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Abstract

:

High-accuracy gully erosion susceptibility maps play a crucial role in erosion vulnerability assessment and risk management. The principal purpose of the present research is to evaluate the predictive power of individual machine learning models such as random forest (RF), decision tree (DT), and support vector machine (SVM), and ensemble machine learning approaches such as stacking, voting, bagging, and boosting with k-fold cross validation resampling techniques for modeling gully erosion susceptibility in the Oued El Abid watershed in the Moroccan High Atlas. A dataset comprising 200 gully points, identified through field observations and high-resolution Google Earth imagery, was used, alongside 21 gully erosion conditioning factors selected based on their importance, information gain, and multi-collinearity analysis. The exploratory results indicate that all derived gully erosion susceptibility maps had a good accuracy for both individual and ensemble models. Based on the receiver operating characteristic (ROC), the RF and the SVM models had better predictive performances, with AUC = 0.82, than the DT model. However, ensemble models significantly outperformed individual models. Among the ensembles, the RF-DT-SVM stacking model achieved the highest predictive accuracy, with an AUC value of 0.86, highlighting its robustness and superior predictive capability. The prioritization results also confirmed the RF-DT-SVM ensemble model as the best. These findings highlight the superiority of ensemble learning models over individual ones and underscore their potential for application in similar geo-environmental contexts.
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1. Introduction


Water-related soil erosion is an environmental issue and a significant cause of sediment transfer into rivers. It poses a serious threat to land quality, impacting approximately one billion hectares worldwide [1]. The consequences of water erosion encompass on-site effects like the loss of soil resources, reduced soil fertility, diminished vegetation growth, valley and reservoir siltation, desertification, and damage to human infrastructure. Off-site impacts include sedimentation in watercourses, lower water quality, and economic and ecological harm to communities [2,3]. Soil erosion, the primary form of soil degradation, is intensified by the dynamic forces of water and wind, and human activities like agriculture. It manifests in various forms, including inter-rill, sheet, rill, gully, and stream erosion [4]. Gullies contribute 50–80% to overall sediment production in semi-arid and arid regions globally [5]. Reports indicate that soil loss due to gully erosion can range from as low as 10% to as high as 94% of the total sediment yield caused by water erosion [1].



Research indicates that soil erosion affects over 10 million hectares of agricultural land globally each year, with annual loss rates around 43 petagrams (Pg) [6]. The Food and Agriculture Organization (FAO) estimates that soil erosion incurs economic losses of about USD 1 billion annually [7]. In Morocco, soil erosion impacts 40% of the land, with annual loss rates ranging from 23 to 55 tons per hectare, and reaching as high as 524 tons per hectare in certain areas. Furthermore, agriculture is the main livelihood for residents in Morocco’s mountainous regions, which are heavily affected by soil erosion. This leads to reduced fertile land, diminished water quality and availability, and a range of serious economic and social repercussions [8].



Regarding this issue, the Oued El Abid sub-basin, located in the Moroccan High Atlas and forming the upper part of the larger Oum Er-Rbia basin, is significantly impacted by severe soil degradation. This degradation is due to the region’s complex physical features, such as its high elevation and steep slopes with varying rock properties.



To this end, examining the qualitative aspects of gully erosion can help predict the durability of hydraulic structures and provide insights into the geometry of the upper watershed and downstream areas [4,6,9]. In recent decades, various studies and numerous computer-aided techniques have been developed for modeling gully erosion, including methods that incorporate expert knowledge such as the European soil erosion model (EUROSEM) [10], the universal soil loss equation (USLE) [11] the potential erosion process (PEP), the modified Southwest Interagency Committee model (MPSIAC), and the water erosion project (WEEP) [12]. Additionally, there has been a significant increase in the utilization of remote sensing data, GIS, and statistical models to forecast gully susceptibility in recent years [13,14].



Furthermore, the use of remote sensing data, GIS, and statistical models to predict gully susceptibility has increased greatly over the last decades [15,16,17]. These methods include the analytical hierarchy processes (AHPs) [18], weights-of-evidence (WoE) [19,20], and logistic regression (LR) [21]. Presently, the extensive utilization of machine learning (ML) and deep learning (DL) techniques is gaining popularity, especially in mapping and monitoring natural hazards, owing to their ability to yield highly accurate results in data processing, classification, and prediction [22]. These techniques facilitate the generation of predictive maps for soil erosion by analyzing the spatial distribution of existing gully erosion formations alongside various influencing factors such as geological and environmental variables. The selection of an appropriate spatial resolution of digital elevation model (DEM) data is crucial for developing effective conditioning factor maps, as emphasized by [23]. In recent years, there has been a notable rise in the application of ML algorithms for spatially predicting a range of natural hazards, including flooding, landslides [24], wildfires [25], and others. The mapping of geological erosion susceptibility (GES) has been undertaken by numerous studies globally employing ML. Various ML algorithms, such as artificial neural network (ANN), support vector machine (SVM) [26], random forest (RF), multi-layer perception, classification and regression tree (CART) [7], boosted regression tree (BRT) [20], particle swarm optimization (PSO) [27], and maximum entropy [28], have also been extensively employed for GES mapping predictions. While individual machine learning models often struggle with underfitting or overfitting, combining multiple learners through a strategic ensemble approach can significantly enhance prediction accuracy and reduce overfitting. The models used in these ensembles, known as “base learners”, can be either homogeneous or heterogeneous. Numerous studies have explored meta-learning techniques for assembling homogeneous base learners, with bagging, boosting, and random forests being among the most widely applied methods [29,30,31]. Additionally, successful ensemble approaches using heterogeneous models have been demonstrated in various contexts, such as ANN–Bayes analysis [6], ANN–fuzzy logic [32], and combinations of LDA, QDA, LR, and ANN [1]. Other innovative combinations include the statistical index with adaptive neuro-fuzzy inference systems [33] and models integrating ANN, MaxEnt, and SVM [8]. The continuous exploration of novel ensemble methods remains crucial for accurate GE susceptibility assessment. In this study, we introduce the stacking ensemble method for the first time in the context of GE susceptibility mapping in the Oued El Abid sub-basin, located in central Morocco. This approach features a two-level structure, comprising heterogeneous base learners at the base level and a meta-learner at the higher level. Notably, the advantages of the stacking method have been recognized across various disciplines Moreover, it is widely recognized that the factors leading to the development of gullies have been thoroughly studied in certain areas. However, there is a significant requirement for additional research and exploration across various environmental settings, particularly in the southern Mediterranean regions as a whole and specifically within the Moroccan Atlas. In these locales, the factors influencing gully formation have received limited scrutiny. Hence, this study seeks to address this gap and illuminate these factors within a pivotal area that combines the mountainous and semi-arid features typical of Mediterranean regions.



This research represents a groundbreaking advancement in the field of soil erosion prediction, particularly within the Oued El Abid sub-basin. By leveraging an array of cutting-edge machine learning techniques—such as voting, bagging, boosting, and stacking ensemble learning—this study moves beyond traditional approaches, which often rely on simplistic methodologies. The integration of high-resolution digital elevation models and comprehensive field surveys sets this work apart, offering a level of precision and accuracy previously unattained in this region. Remarkably, this study is the first to apply such sophisticated machine learning models to the Oued El Abid sub-basin, marking it as a pioneering effort in the field. The resulting gully susceptibility map not only fills a critical gap in the literature but also provides decision makers with a powerful data-driven tool for implementing sustainable soil conservation practices. This innovative approach has the potential to significantly influence future research and conservation strategies, making it a vital contribution to the scientific community.




2. Materials and Methods


2.1. Study Area


The Oued El Abid sub-basin forms the upper part of the bigger Oum Er-Rbia basin. It covers an area of 6523 km2 upstream of the Bin El Ouidane dam, between 31°43′48″–32°36′36″ N and 5°18′36″–6°32′60″ W It is geographically located in the Béni Mellal Khénifra region between the plain of Tadla and the Central High Atlas (Figure 1). The sub-basin is primarily fed by its mainstream Oued El Abid, the primary tributary of the Oum Er Rbia river. It serves as a vital component of the region’s water management infrastructure and facilitates the generation of hydraulic power.



The topography of the watershed of Oued El Abid is marked by three topographic forms, namely the mountainous massifs, which are characterized by steep slopes from 40° to 80°, and the plateaus and depressions, which are characterized by low values of slopes generally from 0° to 11°, extending mainly along the streams. The altitude ranges from 763 m to 3697 m, averaging 1373 m above sea level. From a climatic perspective, Morocco’s geographic location gives it a highly contrasting climate, characterized by significant spatial and temporal irregularities in rainfall [34]. The Oued El Abid basin, as a typical South Mediterranean area, is characterized by a semi-arid climate with warm-to-hot dry summers and mild-to-cool wet winters. The average maximum temperature reaches 42 °C during July and August, while the average minimum temperature drops to 6 °C in January and February. The average annual rainfall varies significantly, ranging from 119 mm in the southern part of the basin to 738 mm in the northern part. Snowfall occurs exclusively at the highest altitudes, particularly in the eastern and southeastern parts of the basin, where the elevations are the highest [35]. In the study area, the soils are composed of various types, including lithosols, regosols, xerosols, luvisols, cambisols, rendzinas, phaeozems, kastanozems, and gleyic solonchaks [36]. These soils exhibit diverse characteristics, influencing their varying levels of susceptibility to erosion. From a lithological standpoint, the region is mostly covered with carbonate rocks from the Late and Middle Jurassic dated from the Jurassic, with a syncline filled by continental formations called Jurassic–Cretaceous red layers (Figure 2).




2.2. Methodology


The methodology implemented in the current study is shown in the flowchart (Figure 3), and contains various main steps and processes as follows:




	
Preparations of the gully erosion inventory map and gully erosion conditioning factors.



	
Selection of the erosion conditioning factors based on the following:




	
Their importance using the mean decrease accuracy (MDA) method of the random forest (RF) algorithm.



	
The multi-collinearity analysis using the correlation matrix, the information gain (IG) and the VIF test.








	
Production of gully erosion susceptibility maps, using individual models RF, DT, and SVM and different ensemble models such as stacking, voting, bagging, and boosting.



	
Validation of models’ results using several statistical parameters such as sensitivity, specificity, precision, accuracy, F-1 score, mean absolute error (MAE), root mean square error (RMSE), and the area under curve of the receiver operating characteristic (AUC-ROC).



	
Comparison and selection of the best model performance based on the compound factor (CF) method and priority rank (PR).
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Figure 3. Methodological flowchart of this study. 






Figure 3. Methodological flowchart of this study.
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Table 1 presents the various sources of the collected factors’ database.




2.3. Gully Erosion Inventory Map


A gully inventory map provides important baseline information on the spatial distribution of gully erosion and improves the assessment of relationships between conditioning factors and gully erosion.



In this research, the gully inventory map contained 200 locations of gully locations and an equal number of no gully locations (200 pixels). Gully locations were identified and plotted as points using field observations and high-resolution Google Earth images (Figure 4 and Figure 5). No gullies were randomly selected using the random point tool in GIS environment.



A total of 400 locations (pixels) were chosen for modeling, and were randomly divided into two datasets such that 70% was used as training data and the remaining 30% was used to validate the models (Figure 4). The existence or absence of a gully was the dependent variable for gully creation, and each pixel was coded as 1 or 0, respectively.




2.4. Gully Conditioning Factors


To assess gully erosion susceptibility, the selection of conditioning factors is a crucial task that greatly influences the accuracy of predictive models [37]. In this study, a total of 21 conditioning factors related to gully erosion were chosen and prepared (Figure 6). These factors included slope, elevation, aspect, curvature, profile curvature, plan curvature, rainfall, normalized difference vegetation index (NDVI), land use/land cover (LULC), drainage density, distance to rivers, distance to roads, topographic wetness index (TWI), terrain roughness index (TRI), topographic position index (TPI), stream power index (SPI), slope length (LS), convergence, geomorphons, valley depth, and lithology. These factors are widely recognized and commonly used in the scientific literature to analyze the risk of gully erosion.



	
Elevation.






Topography plays a very important role in the spatial variability of hydrologic conditions. Elevation is one of the most important topographic factors for gully erosion susceptibility. This factor directly affects erosion through changes in climatic conditions and vegetation species [38]. The elevations in the study area varied from 763 to 3688 m (Figure 6a).



	
Slope.






The slope represents a spatial gradient of elevation and is a crucial factor in gully erosion mapping. It controls runoff infiltration, water flow velocity, and transport capacity [39]. The slopes in the region ranged between 0° and 78°, as shown in (Figure 6b).



	
Aspect.






The aspect map was also selected for this study because it affects soil erosion, soil moisture, the processes of weathering, and vegetation structure [37]. The slope aspect map was produced from the DEM with nine classes: flat, north, northeast, east, southeast, south, southwest, west, and northwest (Figure 6c).



	
Curvature.






Curvature presents a useful geomorphologic factor for gully erosion, influencing it through the convergence and divergence of downslope water fluxes [40]. The curvature map of this study area is shown in (Figure 6d).



For the plan curvature map displayed in (Figure 6e), a convex surface has a positive plan curvature, whereas a concave surface has a negative plan curvature. A value of zero indicates a fat surface.



The map of the profile curvature is presented in (Figure 6f), with negative values indicating an upwardly convex surface and positive profiles indicating that the surface is concave upward, while the surface is linear if the value is zero [41].



	
Rainfall.






Rainfall is the most crucial factor for the formation of a gully and its development. In the present study, the rainfall map was prepared from 21 years of rainfall data recorded by the Tropical Rainfall Measuring Mission (TRMM). The rainfall map shows that the annual average rainfall ranges from 119 mm to 740 mm/year in the study area (Figure 6g).



	
Lulc.






Land use/land cover is an essential factor in gully erosion because it represents the physical and biological surface of the land, which influences various components of hydrological processes directly or indirectly. To develop the land use/land cover map of the study area, the maximum likelihood supervised classification method was employed in ArcGIS software 10.7 from the Landsat8 image. The land cover types identified in the study area were water, vegetation, bare soil, and moderately dense forest (Figure 6h).



	
NDVI.






The normalization difference vegetation index (NDVI) was also computed from the same image, and the index values ranged from −1 to +1. The negative values show water, the values near 0 present bare soil, and the positive values show vegetation. NDVI values were calculated by the following formula, using Landsat 8 spectral bands:


  NDVI =     NIR    −    R     NIR    +    R      



(1)




where NIR is the near infrared and R is the red region of spectral reflectance. In this study, the NDVI ranged from −0.22 to 0.6 (Figure 6i).



	
Drainage density.






Drainage density has an essential effect on erosion in the appearance of the start and growth of rills, gullies, and other forms of erosion. The drainage density map displayed density values varying from 0 to 1.78 km−1 (Figure 6j).



	
Distance to rivers.






The presence of gullies is essentially related to the drainage system because there is a strong correlation between the occurrence of gullies and their proximity [42]. In this study, the distance to rivers map was created using the Euclidean distance method in a GIS environment, ranging between 0 and 5565 m (Figure 6k).



	
Distance to roads.






The distance from the roads was another important parameter in preparing the GESM. This is due to the impact of roads on runoff and their influence on gully formation [39]. The map shows that the distance to roads varied from 0 to 4977 m (Figure 6l).



	
Lithology.






The indicators of lithology also have a significant impact on the susceptibility of gully erosion. This is because gully erosion is greatly influenced by the exposed material’s properties near to the surface of the soil [43]. In the present study, the lithological units of the study area were prepared by digitizing the 1/1,000,000 scale geological map of Morocco, as illustrated in (Figure 6t).



	
TWI.






The topographical wetness index (TWI) is an essential hydrological factor to evaluate the areas susceptible to gully erosion. This measures the amount of water that has the potential to accumulate in the soil and how it is distributed as a result of the slope and the catchment area upstream [40,44]. It is calculated according to the following equation:


  T W I = l n       A S    t a n β         



(2)




where As is the specific catchment area (m2/m) and  β  is the degree of slope gradient. In the study area, the values of this index varied between 1.79 and 18, as shown in (Figure 6n).



	
SPI.






The stream power index (SPI) estimates the potential for erosion caused by water flow. In general, areas with high SPI values indicate a greater vulnerability to soil erosion, while areas with low SPI values indicate a lower potential for erosion [40,45]. The SPI was calculated from DEM using the following equation:


  S P I =  A  S     t a n β    



(3)







The prepared SPI map shown in (Figure 6o) indicates a range of SPI values from 0 to 819,250.



	
TPI.






The topography position index (TPI) is a terrain classification technique used to assess the slope positions of a topographic area. It quantifies the difference in elevation between the central point and the average elevation of the surrounding regions [39]. Ridges and depressions are characterized by positive and negative values, respectively [46].



The TPI was estimated using the equation provided below.


  T P I =     E  p i x e l      E  s u r r o u n d i n g         



(4)




where “EPixel” represents the elevation at the central point and “ESurrounding” represents the average elevation of the surrounding regions. The TPI map is presented in (Figure 6p).



	
TRI.






The terrain ruggedness index (TRI) determines the convexity and concavity of a slope. The TRI represents the elevation difference between adjacent cells in the digital elevation model [9]. The TRI was calculated using the following equation:


  T R I    C x    =     ∑   K ∈  N 8         C k  −  C x     2     



(5)




where N8 is the ensemble of 8 neighbors of the cell and Cx is the cell under analysis. The TRI values were in the range of 0 to 84 (Figure 6q).



	
LS.






The LS factor plays a vital role in controlling the speed of surface runoff and is highly significant in sediment transportation. For calculating the LS factor, Moore and Burch (1986) provided the following formula [44]:


  LS =     F l o w   a c c u m u l a t i o n ×    c e l l   s i z e   22.13        0.4   × s i n        s l o p e   0.09        1.3    



(6)







The LS map values ranged from 0.03 to 2249, as shown in (Figure 6r).



	
Convergence.






The convergence index indicates the terrain’s geometry and its potential effects on the movement of fluids [9]. The convergence values of the study basin were between −100 and 100 (Figure 6s).



	
Geomorphons and valley depth.






Geomorphons and valley depth are also important geomorphological factors. Six classes were identified by the geomorphon factor: ridge, spur, slope, hollow, valley, and depression (Figure 6m). The valley depth values varied between −24 and 1009 (Figure 6u).




2.5. Data Pre-Processing


Data pre-processing is an essential step to achieve improved results prior to constructing machine learning models [47]. In the first step, the GIS database consisted of 200 gully erosion points and 21 conditioning factors. Slope, elevation, aspect, curvature, profile curvature, plan curvature, rainfall, normalized difference vegetation index (NDVI), land use/land cover (LULC), drainage density, distance to rivers, distance to roads, topographic wetness index (TWI), terrain roughness index (TRI), topographic position index (TPI), stream power index (SPI), slope length (LS), convergence, geomorphons, valley depth, and lithology were converted to a raster format with a resolution of 30 m. Afterward, the collected dataset underwent pre-processing using coding and normalization techniques to avoid the categorical magnitude imbalance. This was carried out through various statistical libraries in the integrated development environment Jupyter (3.9.6) with the Python 3.9 programming language.




2.6. Gully Conditioning Factors’ Analysis


Mapping any hazard using the same factors is not practicable in all areas [48]. In the case of GES modeling, certain gully conditioning factors may produce noise that minimizes the prediction power of the model and may have little ability to predict the results [49]. Therefore, it is necessary to recognize and select the importance of gully conditioning factors before the model’s validation [50].



Diverse analysis approaches, such as probabilistic methods, relief-f, correlation, IG, and machine learning algorithms, can be applied to evaluate variables [48]. In this work, the multi-collinearity (MC) test, information gain (IG), and RF model were utilized to select the most effective conditioning factors for gully occurrence and to eliminate null factors in order to improve model performance [51].



2.6.1. Multi-Collinearity Analysis


The multi-collinearity test is a popular statistical method that uses a linear relationship among the specified independent variables to reduce the possible chance of error in the gully erosion susceptibility models [7,52]. To improve the outcomes of this study, high multi-collinearity variables must be eliminated [9].



The correlation matrix, variable inflation factor (VIF), and tolerance (TOL) methods were utilized in this study to assess the multi-collinearity of the gully erosion factors. A high VIF (VIF > 10) indicates a problematic level of multi-collinearity, while a low tolerance (TOL < 0.1) suggests the same [53]. The TOL and VIF values were calculated using the following Equations (7) and (8), respectively:


  T O L = 1 −    R 2   J   



(7)






  V I F =   1  T O L       



(8)




where R2J represents the coefficient of determination.




2.6.2. Information Gain Method


The IG method is widely regarded as one of the most effective techniques for feature selection [51]. It is used to evaluate the significance and appropriateness of each conditioning factor due to its simplicity and efficacy [54]. Factors with a negative IG were considered to have no impact on gully erosion potential and were excluded from this study [13].





2.7. Model Optimization and Hyper-Parameter Tuning


The GES models are optimized using two approaches: k-fold cross-validation and hyper-parameter tuning.



For the first approach, cross-validation is a technique for evaluating a machine learning model, testing its performance, and avoiding overfitting [55]. There are several cross-validation techniques. In this research, the k-fold cross-validation method was used with the training dataset to build erosion susceptibility models.



The k-fold cross-validation is a method that randomly splits the dataset into k equal-sized partitions or folds. Nine of the partitions in this study were utilized for training data, while the remaining one was used for testing data. The training process was performed ten times, where each iteration utilized a distinct partition as the test set, while the remaining nine partitions served as the training data. The final reported result was the average of all the iterations [56].



For the second approach, we used GridSearch. It is a tool that is used to find the best hyper-parameter tuning [57]. It involves defining a grid of possible hyper-parameter values and then systematically searching through this grid to find the combination that results in the best model performance. The scikit-learn library in Python includes a GridSearchCV class that is used for implementing the grid search.




2.8. Machine Learning Models


2.8.1. Base Algorithms


	
Random forest (RF).






Random forest (RF) is a supervised machine learning model, which was developed by Leo Breiman and Adele Cutler in 2001 [58]. It is a potent tool for classification and regression problems and has found extensive application in environmental hazard susceptibility mapping [59,60].



The technique, which combines multiple randomized decision trees and averages their predictions, has displayed outstanding predictions and performs in settings where the number of variables is greatly bigger compared with the number of observations [60].



RF has several advantages. Firstly, it is resistant to overtraining and can develop a huge number of random forest trees without the risk of overfitting. Each tree in the random forest is treated as an independent random experiment. Additionally, the RF algorithm does not require rescaling, transforming, or modifying of the data. It also has the ability to automatically handle outliers in predictors and missing values [61].



	
Decision tree (DT).






The decision tree approach is highly advanced in classification, offering minimal error probability, strong robustness, easy interpretation, and accurate classification, and can be applied effectively to solve real-world problems [62].



The process of building decision trees involves recursive data partitioning. In each iteration, the data are divided based on the values of a selected attribute. In simpler terms, the main idea behind the decision tree is to recursively divide your data into smaller groups in such a way that each group has similar or predictable values for the target variable. A decision tree is formed by evaluating the impact of all input attributes on the predictable attribute at each split in the tree during the recursive process. The decision tree model can be classified into two types based on the target attribute. When the target attribute is discrete, it is referred to as a classification tree. On the other hand, when the target attribute is continuous, it is known as a regression tree. The process of building a decision tree is often referred to as decision tree induction [63,64].



	
Support vector machine (SVM).






The support vector machine is a common supervised learning technique originally defined by Vapnik 1999 [65]. In comparison with other machine learning algorithms, the SVM model is better suited for datasets with a limited number of samples. It can be used for both linearly separable and linearly inseparable data, making it a versatile binary classification model [66].



The basic principle of SVM is to use a linear model to create nonlinear class boundaries. This is achieved by transforming the input vectors into a higher dimensional feature space and then constructing an optimal separation hyper-plane to classify the output classes. In more specific terms, the optimal separating hyper-plane refers to the maximum margin hyper-plane. This hyper-plane provides the greatest separation between the output classes, and the training samples that are nearest to this hyper-plane are known as support vectors [67].




2.8.2. Ensemble Models


Ensemble methods help to improve the machine learning outcomes by combining several base models. This approach aims to make collective decisions in order to achieve better and more accurate results compared with any single predictors [68,69]. In this research, four methods—voting, bagging, boosting, and stacking—were used in an attempt to enhance the performance and make a comparison of these methods.



	
Stacking.






The stacking algorithm—also termed stacked generalization—was developed by Wolpert in 1992. It is an ensemble learning technique that uses several heterogeneous-based models that are used on the training data. In contrast with the homogeneous bagging and boosting methods, which simply combine the outcomes of various models to achieve the final prediction, the stacking method improves the classifier’s predictive ability [70,71].



The stacking method maximizes the benefits of various base learners and outperforms a single base learner by using a weighted technique or majority voting. Generally, the stacking algorithm structure comprises two levels: several base learners (level 0) and a meta-learner (level 1). Meta-learners utilize the low-level output of multiple base learners to make generalized predictions, which are then used as the highest level input for learning again. The performance of a stacking algorithm is influenced by both the accuracy and the diversity of the base learners [71,72].



The stacking algorithm has three steps as follows: (1) utilizing a k-fold cross-validation to train several base learnings by making k verification using the training dataset; (2) creating a new reorganized training dataset to collect the cross-validated predictions; (3) training the meta-classifier using the new training data [72].



	
Voting.






This ensemble learning method is based on an aggregation approach that combines the outputs of diverse algorithms to improve the desired results. In this study, it was used for the shallow models (RF, DT, and SVM) to generate new features for training sets. The results of base classifiers are combined based on a majority vote for a given class. The general class for the voting method is presented as Algorithm 4 [47,73].



	
Bagging.






Bagging, also known as bootstrap aggregating, is a technique that utilizes an ensemble of multiple models. It works by training the same algorithm multiple times, each time using a different subset of the training data. The ultimate prediction is derived through the averaging of all sub-model predictions. Bagging typically enhances the accuracy of classification by reducing the variability of classification errors [74,75]. Bagging uses bootstrapping sampling methods to generate multiple subsets (bags) of the original training set with replacements. These bags serve as a means for bagging to gain an unbiased understanding of the entire set of data. The sizes of the bags are smaller than the original dataset. Bagging techniques are utilized by machine learning algorithms such as the bagging meta-estimator and random forest [68].



	
Boosting.






The boosting algorithm is widely utilized in data science competitions as one of the most popular ensemble algorithms. It involves a collection of algorithms that enhance the capabilities of weak learners to become strong learners [70]. Boosting increases the diversity of base classifiers by using different training sets. The process involves iteratively re-sampling the present training dataset, and assigning higher weights to instances that are difficult to classify. The final class is selected through a weighted voting system, with the weights based on the predictive performance of the base algorithms [76]. Among the popular examples of boosting algorithm are AdaBoost and Gradient boosting and they were applied in this study.





2.9. Evaluation of Models


	
Statistical metrics.






The validation of gully erosion sensitivity maps is very important. Without it, the predictive ability of the models cannot be considered reliable [77]. In this study, we assessed the performance of the RF, DT, and SVM erosion models and the different ensembles using a range of performance metrics. These metrics included accuracy, F1 score, precision, sensitivity, specificity, Kappa coefficient, MCC, root mean square error (RMSE), mean absolute error (MAE), and area under the receiver operating characteristic curve (AUC-ROC).



Higher values of sensitivity, specificity, precision, accuracy, FP-rate, Kappa, MCC score, and AUC-ROC are proportional to a good performance. In contrast, higher values of MAE and RMSE indicate a lower performance [73].



All these measures can be calculated from the confusion matrix, which includes four parameters: true positive (TP), true negative (TN), false positive (FP), and false negative (FN), applying the equations from (9)–(18) as follows:


  sensitivity =    TP    TP    +    FN      



(9)






  specificity =    TN    FP    +    TN        



(10)






  accuracy =     TN    +    TP     TP    +    FP    +    TN    +    TP      



(11)






  precision =    TP    TP    +    FP      



(12)






  FP − rate =    FP    FP    +    TN      



(13)






  Kappa =     Accuracy    −    B      1 −    B        



(14)




where


  B =       TP    +    FN       TP    +    FP    +    FP    +    TN       FN    +    TN           TP    +    TN    +    FN    +    FP        



(15)






  MCC =     TP    ×    TN    −    FP    ×    FN           TP    +    FP       TP    +    FN       TN    +    FP       TN    +    FN            



(16)






  RMSE =       1 n     ∑   i = 1  n     XP    −    XA    2      



(17)






  MAE =   1 n     ∑   i = 1  n       XP    −    XA       



(18)







	
ROC curve.






The receive operating characteristic curve (ROC) is a graphical tool that provides important information for evaluating the performance of the model [76]. The ROC graph is plotted with sensitivity (TP rate) and 1-specificity (FP rate) on the Y axis and the X axis, respectively [75].



The area under the ROC curve (AUC) is generally recognized as the measure of a diagnostic test’s discriminatory power. A perfect test is indicated by an AUC maximum value of 1. When the AUC is 0.5, there is an absence of discrimination [77].



The AUC value can be calculated using the following relationship:


  AUC =      ∑ TP + ∑ TN       P + N         



(19)







In the current study, both the success rate curve and the predictive rate curve were constructed for training and test datasets, respectively.





3. Results


3.1. Data Selection and Analysis


The multi-collinearity test of gully erosion conditioning factors showed that VIF values for all factors were less than 10, with the exception of slope (13.53) and TRI (12.2). For TOL results, all factors had a value greater than 0.1 except for slope (0.074) and TRI (0.82) (Table 2). Additionally, the results of the correlation matrix graphic (Figure 7) indicated a strong linear relationship between slope and TRI factors. Based on these findings, among the twenty-one factors, the slope and the TRI factors were excluded from the analysis. Afterward, the results of the IG technique (Figure 8) applied to the remaining factors showed a positive value, ranging from 0.317 for rainfall to 0.002 for geomorphons. Consequently, 19 gully erosion conditioning factors were included in this analysis.




3.2. Importance Factors Using RF Model


To calculate the relative importance of the CFs of gully erosion, the mean decrease accuracy index for the RF model was applied. The values of RF (Figure 9) indicate that TPI, distance to roads, and elevation were the most important conditioning factors for gully erosion modeling, followed by valley depth, TWI, NDVI, LULC, LS, distance to river, rainfall, and drainage density. However, geomorphons, lithology, plan curvature, SPI, aspect, and convergence had lower importance values. In general, all of these factors that were selected by the IG method showed that they had a little or high contribution to GES prediction maps.




3.3. Gully Erosion Susceptibility Prediction


The gully erosion susceptibility maps (GESMs) were predicted using both individual and ensemble machine learning algorithms. Eleven models were developed and implemented in the Jupyter environment using Python’s scikit-learn libraries. The GES maps generated represented each pixel within the basin area, with the probabilistic prediction values ranging between 0 and 1, corresponding to low and high susceptibility of erosion, respectively. These maps display the spatial distribution of gully formation and indicate areas that were vulnerable or not to this phenomenon. The GES maps were reclassified into low, moderate, high, and very high levels based on the equal interval classification method in Arc-gis software 10.7.



The visual analysis of the spatial distribution maps of gully erosion susceptibility generated by the eleven models (Figure 10) shows that the low susceptibility class covered the largest area of the basin, located in the central, eastern, and southern parts. The moderate class was spread sparsely and unevenly in the study area, characterized by a moderate elevation. The areas with the highest and the very highest susceptibility were located mostly in the north and west regions and also occurred near drainage stream networks.



The results of all GES maps presented in Figure 10 and Figure 11 show that Adab for the boosted model had the higher value (22.74%) for the very high susceptibility class, followed by the RF_DT_SVM ensemble model (13.95%) and the DT_SVM ensemble model (12.70%), respectively, compared with the RF model, which had the lowest value (3.56%) in this class. For the high class, the values varied from 29.53% for the Adab model as the maximum value, to 5.66% for the RF-SVM ensemble model as the minimum value. For the moderate classes, the values varied from 34.72% for the DT model to 6.59% for the DT_SVM model. However, for the region occupied by the low class, the highest values (75.66 and 73.19) were for RF_SVM and DT_SVM, respectively, and the lowest value (21.58%) was for the Adab model.



In general, the proportion of the erosion susceptibility classes (Figure 10 and Figure 11) shows that the moderate and low classes were dominant, covering more than 60% of the total area for all models, excepting the Adab model. On the other hand, the high GES class had an average percentage of 13.99% of the whole basin. The very high GES classes represented an average of 9.61% of the entire area.




3.4. Validation Performance and Comparison


The validation and accuracy assessment of the predictive performance is crucial for an optimal analysis of its results. In this study, the evaluation of validation performance was carried out using different statistical metrics, namely accuracy, F1 score, precision, sensitivity, specificity, Kappa coefficient, MCC, RMSE, MAE, and area under the receiver operating characteristic curve. The results of the validation techniques based on training and testing datasets are shown in Table 3, Table 4, Table 5 and Table 6, respectively.



	
Statistical metrics






The results of the training datasets (Table 3) show that the RF was the best performing model for all parameters, and the SVM model had the weakest performance in terms of accuracy (0.82), F1 (0.82), sensitivity (0.84), specificity (0.81), Kappa (0.64), MCC (0.64), RMSE (0.42), and MAE (0.17), the exception being precision, where the minimum value was from the DT_SVM (0.87).



The validation results for the testing datasets (Table 4, Table 5 and Table 6) highlight the RF_DT_SVM ensemble as the top performing model, boasting high values for accuracy (0.87), F1 (0.86), precision (0.86), sensitivity (0.87), Kappa (0.87), MCC (0.72), RMSE (0.38), and MAE (0.14). For sensitivity, the maximum value was identified for the RF-DT model (0.86). However, the DT model recorded the minimum value for accuracy (0.79), F1 (0.8), precision (0.78), specificity (0.78), Kappa (0.6), and MCC (0.6) and the maximum value for RMSE (0.45) and MAE (0.2).



	
ROC curve






The graphical representation of ROC curves analyzing the AUC for all ML models in both the training and testing datasets is presented in Figure 12.



The success rate curve shows that the RF model had the better performance with (AUC = 1.000), followed by the RF-DT (AUC = 0.99) and RF-SVM (AUC = 0.98) ensemble models.



Regarding the prediction rate, the highest AUC value was achieved by the RF-SVM-DT ensemble learning (AUC = 0.86), followed by RF-DT and SVM-DT (AUC = 0.85). In contrast, the DT model had the lowest performance, characterized by an AUC of 0.77.



	
Model prioritization






The models with the best fit were identified by considering all evaluation criteria using compound factor-based prioritization. The prioritization results of all models (Figure 13) using the training dataset indicate that the RF model achieved the top ranking, followed by the bagging ensemble model in the second place. Moreover, in the case of the testing dataset, prioritization analysis showed that the highest performing model was RF-DT-SVM, followed by the RF-DT, SVM-DT, and voting ensemble models.





4. Discussion


The results are discussed in the following three parts: first, the analysis and selection of each factor’s contribution to gully erosion modeling; second, the models’ performance and their comparison; and finally, the applicability of the methods and their limitations.



4.1. Gully Conditioning Factors’ Selection


Gully erosion susceptibility mapping isolates vulnerable areas by taking into account various erosion affecting factors related to topographical, hydrological, and morphological conditions. The effectiveness of conditioning variables can vary depending on the study area’s characteristics [48,61]. Consequently, the selection of appropriate erosion conditioning factors is a crucial step for enhancing the performance of the models utilized in gully susceptibility mapping [72]. In the current study, we tested a total of 21 GECFs using the multi-collinearity test (VIF, TOL, and the correlation matrix), information gain (IG), and the RF model [13].



According to the muti-collinearity test, the slope and TRI factors were removed from the factor’s set. On the other hand, according to the IG method, rainfall, TPI, and elevation were the most influencing factors in the occurrence of gullies, while plan curvature and convergence were the least influential. Furthermore, lithology, distance to road, valley depth, LULC, profile curvature, TWI, NDVI, distance to river, aspect, curvature, drainage density, SPI, geomorphons, and LS each showed a significant impact on the GES. However, using the RF calculation, the mean decrease accuracy revealed a convergent result, highlighting that TPI, elevation, and distance to road are the most effective factors, respectively.



Our results generally concurred with recent studies [1,46,73,74], which found that rainfall, TPI, and the distance to roads are generally more significant variables influencing gully erosion than other conditioning factors. The significance attributed to rainfall in our study resonates with many existing studies, affirming its primary influence on gully development. Once erosion channels appear on the soil surface, over time, rainfall plays a pivotal role in concentrating runoff, causing the transportation of soil particles, and ultimately promoting the development of rill erosion [75,76]. Additionally, the observed importance of TPI in our results aligned logically with the observed relationship between gully location and TPI values. In this context, the negative values in TPI indicating depressed features, like valleys, were coherent with the presence of gullies. The influence of human activity also played a major role in the formation and evolution of gullies in our study area, through the parameter of distance to the road network.




4.2. Ablation Experiment on Machine Learning Techniques


Accurate mapping susceptibility is essential for effective hazard mitigation. The pursuit of reliable erosion susceptibility mapping with high prediction accuracy has been a significant focus for decades, and remains important today. Various methods have been developed to predict and map the spatial distribution of areas prone to erosion [70]. Machine learning techniques are the preferred methods due to their advantages. Researches have primarily focused on individual models for the spatial prediction of natural hazards. However, more recently, attention has shifted towards the application of ensemble models because of their ability to solve complex problems and enhance prediction accuracy [64,71].



To better understand the contribution of ensemble techniques in improving gully erosion susceptibility modeling, an ablation experiment was conducted. This experiment aimed to compare the performance of individual models against ensemble models incorporating voting, bagging, boosting, and stacking methodologies.



For the ablation study, we first ran each of the three individual models: random forest (RF), support vector machine (SVM), and decision tree (DT). These models were evaluated separately to establish a baseline performance comparison. Subsequently, we incorporated ensemble methods in the following sequence:




	
Voting ensembles were applied by combining predictions from the three individual models aggregated by majority voting.



	
Bagging and boosting ensembles were tested using RF, SVM, and DT as base learners.



	
Stacking ensembles were created by integrating two or three base learners to evaluate their combined predictive power.








The results of the ablation experiment show that the RF model achieved the best performance among the individual models (AUC training = 1.0, AUC testing = 0.82). The SVM model demonstrated competitive results (AUC training = 0.87, AUC testing = 0.82), while the DT model showed a relatively lower performance. However, the ensemble model assessment results revealed that all of these models had a significantly higher performance compared with individual models in both training and testing, except for the boosted models (Adab, GB).



	
Voting ensembles.



By aggregating predictions from RF, SVM, and DT, the voting ensemble improved prediction capability slightly over individual models, with an AUC of 0.84 for testing.



	
Bagging and boosting ensembles.



The bagging ensemble showed comparable performance to the RF and SVM individual models, with an AUC of 0.82 for the testing dataset.



Boosting methods, including AdaBoost and gradient boosting, exhibited a slightly lower performance, with an AUC of 0.80 for the testing dataset. These methods did not perform as well as other ensemble approaches in this study



	
Stacking ensembles.



The stacked ensemble combining RF, SVM, and DT performed excellently (AUC testing = 0.86), significantly outperforming individual models and other ensemble methods. Ensembles of two models, e.g., RF-DT and SVM-DT, also performed well, achieving an AUC of 0.85 for the testing dataset.






The ablation experiment demonstrated the effectiveness of ensemble methods in improving gully erosion susceptibility modeling. The superior performance of the stacking ensembles highlights their ability to leverage the strengths of multiple base learners. Additionally, the findings support prior research [11,70] on the utility of ensemble methods for spatial prediction tasks.



These results confirm the importance of integrating ensemble techniques into gully erosion modeling workflows to enhance predictive accuracy, model efficiency, and stability.




4.3. Limitations and Applicability of the Methods


The efficiency and rapid processing capabilities of the machine learning algorithms employed in this study highlight the importance of these methodologies in gully erosion susceptibility mapping. The RF, SVM, and DT models, along with their ensemble variations, demonstrated robust performance in predicting erosion-prone areas, underscoring their potential utility in similar geomorphological and environmental contexts.



However, the data quality and comprehensiveness used in this study played a crucial role in the accuracy of the results. We incorporated an extensive set of conditioning factors, including geological, hydrological, topographical, and anthropogenic factors, which significantly contributed to the reliability of the models. Additionally, a representative inventory of gully locations in our region further ensured the robustness of our findings. It is important to acknowledge that the application of this methodology in other regions might yield different results. The performance and accuracy of the models are highly dependent on the quality and representativeness of the data available for the specific study area. Therefore, for optimal results, this methodology is best suited for regions with similar characteristics to our study area and where sufficient and representative data are available. The ensemble methods used, especially the RF-SVM-DT stacking ensemble model, demonstrated high accuracy and reliability in predicting gully erosion susceptibility. These models can effectively handle complex relationships between multiple conditioning factors, providing detailed and precise susceptibility maps.



In summary, the methodology utilized in this study offers a powerful tool for gully erosion susceptibility mapping, with significant advantages in terms of accuracy and efficiency. However, its applicability is contingent on the availability of comprehensive data and the similarity of the study region to our own. Future studies should aim to explore the adaptation of this methodology to different regions and assess its performance with varying data sets to further validate its generalizability and robustness.





5. Conclusions


In this study, individual and ensemble machine learning models were successfully applied to assess gully erosion susceptibility in the Oued EL Abid watershed in the Central High Atlas, Morocco. In the study area, 200 locations of gullies and 200 locations of no gullies were identified and randomly divided into training (70%) and testing (30%) datasets. Twenty-one conditioning factors were prepared using several database sources.



Based on the multi-collinearity test, the correlation matrix, and the IG method, two factors were eliminated from the analyses. According to the RF method, the TPI was selected as the most important conditioning factor for gully erosion in the study watershed, followed by distance to road and elevation. Geomorphons, lithology, and plan curvature had a relatively low effect. Three individual models—RF, DT, and SVM—were applied. Moreover, different ensemble models—voting, bagging, boosting, and stacking ensemble—based on the first individual models were developed to improve the performance and the capability of predicting GES maps.



The validation of GES maps was tested by evaluating the models’ performance using several statistical metrics and the ROC curve. Furthermore, the models’ prioritization analysis was applied based on the compound factor method. The results confirmed that ensemble models are the best and are more accurate than the other individual models, especially in the prediction rate. This showed that the RF-DT-SVM ensemble method had the better predictive performance (AUC = 0.86), followed by RF-DT (AUC = 0.85) and voting (AUC = 0.84). To conclude, the methodology adopted in this study, based on different ML algorithms, demonstrated the superiority of the ensemble models, which can be considered as reliable and accurate methods for mapping GES in other similar settings where collecting data in the field is difficult and commonly expensive. Finally, the obtained GESMs can be used for environment management and decision makers for reducing the risk of soil loss in the Oued El Abid watershed.
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Figure 1. Geographic situation of the study area (a) at national scale and (b) at regional scale and (c) digital elevation model of the study area. 
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Figure 2. Geological map of the study area. 
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Figure 4. Location of gullies and no gullies in the study area. 
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Figure 5. Recent field photographs of gully erosion in the study area. 
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Figure 6. Gully conditioning factors: (a) elevation, (b) slope, (c) aspect, (d) curvature, (e) plan curvature, (f) profile curvature, (g) rainfall, (h) LULC, (i) NDVI, (j) drainage density, (k) distance to river, (l) distance to roads, (m) geomorphons, (n) TWI, (o) SPI, (p) TPI, (q) TRI, (r) LS, (s) convergence, (t) lithology, (u) valley depth. 
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Figure 7. The correlation matrix of conditioning factors. 
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Figure 8. Predictive capabilities using the information gain method. 
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Figure 9. Importance of selected factors using the random forest model. 
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Figure 10. Gully erosion susceptibility maps predicted by (a) RF, (b) DT, (c) SVM, (d) RF-DT, (e) RF-SVM, (f) DT-SVM, (g) RF-DT-SVM, (h) voting, (i) bagging, (j) AdaBoost, (k) GBoost. 
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Figure 11. Percentages of gully erosion susceptibility classes. 
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Figure 12. The receiver operating characteristic (ROC) curves: success rate (training data) and predictive rate (testing data). 
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Figure 13. Model prioritization using training and testing data. 
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Table 1. Database sources.
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	Spatial Map
	Data
	Sources





	Inventory map
	Gully point location
	Field survey

Google Earth images



	Elevation, slope, aspect, curvature, plan curvature, profile curvature, drainage density, distance to river, convergence, TWI, TRI, SPI, TPI, LS, geomorphons, valley depth
	Digital elevation model (DEM) from ASTER Global Digital Elevation Map

Pixel size: 30 m × 30 m
	Earthdata (https://search.earthdata.nasa.gov/

accessed on 30 March 2022.)



	Rainfall
	TRMM (Tropical Rainfall Measuring Mission)
	NASA

(https://disc.gsfc.nasa.gov/

accessed on 30 March 2022)



	LULC

NDVI
	LANDSAT OLI-8 satellite image (Avril, 2022)

Pixel size: 30 m × 30 m
	USGS (https://earthexplorer.usgs.gov/ accessed on 30 March 2022)



	Lithology
	Geological map
	Geological map of Morocco

scale: 1/1,000,000



	Distance to roads
	Road map
	Earth imagery










 





Table 2. Multi-collinearity diagnosis test (tolerance and VIF) for conditioning factors.
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	Conditioning Factors
	VIF
	TOL





	Elevation
	9.037
	0.111



	Slope
	13.535
	0.074



	Aspect
	3.350
	0.299



	Curvature
	1.795
	0.557



	Rainfall
	7.733
	0.129



	NDVI
	6.029
	0.166



	LULC
	8.613
	0.116



	Lithology
	2.824
	0.354



	Drainage density
	4.252
	0.235



	Distance to road
	2.028
	0.493



	Distance to river
	3.612
	0.277



	TWI
	9.554
	0.105



	TRI
	12.204
	0.082



	SPI
	1.092
	0.915



	TPI
	1.719
	0.582



	LS
	2.094
	0.478



	Plan curvature
	1.923
	0.520



	Profile curvature
	1.102
	0.907



	Convergence
	2.432
	0.411



	Geomorphons
	7.121
	0.140



	Valley depth
	6.148
	0.163










 





Table 3. Validation results of different prediction models using training data.
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Models

	

	

	

	
Training Data

	

	

	

	

	




	
ACC

	
F1

	
Precision

	
Sensitivity

	
Specificity

	
Kappa

	
MCC

	
RMSE

	
MAE

	
AUC






	
RF

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
0

	
0

	
1




	
DT

	
0.93

	
0.93

	
0.9

	
0.96

	
0.9

	
0.86

	
0.86

	
0.26

	
0.06

	
0.93




	
SVM

	
0.82

	
0.82

	
0.81

	
0.84

	
0.81

	
0.64

	
0.64

	
0.42

	
0.17

	
0.87




	
RF_DT

	
0.99

	
0.99

	
0.99

	
1

	
0.99

	
0.99

	
0.99

	
0.04

	
0.01

	
0.99




	
RF_SVM

	
0.97

	
0.97

	
0.96

	
0.97

	
0.96

	
0.94

	
0.94

	
0.16

	
0.02

	
0.97




	
DT_SVM

	
0.91

	
0.91

	
0.87

	
0.96

	
0.88

	
0.82

	
0.82

	
0.29

	
0.08

	
0.91




	
RF_DT_SVM

	
0.98

	
0.98

	
0.96

	
0.99

	
0.96

	
0.96

	
0.96

	
0.14

	
0.01

	
0.98




	
Vot

	
0.97

	
0.97

	
0.95

	
1

	
0.95

	
0.95

	
0.95

	
0.15

	
0.02

	
0.97




	
Bag

	
0.94

	
0.94

	
0.9

	
0.99

	
0.9

	
0.88

	
0.89

	
0.23

	
0.05

	
0.94




	
Adab

	
0.96

	
0.96

	
0.94

	
0.97

	
0.94

	
0.92

	
0.92

	
0.19

	
0.03

	
0.96




	
GB

	
0.98

	
0.98

	
0.97

	
1

	
0.97

	
0.97

	
0.97

	
0.1

	
0.01

	
0.98











 





Table 4. Validation results of different prediction models using testing data.
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Models

	

	

	

	
Testing Data

	

	

	

	

	




	
ACC

	
F1

	
Precision

	
Sensitivity

	
Specificity

	
Kappa

	
MCC

	
RMCE

	
MAE

	
AUC






	
RF

	
0.82

	
0.82

	
0.83

	
0.81

	
0.84

	
0.64

	
0.64

	
0.42

	
0.17

	
0.82




	
DT

	
0.79

	
0.8

	
0.78

	
0.83

	
0.78

	
0.6

	
0.6

	
0.45

	
0.2

	
0.77




	
SVM

	
0.82

	
0.82

	
0.84

	
0.79

	
0.83

	
0.64

	
0.64

	
0.42

	
0.17

	
0.82




	
RF_DT

	
0.85

	
0.85

	
0.86

	
0.83

	
0.86

	
0.7

	
0.7

	
0.38

	
0.14

	
0.85




	
RF_SVM

	
0.82

	
0.82

	
0.85

	
0.8

	
0.85

	
0.66

	
0.66

	
0.41

	
0.17

	
0.83




	
DT_SVM

	
0.84

	
0.85

	
0.84

	
0.85

	
0.84

	
0.69

	
0.69

	
0.39

	
0.15

	
0.85




	
RF_DT_SVM

	
0.87

	
0.86

	
0.86

	
0.87

	
0.85

	
0.87

	
0.72

	
0.38

	
0.14

	
0.86




	
Vot

	
0.84

	
0.84

	
0.85

	
0.83

	
0.85

	
0.68

	
0.68

	
0.39

	
0.15

	
0.84




	
Bag

	
0.83

	
0.83

	
0.79

	
0.86

	
0.79

	
0.64

	
0.64

	
0.42

	
0.17

	
0.82




	
Adab

	
0.8

	
0.81

	
0.8

	
0.82

	
0.8

	
0.61

	
0.61

	
0.43

	
0.19

	
0.8




	
GB

	
0.8

	
0.8

	
0.8

	
0.79

	
0.8

	
0.6

	
0.6

	
0.44

	
0.19

	
0.8











 





Table 5. Compound factor calculations and priority ranking of different prediction models used in the training step.
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Rank

	

	

	

	

	

	

	
Compound

Factor

	
Prioritized

Ranks




	

	
ACC

	
F1

	
Precision

	
Sensitivity

	
Specificity

	
Kappa

	
MCC

	
RMSE

	
MAE

	
AUC

	
TR






	
RF

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
1

	
10

	
1

	
1




	
DT

	
7

	
7

	
7

	
4

	
7

	
9

	
9

	
9

	
6

	
7

	
72

	
7.2

	
9




	
SVM

	
9

	
9

	
8

	
5

	
9

	
11

	
11

	
11

	
8

	
9

	
90

	
9

	
11




	
RF_DT

	
2

	
2

	
2

	
1

	
2

	
2

	
2

	
2

	
2

	
2

	
19

	
1.9

	
2




	
RF_SVM

	
4

	
4

	
4

	
3

	
4

	
6

	
6

	
6

	
3

	
4

	
44

	
4.4

	
6




	
DT_SVM

	
8

	
8

	
9

	
4

	
8

	
10

	
10

	
10

	
7

	
8

	
82

	
8.2

	
10




	
RF_DT_SVM

	
3

	
3

	
4

	
2

	
4

	
4

	
4

	
4

	
2

	
3

	
33

	
3.3

	
4




	
Vot

	
4

	
4

	
5

	
1

	
5

	
5

	
5

	
5

	
3

	
4

	
41

	
4.1

	
5




	
Bag

	
6

	
6

	
7

	
2

	
7

	
8

	
8

	
8

	
5

	
6

	
63

	
6.3

	
8




	
Adab

	
5

	
5

	
6

	
3

	
6

	
7

	
7

	
7

	
4

	
5

	
55

	
5.5

	
7




	
GB

	
3

	
3

	
3

	
1

	
3

	
3

	
3

	
3

	
2

	
3

	
27

	
2.7

	
3











 





Table 6. Compound factor calculations and priority ranking of different prediction models used in testing step.
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Rank

	

	

	

	

	

	

	
Compound

Factor

	
Prioritized

Ranks




	

	
ACC

	
F1

	
Precision

	
Sensitivity

	
Specificity

	
Kappa

	
MCC

	
RMSE

	
MAE

	
AUC

	
TR






	
RF

	
5

	
5

	
4

	
6

	
3

	
6

	
6

	
4

	
3

	
5

	
47

	
4.7

	
7




	
DT

	
7

	
7

	
7

	
4

	
7

	
8

	
8

	
7

	
5

	
7

	
67

	
6.7

	
11




	
SVM

	
5

	
5

	
3

	
8

	
4

	
6

	
6

	
4

	
3

	
5

	
49

	
4.9

	
8




	
RF_DT

	
2

	
2

	
1

	
4

	
1

	
2

	
2

	
1

	
1

	
2

	
18

	
1.8

	
2




	
RF_SVM

	
4

	
5

	
2

	
7

	
2

	
5

	
5

	
3

	
3

	
4

	
40

	
4

	
5




	
DT_SVM

	
3

	
2

	
3

	
3

	
3

	
3

	
3

	
2

	
2

	
2

	
26

	
2.6

	
3




	
RF_DT_SVM

	
1

	
1

	
1

	
1

	
2

	
1

	
1

	
1

	
1

	
1

	
11

	
1.1

	
1




	
Vot

	
3

	
3

	
2

	
4

	
2

	
4

	
4

	
2

	
2

	
3

	
29

	
2.9

	
4




	
Bag

	
4

	
4

	
6

	
2

	
6

	
6

	
6

	
4

	
3

	
5

	
46

	
4.6

	
6




	
Adab

	
6

	
6

	
5

	
5

	
5

	
7

	
7

	
5

	
4

	
6

	
56

	
5.6

	
9




	
GB

	
6

	
7

	
5

	
8

	
5

	
8

	
8

	
6

	
4

	
6

	
63

	
6.3

	
10
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