing District government has achieved notable success in managing bare soil,
while the seasonal variation in bare soil is linked to crop planting and harvesting cycles,
as well as the seasonal growth of vegetation on bare soil. The vegetation coverage factor
in Daxing District was higher in the spring and winter seasons, implying a lower degree
of vegetation cover. Coupled with the dry and windy climatic conditions during these
seasons, as well as the extensive presence of loam soil, these factors collectively create
favorable conditions for soil wind erosion. The total TSP, PM10, and PM2.5 emissions in
Daxing District for 2020 to 2022 were 3996.54 tons, 359.26 tons, and 25.25 tons, respectively.
Taking PM10 as an example, the SFD emissions in Daxing District for 2020, 2021, and 2022
were 245.72 tons, 79.99 tons, and 33.55 tons, respectively, showing a decreasing trend year
by year and exhibiting seasonal variations that closely align with changes in bare soil areas.
The emissions are primarily concentrated in the northwest, north, and south regions, which
may be influenced by economic activities and policies in Daxing District.

Correlation analysis reveals a significant and strong positive relationship between
PM10 emissions, bare soil area, and monthly average wind speed. As the extent of bare soil
and the monthly average wind speed increase, PM10 emissions also tend to increase, with
wind speed exerting a greater influence on PM10 emissions than bare soil area. Based on
correlation analysis, it is recommended to implement management measures focusing on
reducing bare soil areas and preventing wind erosion of soil.

Estimating PM emission inventories, their spatiotemporal distribution, and the corre-
lation of influencing factors is of great significance in air pollution control. The combination
of high-temporal-and-spatial-resolution remote sensing data with GISs can provide reliable
PM emission inventories for urban areas. In subsequent research, we plan to incorporate
construction dust sources, road dust sources, and stockpile dust sources into our analysis to
compile a comprehensive emission inventory. However, on a large scale, a major challenge
in applying this method is the difficulty in obtaining high-precision spatiotemporal data,
particularly accurate distribution data for bare soil areas.
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