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Abstract: Object detection algorithms for optical remote sensing images often face challenges in
computational efficiency, particularly when detecting small and densely packed targets. This paper
introduces CGBi_YOLO, a novel lightweight land target detection network designed to optimize com-
putational resource utilization while maintaining detection capabilities for small-scale targets. Our
approach incorporates an innovative lightweight optimization strategy featuring a new lightweight
backbone feature extraction network: CSPGhostNet. This model significantly enhances the detec-
tion ability of small objects within optical remote sensing images without increasing computational
demands. The efficacy of the proposed model is validated through rigorous experimentation on
the DOTA dataset. Compared to the baseline model, CGBi_YOLO achieves a 30% reduction in
parameters and a 36% increase in inference speed. The model demonstrates exceptional performance
in handling small and densely packed targets within optical remote sensing images, showcasing its
potential for real-world applications in fields such as environmental monitoring, urban planning, and
disaster management.

Keywords: remote sensing image; object detection; land target detection; deep learning; CGBi_YOLO;
lightweight transformation

1. Introduction

In the realm of object detection, the analysis of optical remote sensing images repre-
sents a fundamental research task. These images, capturing the optical wavelength band
within the visible light spectrum, offer intuitive, high-resolution data rich in feature informa-
tion [1]. The wealth of information contained in this data holds significant potential across
various societal domains. The evolution of optical remote sensing image target detection
can be broadly categorized into two distinct eras: the pre-2014 era dominated by traditional
methods and the post-2014 era characterized by deep learning-based approaches [2].

Initially, optical remote sensing image target detection relied heavily on manual an-
notation. This approach, while precise, was time-consuming and labor-intensive and
struggled to meet real-time demands. Its highly targeted nature also limited its generaliza-
tion capabilities [3]. The advent of advanced computing equipment has ushered in a new
era where deep neural network-based target detection methods have gained prominence
in related fields [4–6]. These methods enhance object detection in natural scenes through
targeted neural networks that learn feature information and perform reasoning. However,
the transition of these neural networks to optical remote sensing images is not without
challenges, given the inherent differences between optical remote sensing images and natu-
ral scenes. Deep learning-based object detection methodologies can be broadly classified
into two categories [7]: two-stage detection processes, which conceptualize the generation
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of detection frames as a range adjustment process, and single-stage detection processes,
which generate detection frames in a single pass.

The R-CNN network, proposed by Girshick et al. marked the first concrete implemen-
tation of the two-stage detection method and pioneered the use of convolutional neural
networks for object detection [8]. This method achieves object detection through a four-step
process: calculation of candidate regions, feature information extraction via convolutional
neural networks, target classification, and bounding box regression. While this approach
significantly improved detection performance compared to traditional algorithms, it also
substantially increased computational costs.

Subsequent developments saw the introduction of SPP-Net by He et al. in 2014 [9],
which addressed the fixed resolution input image requirement of R-CNN networks. How-
ever, SPP-Net still faced challenges with computational intensity. In 2015, Girshick et al.
proposed Fast-RCNN [10], an enhancement to R-CNN based on the ROI pooling method,
which improved inference speed. The same year saw the introduction of Faster-RCNN
by Shaoqing Ren et al. [11], the first end-to-end network in deep learning history, with
detection speeds approaching real-time requirements.

Concurrently with Faster-RCNN’s debut, R. Joseph et al. developed YOLO [12], the
first single-stage target detection algorithm. The initial version of the YOLO series achieved
a detection speed of 155 FPS (frame per second), fully satisfying real-time demands. In
2016, W. Liu et al. proposed the Single Shot MultiBox Detector (SSD) [13], marking the
beginning of the deep convolution-based single-stage detection network era. The key
distinction between SSD and YOLO lies in their approach to multi-scale detection: YOLO
performs detection at different feature levels of the network, while SSD focuses on the
highest-level features.

The YOLO series saw further advancements with the open-sourcing of YOLOV3 by R.
Joseph et al. in 2018 [14]. This iteration introduced feature fusion structures to the YOLO
series, drawing inspiration from Feature Pyramid Networks (FPN) [15]. Subsequently,
Bochkovskiy A. et al. updated the YOLO algorithm to its fourth version, YOLOV4 [16],
exploring various optimization methods. The YOLO network architecture is now typically
divided into four functional components: network input structure, backbone feature
extraction network structure, neck structure, and detection head structure.

As deep learning-based target detection techniques advance, the field of optical remote
sensing image analysis is increasingly adopting single-stage detection algorithms. A
prevalent approach involves utilizing automated clustering algorithms for dataset analysis,
followed by the development of adaptive distance calculation formulas to derive more
meaningful intersection ratios. This methodology draws inspiration from the YOLO
series architecture, aiming to enhance adaptability. Concepts from Densely Connected
Convolutional Networks (DenseNet) [17] are employed, integrating dense connection layers
with residual block structures. This combination strengthens the network’s capacity to
extract informative features. Additionally, the Neck network, responsible for feature fusion,
extensively utilizes various feature pyramid structures. These optimization techniques
demonstrate superior performance compared to traditional methods.

In 2018, Xu Y et al. focused on improving the feature fusion structure [18]. Ghorbani
F et al. introduced a processing method for differentiated samples and their background
changes using the PIIFD characterization operator [19], demonstrating enhanced perfor-
mance in optical remote sensing image target detection tasks compared to traditional
methods. In 2020, Cao C et al. proposed a deep learning-based ship detection method [20],
essentially a series of YOLO-based algorithms.

However, challenges persist in disseminating low-level semantic information when
dealing with small-sized target objects. In optical remote sensing images, substantial varia-
tions in appearance and shape complicate the predefinition of anchor frames, potentially
leading to missed targets. Current approaches to enhancing potential target detection
often involve increasing the number of anchor frames [21–23], but this strategy comes with
increased computational costs.
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To address these challenges and further enhance computational efficiency in the
feature extraction process, we build upon established models and introduce lightweight
optimization strategies. We propose a novel lightweight backbone feature extraction
network, CSPGhostNet, which we integrate into an existing architecture to form a new
target detection model: CGBi_YOLO.

This model significantly improves the detection capability of small objects in optical
remote sensing images through careful optimization and an innovative combination of
CSPGhostNet components. The basic unit modules within CSPGhostNet are designed
for reuse through simple linear transformations and truncated gradients, generating high-
quality feature maps with low computational costs. Our model strikes an optimal balance
between accuracy and computational efficiency while controlling computational overhead.

The proposed CGBi_YOLO model is validated through rigorous experiments on an
augmented dataset, demonstrating improved detection capabilities for small-scale targets in
optical remote sensing images without significantly increasing computational complexity.

2. Methods

To enhance the detection of small targets in optical remote sensing images, we chose
YOLOv4 as the base model for this study. Although newer versions of YOLO, such as
YOLOv5 and YOLOv8, are widely used, YOLOv4 still offers significant advantages in small
target detection.

YOLOv4 strikes a good balance between accuracy and computational efficiency, making
it particularly suitable for resource-constrained applications that require real-time process-
ing. Small and densely packed targets in optical remote sensing images present unique
challenges, and YOLOv4′s architecture is well suited to address these issues effectively.

2.1. YOLOV4_CSPBi

YOLOV4_CPSBi [24] is a model specifically engineered to enhance the detection of
small land targets in remote sensing images. It incorporates a weight-based, bidirectional,
and multi-scale mechanism for effective feature fusion, enabling efficient reasoning about
objects of various sizes, with a particular focus on small land objects. This model refines
the channel division approach compared to the conventional cross-stage part network
(CSPNet) [25], integrating this improved structure into the neck segment of the YOLO
network to bolster its learning capabilities and augment small land object recognition in
remote sensing images.

The YOLOV4_CSPBi architecture removes the pyramid fusion structure typically used
for large target detection in traditional BiFPN, reallocating the computation for large object
detection to the efficient feature fusion part for small object detection. Figure 1 illustrates
the network architecture.

2.2. Improved Ghost Feature Extraction Unit: CSPGhost

Sometimes, to ensure that the extracted features accurately capture the key char-
acteristics of the original sample, the extracted information may contain a significant
amount of redundancy. This results in higher computational complexity and reduced
model performance.

Figure 2 shows an example of partial feature map visualization after the first feature
extraction of the YOLOV4_CSPBi network. Among these images, some of them are similar,
which exist such as each other’s “ghosts” and are redundant with each other, as described
by Kai Han in [26]. However, the remarkable achievements of deep neural networks
may be achieved precisely because of the existence of abundant redundant feature maps.
Therefore, in the construction of deep neural networks, it should be inclined to accept this
redundancy rather than try to avoid its existence. Meanwhile, this tendency to obtain multi-
redundant feature information should be achieved at a lower computational cost rather
than by unlimitedly expanding the structural width or depth of deep neural networks.
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This is also the research significance of the GhostNet network [26]. Inspired by
GhostNet, we will further reduce the computation complexity of the target detection
network in this paper.

To reduce the computational cost as much as possible and speed up the reasoning
process of the network, we propose an improved feature extraction unit, CSPGhost, which
is by GhostNet.

GhostNet reduces the complexity of the deep convolutional structure through a simple
linear transformation structure, as depicted in Figure 3. For the input sample information
X ∈ Rc×h×w required by the network (where c represents the input sample channel number,
h and w stand for the height and width of the input sample), any convolution calculation
can be formally represented by Equation (1):

Y = X ⊗ f + b (1)

where ⊗ means the convolution operation, b means the bias term of this layer of the
network, and f ∈ Rc×k×k×n means the convolution kernel of this layer of the network. The
number of FLOPs required in the convolution calculation process can be obtained by the
following Equation (2).

FLOPs_CONV = n × h′ × w′ × c × k × k (2)

where c is the channel number of the convolution kernel, and this value should be kept
with the input sample channel number. k and n are the size and number of convolution
kernels. The output result of the convolution of this layer Y ∈ Rh′×w′×n can be calculated,
where h′, w′ and n represent the height and width of the output feature map and channel
number, respectively.
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From Equation (2), many convolution stacks in deep convolutional neural networks
will generate huge FLOPs. Therefore, to optimize the number of parameters contained in
f and b is necessary to minimize the use of complex convolutions. As shown in Figure 3,
the output feature map after convolution calculation contains many redundant feature
maps, so it is actually unnecessary to obtain all feature maps one by one through such a
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computationally expensive convolution operation. The mutually redundant “Ghost maps”
can be obtained using some linear changes with less computational complexity. Some basic
feature maps can be obtained through a small amount of original convolution calculations.
Then, by using these basic feature maps, a complete redundant feature map can be obtained
through a linear transformation with low computational cost.

Specifically, m original feature maps Y′ ∈ Rh′×w′×m can be obtained by the first
convolution, where Y′ is calculated by the following Equation (3).

Y′ = X ⊗ f ′ (3)

where f ′ ∈ Rc×k×k×m is the convolution kernel. For the convenience of explaining the
principle of the method, the bias term b is omitted here, and the hyperparameters of other
convolution operations are the same as those in ordinary convolution. To further obtain
the required n feature maps, it is only necessary to use a low-computationally-cost linear
transformation operation on each original feature map in Y′ to generate s redundant feature
maps. The specific operation is completed by the Equation (4).

yij = Φy,j
(
y′i
)
, ∀i = 1, ..., m, j = 1, ..., s, (4)

where y′i means the number of sub-images in the m original feature maps, and Φy,j is a
function of y′i generating redundant feature map yij.

The redundant feature map yij and y′i has a many-to-one relationship, that is, the same
original feature map can generate multiple redundant feature maps, and the last one Φy,j
is used to add an identity map connection to preserve the original map. The information
of the map, the identity map in Figure 3b, through this low-computational operation, n
feature maps containing redundancy can be obtained as the output of the ghost module.

CSPGhost proposed here performs channel shunting on the convolutional part of the
traditional ghost network structure, which ensures that the ghost network does not contain
repeated gradient information when updating the gradient information of the weight, and
this channel shunting method based on the CSP idea does need to update parameters
while optimizing the overall efficiency of the network in the gradient information transfer.
The improved CSPGhost structure adopts depthwise separable convolution in generating
redundant feature maps. Its formalized expression is shown in the following Equation (5).

yij = ΦDC
i,j

(
y′i
)
⊕ Φ′DC

i,j
(
y′′

i
)

, ∀i = 1, ..., m, j = 1, ..., s, (5)

where ⊕ represents the depthwise separable convolution operation on the feature informa-
tion divided by the CSP structure and yij represents the different feature information after
the CSP structure. After completing the depthwise separable convolution operation to gen-
erate the redundant feature map, the CSPGhost structure performs identity mapping on the
original condensed feature map obtained after the CSP convolution calculation and directly
superimposes the redundant feature map as the output feature of a CSPGhost basic unit.
Figure 4 is a schematic structural diagram of a CSPGhost basic unit and CSPGhost unit.

The calculation process of CSPGhost redundant feature map generation, as shown
in Equation (5), obviously reduces the number of parameters of traditional convolu-
tional networks and reduces the reuse rate during gradient propagation. Specifically,
the basic unit of CSPGhost contains a feature-concentrated constant equal mapping and
m × (s − 1) = n/s × (s − 1) linear operations. Assuming that the kernel size of each linear
depth separable structure is all d × d, the achievable theoretical speed improvement ratio
can be calculated by the following Equation (6).
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rs =
n×h′×w′×c×k2

n
s ×h′×w′×c×k2+(s−1)× n

s ×h′×w′×d2

= c×k2
1
s ×c×k2+ s−1

s ×d2

≈ s×c
s+c−1

≈ s

(6)

where the parameters d × d and s × s represent the kernel size of traditional convolution
operations and linear depthwise separable operations, basically comparable in magnitude,
but s′′ c. Therefore, the parameters of the improved CSPGhost basic unit can achieve
the compression ratio shown in the following Equation (7) compared with the traditional
convolution operation.

rc =
n×c×k2

n
s ×c×k2+(s−1)× n

s ×d2

≈ s×c
s+c−1

≈ s
(7)
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2.3. Improved Lightweight Backbone Network: CSPGhostNet

With the CSPGhost unit component described above, we introduce two modules for
the backbone feature extraction structure: CSPGhost_1 and CSPGhost_2, shown in Figure 5.

The difference between these two modules is that CSPGhost_1 first expands the
number of channels through the first CSPGhost unit, extracts feature information, and
subsequently reduces the channel number through the second CSPGhost unit to achieve
the purpose of condensing the feature map. It can be seen that CSPGhost_1 only has
the ability to scale channels, while CSPGhost_2 has the ability to simultaneously scale
channels, width, and height information by adding a new layer of depthwise separable
convolutional networks.

In addition, it can also be seen that the overall structure of the CSPGhost module is
similar to the structure of the residual network, and the addition of features is achieved
through a residual short-circuit edge. The problem of gradient loss exists, but CSPGhost
has made a certain improvement on this basis and modified the calculation process of
features in the traditional residual network from “compression, extraction, expansion”
to “expansion, extraction, compression” to prevent the difficulty of extracting effective
information after feature compression, and it also ensures that the modification of the
dimension does not affect the operation result of the activation function. This idea of
inverse residual processing can also be found in related lightweight networks, such as
MobileNetV2 [27].
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By stacking the CSPGhost_1 and CSPGhost_2 structures, we propose a new lightweight
backbone feature extraction network: CSPGhostNet. By alternately using the two basic
structures, the feature information of each level of the original sample is continuously
extracted, and three effective features for the YOLO Neck part are generated.

2.4. Lightweight Target Detection Network: CGBi_YOLO

Based on the above improved CSPGhost bottleneck and combined with the YOLOV4_CSPBi
target detection network model, a more lightweight target detection network model,
CGBi_YOLO, is proposed. Figure 6 shows the architecture of the lightweight detection model.
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CGBi_YOLO is based on the framework of the original YOLOV4_CSPBi network,
replacing the backbone feature-extracting structure CSPDarkNet with CSPGhostNet. It
first performs the CSP1 operation on the original input sample image to obtain the original
feature map. Subsequently, three different stages of feature extractors are used to generate
an effective YOLO Neck feature map. These feature extraction structures deepen the
channel depth of the feature map layer by layer through the combination of different
CSPGhost modules.

By replacing the backbone feature extraction structure of the YOLOV4_CSPBi network,
the dimension of the convolution operation in the backbone network is reduced, thereby
improving the network inference speed. At the same time, based on the advantages of
YOLOV4_CSPBi in bidirectional feature fusion, CGBi_YOLO does not significantly reduce
network performance while reducing computational costs. Moreover, in the backbone
feature extraction network structure of CGBi_YOLO, the computational cost of each basic
computing unit compared to the basic unit of CSPDarkNet in YOLOV4_CSPBi is reduced
by about 30–50%, so the overall computing cost will be greatly reduced.

3. Data Processing
3.1. DOTA Dataset

This study employs the DOTA dataset [28], specifically designed for object detection
tasks in visible light remote sensing images.

Figure 7 illustrates an annotation example from the DOTA dataset, which includes
common small-scale objects in remote sensing images, such as airplanes, vehicles, ships,
and sports fields. The bounding boxes in the figure are in random colors to represent
different object categories.
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Table 1 presents the detailed parameters of the DOTA dataset.

Table 1. The information and characteristics of the DOTA Dataset.

Name DOTA

Creator Wuhan University (Wuhan, China)
Categories 15

The number of tagged images 2806
The number of real object detection tasks 188,282

Application scenarios Target detection of visible light remote sensing images
Size 800 × 800 pixels~2000 × 2000 pixels

Data sources

China Resources Satellite Data and Application Center
(Beijing, China) (GF-2 and JL-1)

CycloMedia B.V. (Zaltbommel, The Netherlands)
(Google Earth and Optical remote sensing images)

3.2. Data Processing and Augmentation

If the feature information of the training sample is too small, minor image alterations
can significantly impact prediction capabilities. Dataset augmentation is an effective
solution to solve this problem and improve model performance. This study explores
several mainstream image data enhancement techniques, such as the slide overlapping
area image cutting, pixel-level enhancement, and area random erase, and the adaptive
improvement and combination of the characteristics of visible light remote sensing images
were carried out.

3.2.1. Slide Overlapping Area Image Cutting

The image size of the DOTA dataset varies in size, and the maximum size can reach
20,000 × 20,000 pixels, making the model difficult to train. To address this, we segmented
the original DOTA image files into 832 × 832 pixel sections. Since direct cutting will
cause the loss of label frame information, we incorporate the concept of sliding windows
to achieve image overlap at uniform intervals. The original image is cut using 50% of
the step size, and the image file without annotation information after cutting is removed.
At last, as shown in Figure 8, 55,992 optical remote sensing images are obtained for the
model training.
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3.2.2. Enhancement on Pixel Level

Multiple enhancement methods were applied to the original images, taking into ac-
count the characteristics of remote sensing imagery. The pixel-level enhancement methods
used are shown in Figure 9.
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All enhancement methods utilized the relevant API interfaces and default parameter
settings provided by the TensorFlow2 framework. In this study, approximately 60% of the
original samples were randomly selected, and three random enhancement methods were
applied to them.

3.2.3. Area Random Erase Methods

The region random erase method improves generalization ability and robustness by
simulating the occlusion of the target instance. However, in specific operations, attention
should be paid to controlling the size and density of the occlusion area to prevent the target
instance from being completely occluded or not blocked at all. The GridMask [29] method
achieves balance by evenly distributing occlusion areas and adjusting parameters. If there
is a target instance below 60 pixels in the example image, use the Mosaic method that
extends from the idea of Cutmix [30] instead. The two area random erase methods are
shown in Figure 10.

Table 2 shows the processed dataset information and characteristics.

Table 2. The information and characteristics of the processed dataset.

Item Description

Number of Samples 87,382
Size 832 × 832

Target Frames 334,585
Format Pascal VOC label

File Format xml
Syntax Specification xml

Annotation Information Filename, Size, Object_Name, Pose, Truncated, Difficulty
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4. Experiments and Results
4.1. Performance Evaluation Metrics

This study employs standard performance metrics for target detection models, as
outlined in Table 3. The primary evaluation metric, mAP@0.5, is derived from precision
and recall rates.

Table 3. Common Performance Metrics.

True Label Prediction Results Common Performance Metrics

True Positive TP
True Negative TN
False Negative FN
False Positive FP

Recall, defined as the ratio of correctly identified targets to the total number of relevant
targets in the test dataset, is computed using Equation (8):

Recall =
TP

TP + FN
(8)

Precision, representing the proportion of correctly detected objects among all detec-
tions, is calculated via Equation (9):

Precision =
TP

TP + FP
(9)

The Precision and Recall values are represented by two tuples. The area above the two-
dimensional coordinate axis enclosed by all the two-tuples is calculated for each category
under a predefined IoU threshold. These areas correspond to the Average Precision (AP)
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values, which are averaged to obtain the mean Average Precision (mAP) index value.
Equations (10) and (11) provide the mathematical definition of AP and mAP.

AP =
∫ 1

0
P(y)dy (10)

mAP =
∑N

i=1 APi

N
(11)

4.2. Results and Analysis
4.2.1. Detection Performance of CGBi_YOLO

Initial attempts to train CGBi_YOLO’s backbone network directly on the DOTA dataset
revealed some challenges, including pronounced oscillations and prolonged convergence
during early training phases, ultimately leading to suboptimal model performance. To
mitigate these issues, we implemented a two-stage training strategy. We pre-trained
the backbone feature extraction network on the VOC dataset at the beginning, and then
completed fine-tuning on DOTA. This approach leverages transfer learning principles to
establish a more robust initial feature representation, potentially accelerating convergence
and enhancing final model performance.

Our training protocol, therefore, encompasses two distinct phases: backbone network
pre-training and subsequent fine-tuning. Table 4 delineates the specific parameter settings
for each stage, including key hyperparameters such as learning rate, batch size, and epoch
count. This bifurcated approach allows for more nuanced optimization, tailoring the
learning process to the unique characteristics of each dataset and the evolving needs of the
model during different training phases.

Table 4. Parameter settings in the pretraining stage and fine-tuning stage.

Setting Pretraining Fine-Tuning

Epoch 50 150
Learning Rate 10−3 10−4

Batch Size 16 8
Early Stop Yes No
Optimizer Adam

CSPGhost Unit Size 3 5

The experiment conducted evaluates the performance of three networks: the tradi-
tional YOLOV4, the YOLOV4_CSPBi, and the lightweight CGBi_YOLO proposed in this
paper. Table 5 shows the CGBi_YOLO network effectively maintains performance com-
parable to that of YOLOV4_CSPBi while also reducing computational demands. Notably,
CGBi_YOLO achieves performance on par with or slightly below YOLOV4_CSPBi across
various categories, indicating its efficacy in balancing efficiency and accuracy.

To further evaluate the efficiency of our proposed model, we conducted a compara-
tive analysis of the model size and inference speed across the three networks: YOLOV4,
YOLOV4_CSPBi, and CGBi_YOLO. This comparison provides crucial insights into the
computational efficiency and practical applicability of each model. Table 6 presents a
comprehensive overview of these performance metrics, allowing for a direct assessment of
the trade-offs between model complexity and operational speed.

It can be seen from a comprehensive comparison of the sizes of Weights, FPS, and
mAP that CGBi_YOLO completely surpasses YOLOV4 and YOLOV4_CSPBi in terms of
computation complexity and inference speed. The performance in mAP is basically the
same as that of YOLOV4_CSPBi. CGBi_YOLO can ensure that the mAP is only reduced by
about 0.6% when the number of parameters is compressed to only 70% of YOLOV4_CSPBi,
and its inference speed is 15% and 36% faster than that of YOLOV4 and YOLOV4_CSPBi,
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respectively. This evidently proves the effectiveness of the proposed lightweight backbone
feature extraction.

Table 5. Comparison of detection performance of CGBi_YOLO.

Target Category YOLOV4 YOLOV4_CSPBi CGBi_YOLO

Basketball-Court 81.69 81.2 81.77
Storage-Tank 70.73 72.88 73.16

Soccer-Ball-Field 61.94 62.39 61.84
Roundabout 60.11 63.03 63.15

Harbor 71.08 77.71 76.82
Swimming-Pool 68.27 76.25 75.47

Helicopter 48.81 55.44 55.03
Tennis-Court 86.71 87.96 87.31

Plane 84.92 88.47 87.64
Baseball-Diamond 79.58 80.17 78.82

Bridge 46.62 48.73 46.66
Ground-Track-Field 71.78 75.51 75.17

Small-Vehicle 70.67 73.38 71.18
Large-Vehicle 63.29 69.57 68.96

Ship 77.37 79.42 79.14
TOTAL_mAP@0.5 69.57 72.8 72.14

Table 6. Comparison of network model parameters and inference speed of CGBi_YOLO.

Contrast Parameters YOLOV4 YOLOV4_CSPBi CGBi_YOLO

Weights (M) 64.50 66.37 47.21
FPS 45 42 52

TOTAL_mAP@0.5 69.57 72.8 72.14

4.2.2. Ablation Study on Compression Ratio and Convolution Size

There are two important parameters in the backbone feature extraction, namely com-
pression ratio, which is the channel compression ratio of the input feature, and kernel size,
which is the size of the depth-wise separable convolution. The ablation studies of the two
parameters are carried out separately to analyze the impact of different parameter settings
on the model performance.

Our initial investigation focused on optimizing the kernel size of the depth-wise
separable convolution. Based on the widely accepted principle that halving the channel
dimension of input features generally preserves essential information while achieving ef-
fective compression, we fixed the compression ratio at 2 for this experiment. We evaluated
four distinct kernel size configurations: 1 × 1, 3 × 3, 5 × 5, and 7 × 7. This systematic
approach allowed us to assess the impact of varying kernel dimensions on model perfor-
mance and efficiency. Table 7 presents a comprehensive summary of our experimental
findings, elucidating the relationship between kernel size and key performance metrics.

Table 7. Performance on kernel size parameter.

Kernel Size Weights (M) mAP FPS

CGBi_YOLO_1 × 1 21.3 48.33 57
CGBi_YOLO_3 × 3 47.13 71.68 54
CGBi_YOLO_5 × 5 47.48 71.94 52
CGBi_YOLO_7 × 7 47.62 57.71 49

It can be seen that the CGBi_YOLO network can show better performance when the
operation kernel size is set to 3 × 3 or 5 × 5. There is no meaningful spatial semantic
information that can be extracted from the original feature map for the operation kernel



Land 2024, 13, 2060 15 of 19

size of 1 × 1; although its computational cost is the lowest, the mAP score is up to 32%
lower than the other three experiments. If the value is set to 7 × 7, it will also cause a
sudden drop in network performance, as shown in Figure 11.

Land 2024, 13, x FOR PEER REVIEW 15 of 19 
 

There are two important parameters in the backbone feature extraction, namely com-
pression ratio, which is the channel compression ratio of the input feature, and kernel size, 
which is the size of the depth-wise separable convolution. The ablation studies of the two 
parameters are carried out separately to analyze the impact of different parameter settings 
on the model performance. 

Our initial investigation focused on optimizing the kernel size of the depth-wise separa-
ble convolution. Based on the widely accepted principle that halving the channel dimension 
of input features generally preserves essential information while achieving effective compres-
sion, we fixed the compression ratio at 2 for this experiment. We evaluated four distinct kernel 
size configurations: 1 × 1, 3 × 3, 5 × 5, and 7 × 7. This systematic approach allowed us to assess 
the impact of varying kernel dimensions on model performance and efficiency. Table 7 pre-
sents a comprehensive summary of our experimental findings, elucidating the relationship 
between kernel size and key performance metrics. 

Table 7. Performance on kernel size parameter. 

Kernel Size Weights (M) mAP FPS 
CGBi_YOLO_1 × 1 21.3 48.33 57 
CGBi_YOLO_3 × 3 47.13 71.68 54 
CGBi_YOLO_5 × 5 47.48 71.94 52 
CGBi_YOLO_7 × 7 47.62 57.71 49 

It can be seen that the CGBi_YOLO network can show better performance when the 
operation kernel size is set to 3 × 3 or 5 × 5. There is no meaningful spatial semantic infor-
mation that can be extracted from the original feature map for the operation kernel size of 
1 × 1; although its computational cost is the lowest, the mAP score is up to 32% lower than 
the other three experiments. If the value is set to 7 × 7, it will also cause a sudden drop in 
network performance, as shown in Figure 11. 

 
Figure 11. Overfitting of CGBi_YOLO (with kernel size: 7 × 7). 

When using a kernel size of 7 × 7, the network has obvious overfitting during the 
training process, which is also the reason for the sudden drop in network performance. 
Therefore, both 3 × 3 and 5 × 5 kernel size settings are used in the CGBi_YOLO network 
structure described above. 

After determining the size of the kernel size parameter, an ablation study was per-
formed on the optimal setting of the compression ratio parameter within the range of. 
From Table 8, the compression ratio is directly related to the parameters of the network 

Figure 11. Overfitting of CGBi_YOLO (with kernel size: 7 × 7).

When using a kernel size of 7 × 7, the network has obvious overfitting during the
training process, which is also the reason for the sudden drop in network performance.
Therefore, both 3 × 3 and 5 × 5 kernel size settings are used in the CGBi_YOLO network
structure described above.

After determining the size of the kernel size parameter, an ablation study was per-
formed on the optimal setting of the compression ratio parameter within the range of.
From Table 8, the compression ratio is directly related to the parameters of the network
and its computational cost. A larger compression ratio brings a more extreme compression
ratio and acceleration ratio, but as expected, the detection accuracy will be greatly reduced.
Therefore, we set the optimal compression ratio to be 2.

Table 8. Ablation study on the compression ratio parameter.

Compression Ratio Weights (M) mAP FPS

2 47.13 71.68 54
3 39.67 63.84 63
4 29.36 50.61 78
5 18.92 37.22 102

4.2.3. Ablation Study on Backbones

To further verify the performance improvement brought by the CSPGhostNet back-
bone feature extraction network proposed in this paper, ablation studies based on different
backbone feature extraction networks were set up. We take YOLOV4 as the base model.

Table 9 presents a comparative analysis of various lightweight network versions. The
results demonstrate that employing CSPGhostNet as the backbone feature extractor yields
a model with reduced parameters and enhanced inference speed while maintaining mAP
performance. These findings validate the efficacy of our proposed lightweight architecture.
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Table 9. Detection performance with various backbones.

Object Detection
Framework

Backbone Feature
Extraction Network Weights (M) mAP FPS

YOLOV4 [16]

MobileNetV1 [31] 48.29 72.53 52
MobileNetV2 [27] 46.74 68.29 54
MobileNetV3 [32] 47.83 71.96 53
ShuffleNetV2 [33] 45.16 66.58 53

CGBi_YOLO 47.21 72.14 53

Since the CSPGhost structure greatly reduces the parameters of the network, whether
its ability to extract feature information will be greatly weakened needs to be further
explored. For this reason, we visualize the network after the initial convolution and the
first time calculated by the CSPGhost structure. Figure 12 illustrates the feature maps
generated by CGBi_YOLO’s initial convolution (red border) and the CSPGhost structure
(blue border).
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The visualization reveals the preservation of anticipated redundant feature maps.
Notably, the CSPGhost-derived features exhibit more abstract semantic content compared to
those from the initial convolution. This visual evidence supports the CSPGhost structure’s
capability to efficiently capture effective redundant feature information, despite its low
computational cost.

5. Discussion

This study focuses on advancing target detection in optical remote sensing imagery
through innovations in YOLO-based network architectures. Our experimental outcomes
corroborate the efficacy of the proposed methodologies. The following discussion examines
the broader implications of our findings and identifies areas for future investigation.

1. Lightweight Network Improvement:

One notable achievement of this study is the successful reduction of the overall
computational burden of the network while preserving its performance. While our focus
is primarily centered on optimizing the backbone network, we acknowledge the need to
address redundant calculations in the neck part. The complex fusion mechanism akin to
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PANet has shown substantial enhancement in prediction performance; however, it carries
redundancy in computation. Our future efforts will be dedicated to achieving a lightweight
enhancement for this component of the network, which is pivotal to its efficiency.

2. Contextual Understanding and Reasoning:

An imperative area for future research involves advancing the incorporation of con-
textual understanding and reasoning in target detection methodologies. While existing
methods have incorporated some level of contextual and global information, they pre-
dominantly remain grounded in visual features. To achieve more comprehensive and
interpretable results, the integration of high-level semantic knowledge should be explored.
This could enhance the model’s capability to comprehend and infer from the broader image
context, thus leading to improved interpretability.

3. Semantic Interpretation:

A significant challenge in contemporary target detection methodologies is the insuffi-
cient integration of high-level semantic knowledge, which impedes model interpretability.
Addressing this limitation presents a crucial avenue for enhancing the practical applica-
bility of our approach. Future research should focus on incorporating advanced semantic
reasoning capabilities into the network architecture. Such enhancements could potentially
enable the model to process and interpret contextually rich information, thereby expanding
its utility across diverse domains. By bridging the gap between low-level feature detec-
tion and high-level semantic understanding, we anticipate opening new directions in the
intelligent analysis of remote sensing imagery.

6. Conclusions

This study presents a novel approach to enhance target detection in optical remote
sensing imagery through modifications to YOLO-series network models. Our proposed
CGBi_YOLO architecture demonstrates significant improvements in both performance
and efficiency, as validated by comparative experiments. Notably, CGBi_YOLO achieves
a 30% reduction in parameters compared to YOLOV4_CSPBi, with only a marginal 0.6%
decrease in mAP. Moreover, it exhibits accelerated inference speeds, surpassing YOLOV4
and YOLOV4_CSPBi by 15% and 36%, respectively. These results underscore the efficacy of
our lightweight backbone feature extraction network, outperforming comparable models
in its class. The experimental outcomes conclusively validate the effectiveness of the
CGBi_YOLO methodology in achieving its intended objectives of improved efficiency
without significant performance compromise.

The novel lightweight backbone network based on CSPGhost, combined with the
YOLOV4_CSPBi model, has showcased a robust potential for practical deployment. Despite
these achievements, we acknowledge certain shortcomings that beckon further research.
The pursuit of a more streamlined computation strategy in the neck part, alongside a deeper
integration of contextual reasoning, stands as a critical future direction. By augmenting the
model’s ability to comprehend and interpret the broader image context, we aim to elevate
the semantic understanding and utility of our approach. This study contributes to the
advancement of target detection methodologies, particularly in the realm of optical remote
sensing images, while simultaneously highlighting areas for continued investigation and
improvement. We anticipate that our findings will motivate and guide subsequent research
endeavors in pursuit of even more refined and interpretable target detection systems.
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