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Abstract: Climate change is expected to alter the environmental suitability of land use and land
cover (LULC) classes globally. In this study, we investigated the potential impacts of climate change
on the environmental suitability of the most representative LULC classes in the southern Brazilian
semiarid region. We employed the Random Forest algorithm trained with climatic, soil, and topo-
graphic data to project future LULC suitability under the Representative Concentration Pathway
RCP 2.6 (optimistic) and 8.5 (pessimistic) scenarios. The climate data included the mean annual air
temperature and precipitation from the WorldClim2 platform for historical (1970–2000) and future
(2061–2080) scenarios. Soil data were obtained from the SoilGrids 2.1 digital soil mapping platform,
while topographic data were produced by NASA’s Shuttle Radar Topography Mission (SRTM). Our
model achieved an overall accuracy of 60%. Under the worst-case scenario (RCP 8.5), croplands may
lose approximately 8% of their suitable area, while pastures are expected to expand by up to 30%.
Areas suitable for savannas are expected to increase under both RCP scenarios, potentially expanding
into lands historically occupied by forests, grasslands, and eucalyptus plantations. These projected
changes may lead to biodiversity loss and socioeconomic disruptions in the study area.

Keywords: land suitability; drylands; climate change; scenarios analysis; random forest

1. Introduction

Climate change presents a significant threat to global environmental sustainability,
with more amplified impacts on semiarid regions [1]. These regions, characterized by
low water availability, are projected to experience substantial increases in air temperature
and decreases in precipitation by the end of the century [2,3]. These climate variables
can increase aridity and alter the environmental suitability dynamics of different land use
and land cover (LULC) classes [4]. Environmental suitability refers to the most suitable
conditions for maintaining a given class of LULC, considering factors such as soil properties,
topography, water availability, and climatic conditions [5].
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In the Brazilian semiarid region, characterized by the occurrence of high levels of
endemism and a wide diversity of plant species in the Caatinga biome (xerophytic vegeta-
tion) [6,7], the implications of climate change on LULC suitability are evident. Previous
studies suggest that this region presents a persistent trend in the intensification of aridifica-
tion [8,9] drives ecological succession processes, especially the gradual loss of suitability
of species less adapted to these arid conditions [10–12]. Furthermore, a decline in suit-
ability for anthropogenic land uses, such as the contraction of agricultural lands, is also
expected [13,14].

While trends in changes in LULC environmental suitability due to climate change
are well-documented in the central part of the Brazilian semiarid region, peripheral areas,
such as northern Minas Gerais, have often been neglected. Therefore, investigations
into the impacts of climate change in the North of Minas Gerais are essential, as it is
a representative ecotone region in Brazil, that is, an area sensitive to disturbances in
climatic variables such as rising temperatures and decrease in precipitation levels [15,16].
This becomes even more imperative considering the ecological diversity of this ecotonal
zone, with vegetation ranging from open fields and tropical savannas to evergreen and
deciduous forests [17]. These ecosystems harbor high levels of endemism and a variety
of species [18,19], which classifies the North of Minas Gerais as a biodiversity hotspot as
part of Brazilian Cerrado [20]. Additionally, this region has broad environmental potential
for croplands, planted pastures, and eucalyptus, land uses that play an important role in
national and international socioeconomic dynamism. For example, the region stands out
in exports of fruits and fibers to several countries [21], in addition to supplying the steel
industry at a national level through charcoal from eucalyptus reforestation [22].

Therefore, quantifying the impacts of future climate change on the suitability of LULC
classes in the North of Minas Gerais is essential for maintaining ecological services and
socioeconomic stability. This assessment must consider multiple predictors that determine
the most appropriate environments for both natural ecosystems and anthropogenic uses [5].
In addition to climatic variables such as temperature and precipitation, it is pertinent to
include factors such as pedological and topographic attributes, as they are fundamental for
the establishment of plant species and agricultural practices [10,19,23]. This approach is
particularly important for the North of Minas Gerais, a region with great pedodiversity
and varied landforms.

Considering the complexity of LULC and environmental attributes, it is necessary to
use methodological structures that capture these relationships. In this context, previous
studies [10,24,25] have suggested the use of machine learning algorithms, as they allow
the use of multiple covariates, in addition to distinguishing non-linear patterns essential
for discriminating different LULC classes. Among these algorithms, Random Forest (RF)
has gain prominence in environmental modeling [23,24,26]. RF is an algorithm based on
decision tree logic and the bootstrap method, which ensures a robust mapping of LULC
classes based on the principle of randomness [27,28].

Herein, we assess the potential impacts of future climate change (2061–2080) on
the environmental suitability of LULC classes in North of Minas Gerais, using the RF
algorithm. To the best of our knowledge, this is the first study to employ this approach in
the Brazilian semiarid region. The results of this research could guide important public
policy instruments on LULC. For example, the improvement of agro-environmental zoning,
guiding decision-making considering the vulnerability of lands to future climate change,
allowing the expansion of conservation areas, and the definition of priority zones for
agricultural productivity.

2. Materials and Methods
2.1. Study Area

The study area is located in the north of the state of Minas Gerais, corresponding to
the southern part of the Brazilian semiarid region (latitude: 15◦ S to 18◦ S; longitude: 42◦ W
to 46◦ W) (Figure 1). This area was defined as the administrative mesoregion of Northern
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Minas Gerais by the Brazilian Institute of Geography and Statistics (IBGE) [29]. The
study area encompasses 89 municipalities, of which 60 belong to the limit of the Brazilian
Semiarid region, as defined by the Superintendence for the Development of the Northeast
(SUDENE) [30]. Most of the Brazilian government’s decisions regarding the semiarid region
(such as financial credits to combat desertification) are based on this classification.
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Figure 1. Characterization of the study area. (a) North of Minas Gerais State in the global context:
(b) altitude; (c) geomorphology; (d) land use and cover (LULC) classes, biomes, and mean annual
precipitation distribution; and (e) soil types.

The region is characterized by a diverse range of LULC classes, including forests,
savannas, grasslands, pastures, croplands, and eucalyptus plantations. The distribution
and suitability of these LULC classes are influenced by a combination of biophysical factors
such as climate, topography, and soil, along with public policies aimed at fostering regional
economic development [31,32].

The predominant climate in the region is tropical with dry winter (Aw) and dry sum-
mer (As), according to the Köppen classification [33]. Annual precipitation is irregular,
varying between 600 mm and 1300 mm. The region exhibits pronounced climatic season-
ality, with eight dry months from March to October, followed by four rainy months from
November to February [32]. Elevation ranges from 300 m to 1800 m, with an average of
700 m, reflecting the geomorphological heterogeneity of the region. In the western part
of the study area, the landscape is characterized by flattened surfaces such as tablelands,
depressions, terraces, and plains. These geomorphological features have led to the de-
velopment of well-drained, highly weathered soils, predominantly Ferralsols [32]. This
soil diversity supports the coexistence of the Caatinga and Cerrado biomes, character-
ized by seasonal phytophysiognomies, mainly the savannic formations of the Cerrado,
characterized by a grass layer, abundant shrub species, and sparse, short trees.

The landscape heterogeneity in the western portion of the study area, coupled with
public investments from the SUDENE, has facilitated the expansion of pastures and crop-
lands [34]. Pastures (brachiaria; African genus Urochloa) are the predominant land use type
in the region, covering approximately 38,000 km2 (~30% of the area). In general, livestock
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farming in the region follows the extensive model, with pastures with some degree of
environmental degradation [35], which leads to a low animal carrying capacity, around
0.47 animal units per hectare [36]. Perennial and annual crops represent 2% of the study
area, distributed among bananas, grapes, lemons, mangoes, corn, and beans, among others.
The North of Minas Gerais is a crucial region for the production of agricultural commodities
for international markets, particularly through the Jaíba Project, one of the largest irrigated
perimeters in the world [34].

The eastern part of the study area includes the Espinhaço mountain range, character-
ized primarily by rocky outcrops mostly covered with grasslands, known as rupestrian
Cerrado [32]. This region is interspersed with plateaus that feature patches of humid
Atlantic Forest and Cerrado. The relatively gentle terrain of these plateaus facilitates mech-
anization, making them attractive for the establishment of exotic eucalyptus plantations.
Consequently, significant government incentives have been directed toward promoting
theses plantations in the region [22]. The Eucalyptus grandis species is the most cultivated in
the region, essentially due to its rapid growth, which is attractive for timber production.

2.2. Methodological Approach

This study was based on the following key steps: (i) assembling a comprehensive
database that includes climate, soil, and topographic data; (ii) acquiring and refining LULC
samples; (iii) training and validating the RF algorithm; and (iv) predicting LULC dynamics
under future climate change scenarios (Figure 2).
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2.3. Covariates

We selected a set of 13 covariates, which included climate, soil, and topographic
data (Table 1). The climate database comprised mean air temperature and mean annual
precipitation for both historical (1970–2000) and future (2061–2080) climate scenarios. For
historical data, we used the WorldClim 2.1 platform, while data for the future scenario
were obtained from the WorldClim 1.4 platform [37,38].

Table 1. Covariates used in the land use and land cover classification.

Covariates Resolution (m) Period

Mean air temperature 1000 1970–2000 and 2061–2080
Annual precipitation 1000 1970–2000 and 2061–2080

Bulk density 250 1970–2000
Cation exchange capacity 250 1970–2000

Volumetric coarse fragment 250 1970–2000
Organic carbon density 250 1970–2000

Soil pH 250 1970–2000
Nitrogen 250 1970–2000

Soil organic carbon 250 1970–2000
Sand 250 1970–2000
Silt 250 1970–2000

Clay 250 1970–2000
Elevation 30 1970–2000

Future climate data were obtained from the Intergovernmental Panel on Climate
Change (IPCC), made available through the Coupled Model Intercomparison Project (CMIP)
Global Climate Models (GCMs). These models are based on the scenarios outlined in the
IPCC’s Assessment Reports, categorized as Representative Concentration Pathways (RCPs),
defined by their respective radiative forcing levels: 2.6, 4.5, 6.0, and 8.5 W m−2 [39]. RCPs
consider different factors affecting CO2 emissions such as demographic changes, socioeco-
nomic development, and technological advances [39]. Increased CO2 concentration alters
the radiative forcing of the atmosphere, leading to an increase in global temperatures [40].
This temperature rise due to an increase in the atmospheric CO2 concentration is known as
Equilibrium Climate Sensitivity (ECS) [39]. Previous IPCC reports indicate that ECS ranges
from 1.5 ◦C to 4.5 ◦C. However, the most recent IPCC Assessment Report 6 indicates a
higher sensitivity to climate change, with the ECS ranging from 1.8 ◦C to 5.6 ◦C, suggesting
a stronger warming [37–40].

Previous studies using models from the sixth Assessment Report (AR6) have observed
that these models could exhibit more extreme behaviors, often overestimating or under-
estimating the representations of natural ecosystems and biophysical properties of LULC
classes, such as leaf area index and gross primary productivity [41–51]. Consequently, we
adopted a more conservative approach by using models from the fifth Assessment Report
(AR5), a choice that has also been made in other global studies [10,23,25,52–54]. AR5 mod-
els have been extensively tested and validated in various parts of Brazil [10,11,23,52,55,56],
facilitating comparisons and supporting the consistency of our results. Therefore, we
selected three GCMs known for their strong performance in Brazil: the Community Climate
System Model version 4 (CCSM4) [57], the Max Planck Institute Earth System Model (MPI-
ESM-P) [58], and the Model for Interdisciplinary Research on Climate (MIROC-ESM) [59].

These models were selected to represent both the RCP 2.6 (optimistic) and RCP 8.5
(pessimistic) scenarios. The RCP 2.6 scenario is consistent with the goals of the Paris
Agreement, aiming to limit the global temperature rise to 1.5–2 ◦C. In contrast, the RCP
8.5 scenario projects a potential global temperature increase of up to 4.5 ◦C by the end of
the century [39]. Given the specific characteristics of each model´s climate projections, we
created an ensemble model by averaging annual air temperature and precipitation data
from the three CGMs. This ensemble approach, designed to reduce the uncertainties of
estimates, has been employed in other studies [25,60,61].
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The soil database was obtained from the SoilGrids platform (Table 1) [62], consid-
ering covariates that represent the physical and chemical properties of soils at 0–5 cm
depth. The inclusion of soil data has great potential for distinguishing different LULC
classes because they directly influence the development of various LULC classes [24]. The
selected covariates included the water-holding capacity, essential nutrients, and acidity.
Previous studies have demonstrated that incorporating soil data significantly enhances
LULC classifications [10,63,64].

The elevation data were obtained from the Shuttle Radar Topography Mission (SRTM) [65]
and accessed through the Google Earth Engine platform. Elevation plays a critical factor in
the spatial distribution of LULC classes, as it interacts with other key attributes that affect
the suitability of LULC classes, such as climate [66], soil type [67], and water availability [68].
Integrating soil and elevation data allows for the production of more accurate LULC
maps [10]. In this study, we resampled the soil and elevation covariates to a 1 km spatial
resolution using the bilinear interpolation method.

2.4. Dataset

The dataset comprised 1209 training and validation samples of six representative
LULC classes of the study area: croplands (n = 148), eucalyptus plantations (n = 134),
forests (n = 146), native grasslands (n = 222), pastures (n = 252), and savannas (n = 307)
(Figure 3; Table 2). These samples were obtained from the MapBiomas platform for the
period between 1985 and 2022. The samples were produced through visual interpretation of
Landsat satellite images by analysts and subsequently validated by trained specialists [69,70].
For the historical scenario (1970–2000), we used the statistical mode value of each pixel
from the MapBiomas platform as the representative LULC class. To further enhance the
reliability of these samples, we visually inspected and adjusted the LULC labels using
QGIS software [71].
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Table 2. Description of LULC classes and the number of samples.

LULC Description Number of Samples

Forest Vegetation with a predominance of tree species, with continuous canopy
formation, and seasonal deciduous forests 146

Savanna Savanna formations with trees, shrubs, and herbaceous strata 307

Eucalyptus Tree species planted for commercial purposes. The typical planting space of
eucalyptus (2 to 3 m between planting lines and 1 to 2 m between trees) 134

Grasslands Natural formations with a predominance of a herbaceous layer and some shrubs 222
Pasture Planted pastures, related to livestock activity (brachiaria; African genus Urochloa) 252

Croplands Areas cultivated with perennial and temporary crops (bananas, grapes, lemons,
mangoes, corn, and beans, among others) 148

2.5. Training and Validation

The sampling set was used to extract covariate values from the historical scenario,
with 75% of the samples allocated for training the model and 25% allocated for validation.
We used the Random Forest (RF) algorithm to map LULC classes. RF was chosen based on
its high performance in LULC classifications in other regions of the planet [72]. RF stands
out for its statistical robustness and ability to distinguish non-linear behaviors, such as the
relationship between LULC classes and edaphoclimatic conditions [23,25].

The RF algorithm is based on the bootstrap method, where multiple decision trees
are generated using different subsets of environmental covariates during the training
process [27]. This approach reduces the correlation between individual trees, thereby
preventing model overfitting [73]. Each uncorrelated tree predicts the LULC class, and
the final map is generated by considering the classes most voted across all trees in the
forest [27]. The RF hyperparameters are ntree, which represents the number of trees created
during training, and mtry, that is, the number of covariates selected for splitting each tree [27].

We trained the RF model using 75% of the samples and considered a 10-fold cross-
validation method with five replications. The database was divided into 10 subsets (k-folds)
and submitted to an iterative training process repeated five times to ensure that the model
was free from overfitting. This training phase was automatically prepared using the Caret
R 4.3.2 package [74]. In our study, the best performance was obtained by ntree = 500 and
mtry = 7. Furthermore, during training, we obtained a ranking with the most important
covariates for classification using varImp [74].

Next, we evaluated classification performance using the holdout test on the remaining
25% of the samples. We evaluated the performance of our method using the framework
proposed by Pontius and Millones [75]. This involved constructing a confusion matrix and
calculating several metrics, including overall accuracy (OA), quantity disagreement (QD),
allocation disagreement (AD), producer’s accuracy (PA), and user’s accuracy (UA). OA
is the probability of samples being correctly classified by the algorithm; QD corresponds
to the proportion of incorrectly classified samples; AD represents the spatial proportion
of samples incorrectly distributed in the classes; PA is related to the model’s omission
error, i.e., it measures which samples were correctly distributed by the classifier for their
real class; and UA comprises the commission error rate, i.e., it estimates the proportion of
samples that belong to a given class. All analyses were carried out using R [76].

2.6. Prediction Scenarios

In the training phase, the RF algorithm was adjusted based on climate covariates from
the historical scenario (1970–2000), along with pedological aspects and altitude. To model
changes in LULC for future scenarios, we replaced the historical climate covariate layers
with the IPCC ensemble model projections for both optimistic and pessimistic scenarios.
We retained the soil and altitude data in the future prediction, based on the assumption
that these landscape attributes will not significantly change over the approximately 70-year
interval. This assumption has been frequently used in previous studies [10,23,25]. Spatial
predictions were made using the predict function of the raster package [77].
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3. Results
3.1. Climate Projections

The historical scenario revealed a mean annual air temperature of 22 ◦C in the North
of Minas Gerais (Figure 4). The ensemble model predicted an increase of 2 ◦C in mean air
temperature under the most optimistic scenario (RCP 2.6), while the pessimistic scenario
(RCP 8.5) suggested a more pronounced increase of 3◦ C. Additionally, the climate change
models projected a pronounced decline in mean annual precipitation of up to 110 mm year−1.

Land 2024, 13, x FOR PEER REVIEW 8 of 21 
 

2.6. Prediction Scenarios 

In the training phase, the RF algorithm was adjusted based on climate covariates 

from the historical scenario (1970–2000), along with pedological aspects and altitude. To 

model changes in LULC for future scenarios, we replaced the historical climate covariate 

layers with the IPCC ensemble model projections for both optimistic and pessimistic sce-

narios. We retained the soil and altitude data in the future prediction, based on the as-

sumption that these landscape attributes will not significantly change over the approxi-

mately 70-year interval. This assumption has been frequently used in previous studies 

[10,23,25]. Spatial predictions were made using the predict function of the raster package 

[77]. 

3. Results 

3.1. Climate Projections 

The historical scenario revealed a mean annual air temperature of 22 °C in the North 

of Minas Gerais (Figure 4). The ensemble model predicted an increase of 2 °C in mean air 

temperature under the most optimistic scenario (RCP 2.6), while the pessimistic scenario 

(RCP 8.5) suggested a more pronounced increase of 3° C. Additionally, the climate change 

models projected a pronounced decline in mean annual precipitation of up to 110 mm 

year−1. 

 

Figure 4. Climate change scenarios in the North of Minas Gerais State, Brazil, for historical (1970–

2000) and future (2061–2080) scenarios based on the ensemble model of three general circulation 

models (GCMs): CCSM4, MPI-ESM-P, and MIROC-ESM. Where: a) spatial distribution of mean air 

temperature in the historical scenario recorded between 1970 and 2000 in Northern Minas Gerais 

(NMG); (b) projected mean air temperature for 2061–2080 in the optimistic scenario (RCP 2.6); (c) 

projected mean air temperature for 2061–2080 in the pessimistic scenario (RCP 8.5). The remaining 

figures show the spatial distribution of annual accumulated precipitation in the historical scenario 

(d) and estimates for the RCP 2.6 (e) and RCP 8.5 (f) scenarios. 

In the historical scenario, the lowest mean temperature values (19 °C to 20 °C) cov-

ered 7276 km2 (~5%) of the study area, predominantly in the eastern portion where ele-

vated areas of the Espinhaço mountain chain are located. In future scenarios (2061–2080), 

due to the projected expansion of temperature range between 23 °C and 26 °C, the areas 

Figure 4. Climate change scenarios in the North of Minas Gerais State, Brazil, for historical (1970–2000)
and future (2061–2080) scenarios based on the ensemble model of three general circulation models
(GCMs): CCSM4, MPI-ESM-P, and MIROC-ESM. Where: (a) spatial distribution of mean air temper-
ature in the historical scenario recorded between 1970 and 2000 in Northern Minas Gerais (NMG);
(b) projected mean air temperature for 2061–2080 in the optimistic scenario (RCP 2.6); (c) projected
mean air temperature for 2061–2080 in the pessimistic scenario (RCP 8.5). The remaining figures
show the spatial distribution of annual accumulated precipitation in the historical scenario (d) and
estimates for the RCP 2.6 (e) and RCP 8.5 (f) scenarios.

In the historical scenario, the lowest mean temperature values (19 ◦C to 20 ◦C) covered
7276 km2 (~5%) of the study area, predominantly in the eastern portion where elevated
areas of the Espinhaço mountain chain are located. In future scenarios (2061–2080), due
to the projected expansion of temperature range between 23 ◦C and 26 ◦C, the areas with
minimum air temperatures are expected to decrease drastically, covering only 4 km2. The
maximum temperature in the historical scenario was 25 ◦C, distributed over 17,272 km2

(13%) of the region, predominantly in the extreme north. Under climate change conditions,
the highest average temperatures (25 ◦C to 28 ◦C) are projected to cover up to 72% of the
North of Minas Gerais in the most pessimistic scenario (RCP 8.5).

Currently, relatively high annual precipitation levels (>1000 mm yr−1) occur over a
substantial portion of the study area, covering 69,349 km2 (51%), mostly in the western
region. However, future climate models project a significant reduction in these high-
precipitation areas. Under the pessimistic scenario, a 34% decrease in these areas is expected.
On the other hand, areas with low precipitation (<690 mm year−1 to 790 mm year−1) are
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projected to expand. Historically, this precipitation range encompassed only 5% of the
study area, but future projections indicate an increase of 7% to 29%.

3.2. Mapping LULC for the Historical Scenario (1970–2000) and Future Trends (2061–2080)

The LULC map generated using the RF algorithm, trained with climatic, soil, and
topographic covariates, obtained reasonable metrics. The overall accuracy was 60%, with
65% disagreement in allocation and 15% disagreement in quantity. Specific metrics also
confirm the challenges in mapping the environmental suitability of LULC, with producer
accuracy ranging from 39.68% to 75.47% and user accuracy ranging from 46,15% to 81.48%
(Table 3). Among the selected covariates, the three most important were elevation (100%),
mean annual air temperature (82%), and mean annual precipitation (81%) (Figure 5).

Table 3. Metrics of evaluating the performance of the model developed using the Random For-
est (RF) algorithm. Note: PA—producer’s accuracy; UA—user accuracy; OA—overall accuracy;
AD—allocation disagreement; QD—quantity disagreement.

Classes Forest Savanna Eucalyptus Grasslands Pasture Cropland Total UA (%)

Forest 18 5 4 1 10 1 39 46.15
Savanna 3 51 6 5 21 8 94 54.26

Eucalyptus 0 3 22 0 2 0 27 81.48
Grasslands 1 12 1 40 2 0 56 71.43

Pasture 2 9 3 6 25 4 49 51.02
Cropland 2 7 0 1 3 24 37 64.86

Total 26 87 36 53 63 37
PA (%) 69.23 58.62 61.11 75.47 39.68 64.86
OA (%) 59.60
AD (%) 65.56
QD (%) 15.23
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Figure 5. Ranking of the most important variables selected by the Random Forest algorithm in the
training process. OCD = organic carbon density; CFV = volumetric coarse fragment; SOC = soil
organic carbon; CEC = cation exchange capacity.

Climate change will substantially transform all LULC classes in the study area (Figures 6–8
and Table 4). These spatial changes coincide with the mean air temperature increase
and annual precipitation level decline under future IPCC projections (Figure 7). For
example, croplands were suitable for use over an area of 7800 km2 in the historical scenario
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(1970–2000), with an average temperature of 23.43 ◦C and precipitation of 978.68 mm yr−1.
However, with an increase of up to 2.9 ◦C in mean air temperature and a reduction of up to
97 mm yr−1 in annual precipitation, croplands are expected to experience a decline of up to
8% in their suitability in future scenarios (2061–2080).
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Figure 6. Spatial distribution of land use and land cover classes in the North of Minas Gerais State in
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Figure 7. Quantitative comparison between changes in LULC and climate variables in the North of
Minas Gerais. Suitability in km2 of LULC classes (a); mean air temperature for the extent of each
LULC class (b); annual precipitation for the extent of each LULC class (c). All variables are for the
historical (1970–2000), optimistic, and pessimistic scenarios (2061–2080).
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 Figure 8. Sankey diagram showing the conversions of land use and land cover classes considering his-

torical data (a) and future climate change scenarios under the optimistic and pessimistic scenarios (b).
CP = cropland; GR = grasslands; EUC = eucalyptus; FF = forest; PA = pasture; and SAV = savanna.

Table 4. Area gain and loss for each class of land use and land cover (LULC) considering the historical
data and optimistic (RCP 2.6) and pessimistic (RCP 8.5) climate change scenarios.

LULC
Historical
Data (km2) RCP 2.6 (km2) RCP 8.5 (km2)

Historical Data to RCP
2.6 (km2) 8.5 (km2) 2.6 (%) 8.5 (%)

Croplands 7803 7417 7192 −386 −611 −4.95 −7.83
Eucalyptus 8424 3616 2490 −4808 −5934 −57.08 −70.44

Forest 11,142 8572 6794 −2570 −4348 −23.07 −39.02
Grasslands 12,659 9070 6054 −3589 −6605 −28.35 −52.18

Pasture 38,130 43,650 49,421 5520 11,291 14.48 29.61
Savanna 57,681 63,514 63,888 5833 6207 10.11 10.76

In contrast, pasture suitability is projected to increase in the coming decades (Figure 6
and Table 4). In the historical scenario, the area suitable for pasture cultivation occupied
25% of the study region (38,130 km2), showing adaptability in the western portion of the
North of Minas Gerais, in areas with relatively high average temperatures (24.07 ◦C) and
low precipitation levels (993.97 mm yr−1). In the future, pasture suitability is expected
to increase by up to 29% (+11,291 km2), mainly due to increases between 1.43 ◦C and
2.96 ◦C in the historical thermal average and decreases of 28 mm yr−1 to 82.77 mm yr−1

in precipitation for the period 2061 to 2080. This gain in pasture suitability is expected to
occur on lands previously occupied by savannas and forests (Figure 8).

Despite some pasture overlap, savannas are expected to gain considerable environ-
mental suitability in the coming decades. This class had suitability in approximately 70%
(57,681 km2) of the lands in the study area in the historical scenario, essentially in zones
with an average air temperature of 22.79 ◦C and precipitation levels of 1010 mm yr−1.
However, also, after an increase in thermal averages between 0.84 ◦C and 2.45 ◦C and a
decline in precipitation to 138.01 mm yr−1 in the future scenarios, a 10% expansion of lands
suitable for savannas is projected. This suggests that savannas are well adapted to future
climate changes. The expansion of savannas’ suitability should occur in lands previously
favorable for forests, grasslands, and eucalyptus plantations (Figure 8).
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The land suitable for forests in the North of Minas Gerais was concentrated in the
eastern sector of the region, with an area of 11,142 km2, under relatively low average
temperatures (21.45 ◦C) and low precipitation rates (938 mm yr−1). However, areas suitable
for maintaining forests are expected to lose space in future scenarios, with a decline of up to
39.02% in the most pessimistic scenario (RCP 8.5). This decline is conditioned by an increase
of 2.99 ◦C in the historical thermal average and a decline of 130.90 mm yr−1 in precipitation.
These trends reveal the vulnerability of forest formations to climate disturbances.

Grasslands also lose their environmental suitability in the North of Minas Gerais,
mainly due to climate-favoring savannas in the coming decades. Grassland lands covered
12,659 km2 in the historical scenario, with a projected decline in the future of between
29% and 59% in the optimistic and pessimistic perspectives, respectively. This reduction
will present distinct spatial patterns. A more pronounced decrease is expected to occur
in the northwest portion, under flat surfaces and deep soils. On the other hand, stability
is expected in the grasslands located on the eastern edge on rocky outcrops of the Espin-
haço mountain chain. These patterns indicate that lithopedological factors are key to the
reconfiguration of grasslands in the coming decades.

Eucalyptus plantations are expected to experience the greatest suitability losses among
all LULC classes due to the expansion of more suitable climatic conditions for savannas.
Eucalyptus suitability was 8424 km2 in the historical scenario, concentrated in the eastern
portion, with a predominance of an average temperature of 20.72 ◦C and low rainfall rates.
However, a reduction of 43% to 79% in land suitable for eucalyptus is expected. This
abrupt decline coincides, again, with an increase of up to 2.89 ◦C in the historical average
temperature and a reduction of up to 134.64 mm yr−1 in precipitation levels for the areas
where these plantations have been concentrated in recent decades.

4. Discussion
4.1. Mapping Performance and the Covariate Influences

Our LULC map, using the RF classifier, was trained with climate, soil, and elevation
data for the historical period (1970–2000) and achieved reasonable performance. RF was
able to map about 60% of the suitability of the LULC classes (overall accuracy = 60%). The
65% allocation disagreement and 15% quantity disagreement and specific metrics revealed
that the model also exhibited considerable confusion in class distinction. Our accuracy
rates are comparable to previous studies at global and continental scales [25,26,78,79]. This
accuracy is lower than that of traditional techniques based solely on remote sensing data,
which typically generate highly accurate outputs based on spectral signatures [72]. In
our methodological framework, we assessed the potential occurrence of specific LULC
classes by considering climatic, soil, and topographic attributes. This added complexity
to the modeling, which, in turn, decreased the performance of the classifier [24]. Another
drawback is the spatial resolution of our maps, which was set at 1 km. This resolution
complicates the differentiation of various LULC classes, making it more challenging to
separate them effectively. However, a key advantage of this approach is its ability to
extrapolate mapping procedures considering climate change, thereby serving as a valuable
tool for guiding management and conservation strategies across different scenarios.

Elevation was the most influential covariate in the LULC classification, strongly im-
pacting the suitability of croplands, pastures, and eucalyptus plantations. Croplands
and pastures are mainly found in the lowlands of the western region, while eucalyptus
plantations and grasslands are more prevalent in the eastern highlands [80]. Mean air
temperature and annual precipitation also emerged as important covariates in our LULC
classification, corroborating previous research that demonstrated the effectiveness of cli-
mate data in distinguishing various ecosystems [24,81,82]. These climatic factors influence
water availability [83], leading to significant differences in seasonality, crop cycles, and
phenological stages. In transitional regions such as North of Minas Gerais, where the
Cerrado, Caatinga, and Atlantic Forest biomes coexist, the varying responses of ecosystems
to climate fluctuations enhance the differentiation of LULC classes.
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Pedological covariates (soil characteristics) had a relatively weak influence on the
LULC classification compared to elevation and climate data. This limited influence can be
partially attributed to the inherent functioning of the RF algorithm, which tends to prioritize
covariates with a broader range of values during the selection process [84]. In our model,
the soil data exhibited relatively low variation, resulting in lower importance in the ranking
procedure [10]. However, it is important to note that even though these covariates were
not ranked as highly influential, they likely play a significant role in discriminating LULC
classes strongly associated with specific soil properties. For example, riparian forests along
the São Francisco River and grasslands on the rocky outcrops of the Espinhaço mountain
chain depend on unique soil characteristics that are not fully captured by the overall low
variations observed in the dataset used in this study.

4.2. Impacts of Climate Change on LULC Classes

We expect a decrease in cropland suitability of up to 611 km2 in the study area. Our
findings are consistent with regional and global modeling studies that have projected
a decline in cropland suitability under future climate change scenarios [14,85–92]. This
decline in agricultural productivity is likely driven by a combination of rising temperatures
and decreasing precipitation, which increases evapotranspiration and leads to increased
water stress, thereby limiting crop growth and productivity [52].

The reduction in areas suitable for croplands can affect the export chain on a national
and international scale and, consequently, generate economic losses, since the North of
Minas Gerais is an irrigated fruit-growing hub responsible for supplying food to national
and international markets [21]. Therefore, there is an urgent need to develop climate change
adaptation strategies to enhance the resilience of croplands. Integrated systems, which
combine crops, livestock, and forests within the same environment, offer a promising
approach to mitigating climate change [93]. The insertion of trees next to crops promotes
air humidification through evapotranspiration, improves the rate of water infiltration into
the soil, and reduces water stress. These benefits contribute to making croplands more
resilient to climate change [94,95].

Pasture suitability in the North of Minas Gerais is projected to increase by up to
22,500 ha per year in the period 2061–2080. Historically, pastures in this region are adapted
to high mean air temperatures and low precipitation [35]. Future IPCC scenarios (RCPs
2.6 and 8.5) indicate that these conditions will not only persist but also expand, creating
more lands suitable for pasture in the coming decades. From an economic perspective,
this trend may offer a favorable outlook by theoretically increasing cattle carrying capacity,
boosting beef production [96]. However, these lands suitable for pasture will grow at the
expense of areas previously occupied by savannas and forests. These native vegetations
provide important ecosystem services, including carbon sequestration, air humidification,
and water resource regulation [97–99]. Thus, their replacement by pastures may compro-
mise these environmental benefits. In this context, public policies are needed to protect
native forests from anthropogenic and climatic pressures. Previous studies highlight the
effectiveness of environmental Protection Areas (PAs) and compliance with the Native
Vegetation Protection Law (Federal Law 12727/2012) in reducing deforestation rates in the
North of Minas Gerais in recent decades [100,101]. Therefore, expanding these instruments
is a prominent measure for forest conservation.

Additionally, studies have indicated that high temperatures and low precipitation are
drivers of pasture degradation in the North of Minas Gerais in the historical context [35].
As these conditions are projected to persist in future scenarios, the anticipated expansion of
pastures may be accompanied by increased levels of degradation, as evidenced in other
regions such as in parts of Africa [102], followed by land abandonment and desertifica-
tion [103,104]. Therefore, decision-making toward more sustainable livestock farming is
crucial. Previous studies suggest the adoption of rotation practices and the recovery of
already degraded pastures, which increases the production of dry biomass for cattle herds,
reducing the need for further deforestation [105].
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While some areas suitable for savannas may be lost, this is offset by an anticipated
gain of up to 6207 km2 in the period 2061–2080. This increased suitability of savannas is
expected mainly due to the transition from forests, grasslands, and eucalyptus plantations.
Savannas are well-adapted to seasonally dry climates with low rainfall because of several
mechanisms to cope with water scarcity: the shedding of leaves during the dry season by
deciduous and semi-deciduous species [106], which avoids excessive water consumption
during periods of deficit [106,107]; a deep root system [108]; and sclerophyllous leaf traits
that facilitate a conservative water-use strategy [109]. In contrast, forest ecosystems have
significantly higher water demands [110,111]. Under future scenarios projecting reduced
water availability, forest tree species are likely to experience physiological stress, leading
to increased tree mortality [112]. This process could facilitate the predicted expansion of
savannas over existing forests, a trend reported in other studies [23,25,107,113].

Up to 52% of the land currently suitable for grasslands may present favorable condi-
tions for the expansion of savannas in the region. This transition is likely influenced by
the high pedodiversity of the North of Minas Gerais. Mapping indicates that savannas are
expected to gain greater suitability in the northwest region of the study area, characterized
by landscapes with highly weathered and deep soils (Ferralsols). These soil properties
favor the development of deep root systems in savannas, enabling more effective access
to water, an essential factor in conditions of water restriction [106]. On the other hand,
the eastern portion of the study area faces greater limitations for the re-establishment of
savannas. This region is dominated by quartzite outcrops associated with the Espinhaço
mountain chain [32,114], featuring a shallow substrate that likely hinders the growth of
deep-rooted savanna formations. As a result, grasslands are expected to maintain their
suitability in this area under future climate change scenarios.

These patches of grasslands, adapted to the unique lithological context of the Espin-
haço mountain chain, are among the most biodiverse and endemic mountainous areas in
the world [18]. Their stability in the face of climate change reinforces their importance for
biodiversity and characterizes them as a climate refuge [115]. However, the region´s great
mining potential poses a considerable threat to this rich biodiversity [116]. In this sense,
conserving this grassland in the face of existing anthropogenic pressures and future climate
changes is essential for maintaining ecological integrity.

The suitability for eucalyptus plantations is expected to decline by up to 79% under
future climate change scenarios. Increasing temperatures and water restrictions are likely
to lead to stomatal closure in eucalyptus trees, a physiological response that reduces water
loss and limits carbon uptake [117,118]. This restriction can negatively affect the trees´
metabolic activity and their ability to defend against pathogens [117,118]. Previous studies
have documented similar negative impacts of climate change on eucalyptus plantations in
Brazil and other parts of South America [119–121]. In contrast, Elli et al. [122] evaluated the
productivity (annual increase) of eucalyptus in Brazil and observed that plantations in a
specific site in our study area will see an increase in the annual increase rate. This is because
they will remain in the optimum temperature range, that is, 18 ◦C and 23 ◦C, tolerating
changes in climate. However, even given the resilience of eucalyptus, our modeling showed
a trend previously observed in the region: the advance of savannas over these plantations.
In general, since eucalyptus is historically planted on lands previously covered by savannas
in the North of Minas Gerais [80], when this crop is cut and the land is abandoned, the
natural regeneration of savanna vegetation occurs [123,124].

If the projections come true, the potential loss of eucalyptus suitability could affect the
region’s socioeconomic context. The state of Minas Gerais is one of the largest producers of
eucalyptus in Brazil, playing a central role in supplying timber to the steel industry [22].
The reforestation sector has a significant influence on the socioeconomic indicators of the
municipalities of Minas Gerais, including increases in per capita income and reductions
in poverty rates [125]. Therefore, the decline in suitability for eucalyptus may lead to
decreased employment opportunities and reduced incomes.
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5. Conclusions

Our RF classification modeling indicates that the expected increase in mean air tem-
perature and decrease in annual precipitation will drive significant changes in the envi-
ronmental suitability of various LULC classes in the North of Minas Gerais for the period
2061–2080. We estimate that approximately 30% of the study area may undergo some LULC
transition due to these climatic changes. From an economic perspective, these projections
are concerning, as the suitability for croplands and eucalyptus plantations is expected to
decline, altering regional socioeconomic dynamics. Furthermore, there is a high likelihood
of increased pasture degradation, leading to severe losses in biodiversity and ecosystem
services and potentially accelerating desertification—a process already observed in parts of
the North of Minas Gerais.

From an ecological perspective, an optimistic scenario suggests that the abandonment
of croplands, pastures, and eucalyptus plantations could create opportunities for natural
regeneration and restoration programs, particularly benefiting savanna species adapted
to drier conditions. The success of these natural regeneration or active restoration efforts
depends on factors such as the presence of natural vegetation remnants in the landscape to
provide a pool of species for recolonization. In a pessimistic scenario, land abandonment
may lead to the expansion of deforestation frontiers to compensate for the loss of productive
areas, exacerbating the degradation of the North of Minas Gerais.

Overall, the projected land use transitions, including the replacement of native vege-
tation types (e.g., forests by savannas), can have direct impacts on regional sustainability.
These changes may affect agricultural productivity, livelihoods, and regional economic activities.

The generated LULC map and the projected changes in environmental suitability can
serve as a basis for developing action plans to optimize agro-environmental monitoring
in the region. Based on our results, we suggest the following strategies to planners and
decision-makers: (i) expansion of protected areas of grasslands and forests, considering
the lands with stable environmental suitability indicated in our mapping, ensuring crucial
ecosystem services; (ii) promoting the natural regeneration of savannas, considering the
predicted suitability for the coming decades; and (iii) introducing adaptation strategies for
croplands and eucalyptus plantations in the face of climate change, such as the selection of
more resilient species and improvement of water conservation techniques.

We encourage future research to address some limitations stated in this study, in-
cluding historical and future deforestation patterns, since it is essential to determine the
recolonization potential of native species, inserting drivers of deforestation such as distance
from rivers and roads, and land use policies, in the LULC analyses.
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