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Abstract: Land use and land cover (LULC) studies, particularly those focused on mapping forest
species using Sentinel-2 (S2A) data, face challenges in delineating and identifying areas of hetero-
geneous forest components with spectral similarity at the canopy level. In this context, the main
objective of this study was to compare and analyze the feasibility of two classification algorithms,
K-Nearest Neighbor (KNN) and Random Forest (RF), with S2A data for mapping forest cover in
the southern regions of Portugal, using tools with a free, open-source, accessible, and easy-to-use
interface. Sentinel-2A data from summer 2019 provided 26 independent variables at 10 m spatial
resolution for the analysis. Nine object-based LULC categories were distinguished, including five
forest species (Quercus suber, Quercus rotundifolia, Eucalyptus spp., Pinus pinaster, and Pinus pinea),
and four non-forest classes. Orfeo ToolBox (OTB) proved to be a reliable and powerful tool for the
classification process. The best results were achieved using the RF algorithm in all regions, where
it reached the highest accuracy values in Alentejo Central region (OA = 92.16% and K = 0.91). The
use of open-source tools has enabled high-resolution mapping of forest species in the Mediterranean,
democratizing access to research and monitoring.

Keywords: machine learning; supervised classification; mediterranean; random forest; k-nearest neighbor

1. Introduction

Mapping changes in land use and land cover (LULC) is essential for understanding
ecosystem dynamics and ensuring sustainable natural resource management. Several
methods and techniques have been used, among which are those linked to remote sensing,
especially with Sentinel-2 data. Mapping LULC is a challenge when landscape has large
variability and fragmentation, such as in the Mediterranean region [1]. The main land use
classes in continental Portugal are forest (36%), woods and pastures (31%), agricultural
areas (24%), urban use (5%), unproductive (2%), and inland waters (2%) [2]. Considering
the aforementioned, it is pivotal to study the potentiality of remote sensing data to map
Mediterranean ecosystem. This will enable us to map forest species distribution. For
these reasons, maps serve as an intermediate step in more complex analyses such as
landscape modeling, estimating forest biomass, and environmental monitoring [3,4]. In
addition to being a region prone to forest degradation and wildfire, as is the case for many
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Mediterranean forests [5,6], the forest species’ identification and spatial distribution are
essential to monitoring biodiversity, climate change, and forest management.

Remote sensing has undergone significant changes in recent years, resulting in a
substantial increase in both the temporal frequency and spatial resolution of satellite
imagery, as well as improved data accessibility. Several satellite types are available on
open-access platforms, including high-resolution satellite imaging systems (Friedl et al. [7]),
and several non-commercial software packages have image analysis tools [8–10].

Sentinel-2A (S2A) is a multispectral sensor (MSI) which has a five-day revisit time,
high spatial resolution and its data are open sourced [11]. It is composed of 13 spectral
bands, with a wavelength between 443 and 2190 nm, ranging from the visible spectrum,
vegetation red-edge bands (Red-edge), near-infrared (NIR), narrow infrared (Narrow NIR),
and shortwave infrared (SWIR) [11]. Depending on the band, three spatial resolutions are
available: 10 m (B2, B3, B4 (V), and B8 (NIR)), 20 m (B5, B6, B7, (Red-edge), B8a (Narrow
NIR), B11 and B12 (SWIR)), and 60 m (B1, B9, and B10). The S2A product can be acquired
with corrected reflectance images at the base of the atmosphere and the closest ground
measurements (Bottom Of Atmosphere—BOA) [12]. S2A when compared to Landsat
mission and MODIS data have the advantage of having more spectral bands and higher
spatial resolution, respectively [13].

In addition to spectral information from Sentinel-2 bands, vegetation and texture
indices are widely used in remote sensing to improve LULC classification and forest
mapping [14,15]. These indices provide complementary information to the spectral band
wavelengths, enabling more accurate identification and mapping of Mediterranean veg-
etation types and different types of land cover. Vegetation indices are a type of spectral
indices that specifically target the reflectance properties of vegetation. These indices are
calculated using the red and near-infrared bands of a satellite image and can be used to
estimate vegetation biomass, health, and productivity. In particular, vegetation indices,
such as Green Normalized Difference Vegetation Index (GNDVI), Soil-Adjusted Vegetation
Index (SAVI), Enhanced Vegetation Index (EVI), Normalized Difference Infrared Index
(NDII), Normalized Difference Vegetation Index red-edge 1 narrow (NDRE 1), Normalized
Difference Vegetation Index red-edge 2 narrow (NDRE 2), and Red-edge Chlorophyll Index
(CI), can be used to discriminate different vegetation types [16,17]. Their advantage is
related to being sensitive to patterns, especially in semi-arid environments [18].

Texture indices refer to the spatial arrangement of different land cover types within an
image. They are calculated by analyzing the variation in pixel values within a local neigh-
borhood of the image. These indices can be used to identify patterns in the landscape that
are not easily discernible from color imagery alone [19]. For LULC classification purposes,
the texture measurements of a Gray Level Co-occurrence Matrix (GLCM), proposed by
Haralick et al. [20], provide further information, which allows us to classify heterogeneous
land uses that spectral information is not able to differentiate [19], which is why it is a
widely used method. The GLCM method analyzes the existing co-occurrences between
each pair of pixels in an image; that is, it analyzes the spatial relationship between a set of
pixels (given a distance and different angles) [20–22]. GLCM, being not related to spectral
data, frequently attains higher image classification accuracy [1,23,24]. The GLCM texture
index can be used to identify areas with high or low levels of spatial heterogeneity, which
can be useful for distinguishing between different forest types [25,26]. Principal component
analysis (PCA) is one of the commonly used methods to calculate GLCM textures from
spectral bands or vegetation indices [18,22], with the goal of simplifying and reducing the
number of explanatory variables and the correlation between them [27,28].

In the supervised classification method, training selection and classification methods
are also crucial steps in accurately mapping forest classes using satellite data. The quality of
the training samples and the appropriateness of the classification method used determine
the accuracy of the final forest classification map [29,30]. In recent decades, methods based
on machine learning, non-parametric methods, have been frequently applied in remote
sensing [31,32], such as K-Nearest Neighbor (kNN) [33] and Random Forest (RF) [34]. kNN
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is a non-parametric learning method proposed by Wettschereck et al. [35]. It does not
make assumptions about the training dataset, since it is independent of the data spectral
distribution [36]. In this way, kNN is based on a calibration dataset, where it finds a set
of k training samples closest to the unknown samples, frequently based on the Euclidean
distance function [36–39]. Random Forest (RF), proposed by [34], divides datasets into two
subsets (i.e., training and validation). The method is based on the definition of decision
trees with random bootstrapping of training data, which, inversely to the decision tree (DT)
method, does not have overfitting problems [40,41]. A random subset of predictors is used
at each node to divide the tree into decision trees. The output is the mean of all decision
trees, based on the majority of “votes” per class (unweighted) [42,43].

These methods perform well in data categorization where input complexity is high,
and they are widely accepted in LULC mapping [4,43–46]. Several studies compared
different classification algorithms to classify LULC with Sentinel-2 data. The RF algorithm
was compared with other commonly used classification methods, including Maximum
Likelihood (ML), support vector machine (SVM), and KNN [30,47,48]. For all studies, the
RF algorithm presents better results in terms of overall accuracy, kappa coefficient, and
user accuracy. The authors discussed the importance of selecting appropriate training
samples and choosing the appropriate classification method for a particular forest type to
ensure accurate classification. More information on supervised classification methods can
be found in [49].

In particular, the Mediterranean ecosystem presents a unique set of challenges due to
its complex vegetation patterns, topography, and land use changes. In these ecosystems,
where there is great structural and botanical diversity with high spectral variability [50], su-
pervised classification methods based on machine learning algorithms have attracted atten-
tion for being able to deal with large volumes of complex and non-parametric data [43,51].
For Mediterranean systems, some studies have been developed to obtain LULC maps with
Sentinel-2 data, in Mediterranean ecosystems in Greece [52], Spain [53,54], Tunisia [55],
and Italy [46]. These studies compared RF with other classification algorithms such as
Convolutional Neural Networks (CNNs), support vector machines (SVMs), Multilayer
Perceptron, Maximum Likelihood, K-Dimensional Trees K-Nearest Neighbors (KDTree-
KNNs), Minimum Distance Classification (MDC), and classification and regression tree
(CART). The results for these studies showed that RF achieved the highest classification
accuracy, with overall accuracy higher than 88%. The RF algorithm is a popular choice
for remote sensing applications and is the main objective due to its ability to handle large
datasets, reduce overfitting, and provide accurate and interpretable results.

This study presents a LULC mapping approach entirely developed in an open-source
environment, aiming to explore its potential for collecting sampling data and classifying
high-resolution images from Sentinel-2. In the supervised classification, the Orfeo ToolBox
(OTB) version 6.6.1 is an application available in the open-source since software QGIS
version 3.8 through a Python plugin [56]. The OTB has specific characteristics suitable for
spatial data analysis and high-resolution image processing [57]. This open-source project
receives regular updates from the open-source geospatial community, ensuring its relevance
in studies such as vegetation monitoring [58]. Its compatibility with various remote sensing
data formats, including Sentinel-2 images, increases its versatility and applicability in
supervised classification [58]. A significant advantage of OTB is its accessibility through the
software QGIS plugin, allowing researchers and professionals with limited programming
knowledge to use advanced supervised classification tools. OTB is composed of several
classification algorithms, such as Random Forests and K-Nearest Neighbors (KNNs), and
processes large data at scale [56]. Furthermore, this approach enabled the exploitation of
the strengths of supervised classification without the need for advanced programming
knowledge, which optimized the acquisition of a high-precision forest cover map.

The significant contribution of this research lies in the proposed workflow for ana-
lyzing different image datasets from Sentinel-2 satellite and variables with vegetation and
texture indices, aiming to enhance the classification accuracy of forest species in southern
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Portugal. This study addresses the application of machine learning to detect the main chal-
lenges in generating high-precision, large-scale classified LULC maps in highly complex
forested landscapes. These landscapes are characterized by mixed forest compositions and
a heterogeneous, fragmented, and dispersed spatial pattern. The methodological approach
focuses on demonstrating the possibility of creating precise maps using open-source tools
and data, making the methodology democratically accessible. The proposal aims to achieve
scientific reproducibility in LULC mapping studies, enabling access for university students,
professionals, and GIS enthusiasts with basic knowledge, thus promoting the dissemina-
tion of geospatial knowledge. To enhance the accessibility of analysis, classification, and
mapping processes for different users with diverse backgrounds and varying software and
hardware availability, the main objectives of this study were as follows: (i) to produce a
mapping of forest species cover in the Alentejo and Algarve regions, southern Portugal,
using remote sensing data derived from the Sentinel-2 (S2A) satellite; (ii) to develop a
methodology and evaluate and compare the feasibility of KNN and RF classification algo-
rithms in S2A; (iii) to use free and open-source data and image analysis tools, focusing on
accessibility for users without advanced programming knowledge, offering a user-friendly
interface and the ability to process large datasets; (iv) to use the open-source QGIS and
SNAP software and the OTB plugin, an image processing library, to classify and analyze
Sentinel-2 (S2A) data.

2. Materials and Methods
2.1. Study Area

The study area covers NUT II (NUT—Nomenclature of Territorial Units for Statistical
Purposes), Alentejo (AL) and Algarve (AG) [59]. The Alentejo is divided into four NUT III,
namely Alto Alentejo (AA), Alentejo Central (AC), Alentejo Litoral (AL), and Baixo Alentejo
(BA) (Figure 1) [59]. These regions are located in the southern mainland of Portugal, with a
total territorial extension of 36 602 km2, with a Mediterranean climate, with hot and dry
summers (June to September) and cold and rainy winters (October to January). Total forest
area is about 1,270,000 ha, and the most representative species in terms of area are Quercus
suber, Quercus rotundifolia, Eucalyptus spp., Pinus pinea, and Pinus pinaster [2].

Quercus suber, Quercus rotundifolia, and Pinus pinea occupy the largest share of the forest
area and are managed as agroforestry systems [60], which have low density, heterogeneous
spatial distribution, in pure stands or mixed with other species, and usually shrub and
herbaceous species in the understory [61–64]. Eucalyptus spp. and Pinus pinaster are man-
aged as forest systems for timber [65,66] and have higher density and more homogenous
spatial distribution than the former [64].

2.2. Data Processing and Dataset

The methodology for the satellite image processing is outlined in Figure 2, which
includes the main following steps: (1) selection of Sentinel-2 image processing, calculation
of vegetation indices, and calculation of the principal component analysis (PCA) and the
GLCM textures (cf. Section 2.3); (2) definition of training and test samples; (3) application
of the supervised classification algorithms (cf., Section 2.4.1); and (4) accuracy assessment
of different classifiers on a test set using the confusion matrix (cf., Section 2.4.2).
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2.3. Spectral Data

Copernicus Open Access Hub platform [11] was used to acquire S2A images. The
image product used was the atmospherically corrected surface reflectance, Level 2A, de-
rived from the associated Level 1C product, radiometrically corrected imagery. To cover
the entire study area (Figure 1 right), six S2A images were used (approximately 1 GB each
file) with the same date acquisition (2 September 2019) and cloud filtering of less than
10%. In this study, 10 S2A Multispectral (MSI) reflectance bands were used (B2, B3, B4,
B5, B6, B7, B8, B8A, B11, and B12); the mosaics per reflectance band were set in European
Terrestrial Reference System 1989 (ETRS 1989). The summer season was selected because,
in the Mediterranean environment, the probability to find images with a lower percentage
of cloud cover and contrast between the spectral signature of the different forest species
and the understory vegetation is larger [18,67]. To obtain all bands with the same spatial
resolution, spatial upscaling using the nearest neighbor method was applied to convert the
20m bands (5, 6, 7, 8A, 11, and 12) into 10m spatial resolution [68].

Seven vegetation indices (VIs) and nine texture indices (Gray Level Co-occurrence
Matrix—GLCM) were implemented to promote spectral discrimination of forest classes
(Table 1). This approach became necessary due to the intrinsic limitations of broad spectral
bands, such as their susceptibility to atmospheric interference and the resulting similar
spectral reflectance patterns in different vegetation types [50,69]. Traditional VIs, as well as
some more recent VIs utilizing red-edge spectral bands available in Sentinel-2 data, were
employed to contribute to better separability of land use and land cover (LULC) classes,
with an emphasis on vegetation classes. The processing of Sentinel imagery and the calcu-
lation of vegetation indices (VIs) were performed using QGIS 3.16.0-Hannover software.

Principal component analysis was applied to the set of 10 Sentinel-2A spectral bands,
following recommendations from various studies [27,70,71]. In this study, the first three
principal components were selected for subsequent analysis, as they explained more than
97.10% of the spectral variation of the dataset for all regions (Table 2). This approach
is based on the premise, corroborated by previous research [1,22,72], that the first three
principal components retain most of the relevant information for discriminating land use
and land cover classes.

From these three principal components, each GLCM texture measure (Average—MEA,
Variance—VAR, and Correlation—COR) was calculated using a 9 × 9 pixel moving window
in the 0◦, 45◦, 90◦, and 135◦ directions of 32 gray levels, with the variogram method [73].
The size of the moving window depends on the land use characteristics and the diversity of
the bands [50,74]. Szantoi et al.’s [75] window size was adapted due to its ability to evaluate
heterogeneous regions, regardless of the size of the training features. GLCM textures were
generated using SNAP (Sentinel Application Platform) software version 7 [75]. In this
study, the selection of vegetation and texture indices was based on their demonstrated per-
formance in previous research [76–78]. In total, the input dataset for this study comprised
26 independent variables.

Table 1. Description and formula of the indices.

Types Descriptions Equations

Vegetation
Indices *

(VIs)

GNDVI [79] Green Normalized Difference Vegetation Index B8−B3
B8+B3

SAVI [80] Soil-Adjusted Vegetation Index 1.5 × B8−B4
8×(B8+B4+0.5)

NDII [81] Normalized Difference Infrared Index B8−B11
B8+B11

EVI [82] Enhanced Vegetation Index 2.5 ×
(

B8−B4
(B8−6×B4−(B4−7.5×B2)+1)

)
NDRE 1 [83] Normalized Difference Red Edge Index 1 B8A−B5

B8A+B5

NDRE 2 [83] Normalized Difference Red Edge Index 2 B8A−B7
B8A+B7

CI [84] Red-edge Chlorophyll Index B6
B5
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Table 1. Cont.

Types Descriptions Equations

Textures **
Gray-level

co-occurrence
matrix (GLCM) [20]

MEA ∑N−1
i,j=0 i Pi,j

VAR ∑N−1
i,j=0 iPi,j (i − µ)2

COR ∑N−1
i,j=0 iPi,j−µx µy

σx σy

* where the central wavelength (µm): B2 (490), B3 (560), B4 (665), B5 (705), B6 (740), B7 (783), B8 (842), B8A
(865), B11 (1610), and B12 (2100). ** where P(i,j) is a normalized gray-tone spatial dependence matrix such that
SUM(i,j = 0, N − 1) (P(i,j)) = 1; i and j represent the rows and columns, respectively, for the measures of Mean,
Variance and Correlation; µ is the mean, for the Variance textural measure; and N is the number of distinct gray
levels in the quantized image; µx. µy, σx, and σy are the means and standard deviations of px (sum of each row in
co-occurrence matrix) and py (sum of each column in the co-occurrence matrix), respectively.

Table 2. Cumulative values of principal component (PC) eigenvalues.

NUTIII Regions AA AC AL BA AG

PC1 77.69% 96.87% 75.64% 81.60% 95.77%

PC1 + PC2 93.16% 98.81% 92.99% 93.15% 98.24%

PC1 + PC2 + PC3 97.18% 99.78% 97.42% 97.10% 99.45%
where AA—Alto Alentejo, AC—Alentejo Central, AL—Alentejo Litoral, and BA—Baixo Alentejo.

2.4. Supervised Classification

The LULC classes, in the study area, defined by polygons (Regions of Interest—ROIs
features) have a uniform distribution [85]. The knowledge of the study area is fundamental
to have representative training and validation data samples, for the process of image
classification [9]. Thus, for the delimitation of the ROI features, per land use class, we
utilized reference data, such as high-resolution satellite images from Google Satellite [86]
and the Land Use and Occupation Map (COS) of 2018 from Portugal [87]. When marking
the ROI samples, the MetaSearch plugin integrated into QGIS simplifies searching in
metadata catalogs compatible with the CSW (Catalog Service for the Web) standard from
the Open Geospatial Consortium (OGC) [86]. With a user-friendly interface, the MetaSearch
plugin enables access to various services, such as Google Earth Images, facilitating the
discovery, navigation, and consultation of geographic metadata [86].

In this study, we defined nine LULC classes, five forest and four non-forest. The
five forest classes correspond to five forest species, namely Eucalyptus spp., Pinus pinea,
Pinus pinaster, Quercus rotundifolia, and Quercus suber. The four non-forest classes are as
follows: water surfaces, bare soil and artificial surfaces, agricultural surface, and shrub surface.
We chose to include the bare soil class and urban areas in a single class (bare soil and
artificial surfaces). In this study, bare soil and urban areas, as well as agricultural surface
classes, were consolidated into single classes, as the primary focus of the research was
the classification of major forest covers. During the summer period, the consolidation of
agricultural species into a single class was carried out because they exhibit phenological
cycles that differ from forest species, resulting in areas of high temporal variability when
grouped, which contrasts with the relative stability of forested areas [88]. However, the
spectral resolution constraints of Sentinel-2 imagery can present challenges in consistently
distinguishing between different crop types [88]. Furthermore, both exposed surfaces
bare soil, and urban areas tend to exhibit elevated reflectance values due to low soil
moisture content [89] and the presence of artificial materials such as concrete, asphalt, and
roofs [90]. This spectral similarity presents challenges in discriminating between these
classes, thus supporting their aggregation into a unified category. In this sense, these
aggregations reduced the computational complexity of the classification process, allowing
for a more efficient and robust analysis, particularly for large-scale studies. In this study,
supervised classification was applied using the OTB plugin. The independent stratified



Land 2024, 13, 2184 8 of 21

random sampling method was used; 70% of the ROIs were used for training the classifiers,
while 30% were used for validation and accuracy assessment [91–93]. The KNN and RF
classification algorithms [57] were applied to the 26 independent variables using the OTB
7.1.0 toolkit implemented in the QGIS.

2.4.1. K-Nearest Neighbor and Random Forest Classifiers

This study evaluated and compared the performance of two classifier algorithms:
KNN and RF. For the KNN classifier, which has K values ranging from 1 to 35, tests were
performed to identify the optimal k value for all training sample sets. The tests revealed
an imbalance in accuracies, caused by low K values (overfitting) and very high K values
(underfitting), which influenced the performance of the training data [48]. Considering
the obtained results, the default value K = 32 defined by OTB was selected for providing a
balance between classification accuracy and model generalization. This choice simplifies the
process, reduces overfitting effects, balances bias and variance, and ensures classification
stability [94,95]. This approach represents a viable alternative for users to initiate the use
of the classifier without the need for manual adjustments of this parameter, enabling the
achievement of satisfactory classification results [96].

The RF classifier is an algorithm that relies on the configuration of crucial parameters,
such as the number of trees, the maximum depth of these trees, and the out-of-bag (OOB)
error [97,98]. The optimization of these parameters significantly impacts the model’s
performance and accuracy [30,41]. The validation dataset was used to generate an unbiased
estimate of the error [99]. In this study, the RF model was configured with 500 trees for
stability [34,100,101], a maximum depth of 25 to capture complex interactions [102], and an
OOB error threshold of 0.01 as a rigorous stopping criterion [34], to maximize classification
accuracy and minimize prediction error. This number of trees provides a good balance
between processing time and accuracy. Multiple studies [51,88,95,103,104] suggest that
increasing the number of trees beyond this point is unlikely to significantly reduce errors.

2.4.2. Accuracy Assessment

By comparing the classified map with the reference image, using the information from
the validation samples, accuracy statistics can be derived by the confusion matrix. The
confusion matrix is evaluating the degree of errors and classification accuracy in classed
maps [105,106]. The confusion matrix assesses the degree of errors and classification
accuracy in the classified maps. LULC map accuracy was tested for the overall (OA),
producer’s (PA), and user’s (UA) accuracies and kappa statistics, using the validation
dataset (30% of the validation samples) [107,108]. The AO, PA, and UA have been ranked
as [101,102] very high (over 90%), high (80–89%), acceptable (70–79%), and low (less than
69%). The kappa coefficient (K) proposed by [109] is most frequently used to test map
accuracy. This index is calculated based on the confusion matrix, incorporating both
the hits and the omission and commission errors to provide an accurate assessment of
agreement [14]. The kappa evaluates the degree of agreement among the classified map
and ground truth [110,111]. For a thematic map K > 0.8, the agreement is high [109].

3. Results
3.1. Classification Accuracy

The KNN and RF classification achieved overall accuracy (OA) values greater than 75%
for all regions. Both algorithms performed well in terms of classifying the data accurately.
However, the RF algorithm stood out for producing OA and k values greater than KNN
(approximately 3.5%). The RF algorithm achieved the highest OA value of 92.16% (K = 0.91)
in the AC region, while the KNN algorithm had the second highest OA value of 88.69%
(K = 0.87) in the same region (Table 3). On the other hand, the minimum values of OA and
K were reached in the AG region for both algorithms. Among the NUTS III regions, the AC
region had the best classification accuracy with RF and KNN, followed by the AL, BA, AA,
and AG regions, in descending order.
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Table 3. Overall accuracy (OA) and kappa coefficient (K) assessment of the RF and KNN algorithms.

NUTS III Regions AC AL BA AA AG

Classifiers KNN RF KNN RF KNN RF KNN RF KNN RF

OA (%) 88.69 92.16 83.03 87.49 80.99 86.88 80.25 85.24 75.43 81.86

K 0.87 0.91 0.80 0.86 0.78 0.85 0.77 0.83 0.72 0.79

3.2. Forest Classes Level Accuracy Assessment and Classified Maps

In all regions considered in this study, the classes with other uses, such as water surfaces
and bare soil and artificial surfaces, reached values of UA (commission errors) between
70.81% and 99.92% and values of PA (errors of omission) between 70.11% and 99.54%
in both tested classifiers. These results revealed that these sets had a good distinction
between forest classes, that is, good spectral separability. Despite the good distinction of
the spectral response, this study focuses on evaluating the performance of the classifiers in
distinguishing the forest classes. Thus, a deeper evaluation was necessary to understand
the contrasts between the forest classes and the reasons for classification errors.

In the forest classes set, the RF classification algorithm was the one that obtained the
best PA and UA results in all regions studied (Table 4). The RF algorithm had a PA range
from 65.24 to 89.06% and a UA range between 65.47 and 90.00%, while the kNN classifier
had a PA range from 54.09 to 84.10% and a UA range from 57.00 to 86.99%. The region that
presented the best results for PA and UA was the AC, using the RF classifier. The lowest
individual accuracy values between the forest classes were found in the AG region, by
both classifiers.

Table 4. Producer (PA) and user (UA) accuracy assessment for the forest classes set obtained by KNN
and RF classification.

NUTIII Regions AC AL BA AA AG

Forest Classes Accuracy KNN RF KNN RF KNN RF KNN RF KNN RF

Eucalyptus spp. PA(%) 81.59 87.85 70.69 77.61 74.38 83.47 77.38 79.14 77.43 85.40

UA (%) 80.03 88.17 68.91 77.90 73.05 84.25 77.66 80.30 69.27 78.72

Pinus pinea PA(%) 82.91 89.06 67.44 76.13 80.00 85.33 66.59 81.10 64.96 72.45

UA (%) 83.97 89.75 77.62 79.90 73.75 80.80 71.98 75.90 65.09 77.05

Pinus pinaster PA(%) - - 74.48 77.80 - - 75.25 81.15 54.09 67.24

UA (%) - - 68.95 76.27 - - 79.34 82.75 65.81 72.72

Quercusrotundifolia PA(%) 82.45 85.79 - - 64.09 73.61 82.06 84.55 71.63 78.58

UA (%) 75.53 80.94 - - 64.87 75.42 68.71 79.69 63.06 71.67

Quercus suber PA(%) 84.10 86.77 78.31 84.52 69.40 78.22 63.19 74.45 61.28 72.04

UA (%) 86.99 90.00 70.46 79.51 76.27 82.22 74.13 78.55 57.00 65.47

When verifying the accuracy assessment through visual inspection of the classified
map and the reference data, a very similar spatial distribution of forest cover was identified
in both maps. In AA and AC regions, the dominant forest cover consisted of Q. suber and
Q. rotundifolia, as Montado systems. Additionally, small mosaics of Eucalyptus spp. and
P. pinea were identified, as well as P. pinaster stands in the AA region, located within the
Serra de São Mamede Natural Park (located in the east of this region (39◦18′47′′ N; 7◦21′36′′ W)).
In BA region, the predominant cover was spatially dispersed Q. rotundifolia with a small
concentration of P. pinea in the northeast of the region. In the AL region, a higher presence
of P. pinaster was observed in the coastal region, along with mixed stands of Q. suber and
P. pinea further north. In this region, to the west, there were Eucalyptus spp. and P. pinaster
stands near the Serra de Monchique (located in the west part of this region (37◦19′0′′ N;
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8◦33′15′′ W)), while a higher spatial distribution of Q. suber was found in the central part of
the region. The resulting maps from the classification process using KNN and RF, depicting
the main forest cover types and other classes, are shown in Figure 3.
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In the AC and BA regions, P. pinaster occurs in very small patches, making its identifi-
cation difficult. Therefore, this class was not considered for these two regions under study.
The same happens for the species Q. rotundifolia in the AL region, where its presence is
scarce and dispersed.

4. Discussion

To map the LULC in the NUT III regions, supervised learning algorithms (KNN and
RF) were used with a greater focus on the spatial distribution of forest species in complex
Mediterranean ecosystems. In the classification step, the same algorithm processing con-
dition (with training and validation datasets) was used to compare the performance of
the two algorithms. The accuracy in the production of thematic maps was evaluated by
statistical measures obtained by the confusion matrix. The RF algorithm presented greater
accuracy and kappa values when compared with the KNN algorithm results, in all regions
studied. This was due to its ability to work with numerous input variables, known as big
data [112].

Our classification results using the RF algorithm on Sentinel-2 imagery for LULC map-
ping in the Mediterranean region significantly outperformed those obtained in comparable
studies [88,113,114]. For instance, in a classification study conducted at the Köyceğiz Forest
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Management Unit, in Turkey, species of Genista acanthoclada, Erica spp., Phillyrea latifolia,
Quercus spp., Olea europea, and Arbutus andrachne were classified using Sentinel-2 images
using the RF algorithm implemented in the R programing language. The overall accuracy
was 78% and kappa 73%, and the accuracies (PA and UA) for each class were greater than
70% [113]. In forest areas located in the eastern part of the Tuscany region, Italy, Sentinel-2
data were evaluated to classify forest classes proposed by [115] in a Mediterranean environ-
ment. In the Tuscany region [114], when classifying European Forest Types (EFTs) using
the RF classifier, they reached an OA value of 92.7% (k = 92.6%), and for all forest classes,
the UA and PA values were greater than 83% using the R programing language. These
results reached values close to those found in our work. The reason for these results was
that the RF algorithm works better with numerous input variables and is less sensitive to
imbalance in training and noise in the training set. Still, other reasons can be cited, for ex-
ample, it is easy to parameterize, presents good ability to manage collinear resources [116],
and is robust against overfitting and outliers [117]. In addition to classification studies
in the Mediterranean ecosystem, other authors point to the performance of RF and KNN
classifiers on single-date Sentinel-2 images, with good accuracy. Vasilakos et al. [4], using
Sentinel-2 data to classify landscapes from the island of Lesbos, Greece, found that when
testing six classification algorithms in MATLAB, the KNN and RF classifiers had the better
overall accuracy of 89 and 90%, and a kappa coefficient of 86.36% and 87.89%, respectively.
In addition, the forest classes evaluated as Oak sp., Pinus brutia, Castanea sp., and Pinus
nigra did not show great variation in the accuracy values of users and producers [4]. This
was an indication that both classifiers may be eligible to produce good forest cover maps.

In comparison with previous studies, our approach utilizing the OTB plugin achieved
higher accuracy results, comparable to those developed using programming languages.
When mapping LULC with KNN and RF algorithms, both demonstrated good performance,
with the RF algorithm yielding higher results. The evaluation metrics of the models, using
OTB classifiers, exhibited considerably higher values for overall accuracy and kappa
coefficient, evidencing a substantial increase in classification accuracy. Additionally, the
obtained producer’s accuracy (PA) and user’s accuracy (UA) were equivalent to or higher
than those reported in the literature, indicating robust consistency across all mapped
forest classes.

4.1. Contribution of Independent Variables to Gains in Accuracy

Although our study did not quantitatively assess the relative importance of the inde-
pendent variables in the classification due to QGIS OTB limitations, the extensive literature
review provides solid evidence on the crucial role of these variables in increasing the accu-
racy of LULC maps. In classification contexts, the exclusive use of spectral bands available
in Sentinel-2 often proves insufficient for classifying dense and complex mosaics of differ-
ent types of forest cover [118]. This is due to the presence of mixed spectral signals from
vegetation and similar land covers [119]. Consequently, the incorporation of vegetation
and texture indices emerges as a determining factor in accuracy gains in classified maps.

The literature has highlighted the importance of certain Sentinel-2 spectral bands
for land use and land cover (LULC) classification, particularly in vegetation classification
processes. Previous studies have identified the red, NIR (B8), and SWIR1 (B11) bands as
the most significant for mapping different vegetation classes [57,120–122]. The red-edge
and SWIR bands have proven crucial for mapping tree species and crop types [88], while
the addition of spectral bands with 20 m spatial resolution, resampled to 10 m, allowed for
a significant increase in overall accuracy (OA) of single-date classification [120].

The red-edge bands are sensitive to the variability of chlorophyll a and b [84,122,123],
while NIR is sensitive to the variations within and between canopy radiation scattering [57],
and SWIR to water content of forest species [124,125]. Other LULC studies have also
identified these spectral bands as important variables for classification, especially for forest
classes [88,92,126]. In Germany, with SA2S images from one date, the bands with the best
predictive ability for forest species were red-edge 1 (B5), SWIR 1 (B11), and the blue band
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(B2) [88]. For forests in the Roorkee region, India, the NIR band (B8) of SA2S data from a
single date was able to separate forest classes in a range of densities [92]. For Eucalyptus
spp. species, the bands with the best performance in separating Eucalyptus spp. from other
land use classes were the green (B3), red-edge 3 (B7) red-edge 4 bands, and/or narrow NIR
(B8A) [126].

The inclusion of auxiliary data, such as VIs and textures, is a common approach to for-
mulate a workflow that influences accuracy gains in classification. Our decision to consider
certain VIs in this study was based on their demonstrated importance in LULC mapping
in Mediterranean ecosystems [127]. From the traditional IVs, SAVI contributed to the soil
adjustment constant in the background of the vegetation signal, an important factor when
it comes to studies in the dry season and in semi-arid regions [80], and GNDVI, used to
estimating photo synthetic activity, thus contributing to separating some forest species [128].
Moreover, EVI showed higher sensitivity in capturing the variability of the canopy in forest
systems, due to the changes in namely leaf pigments (chlorophyll and leaf nitrogen) and
variability in biomass [82]. The new VIs used in this study, depending on red-edge bands
for their calculation, are characterized by lower absorption by chlorophyll, but are sensitive
to changes in its content, reducing the saturation effect and enhancing the sensitivity of
these VIs to moderate-to-high vegetation densities, reducing the traditional VI saturation
effect [16,123]. Research conducted in the Extremadura region of Spain, characterized by
Mediterranean vegetation, evaluated multiple spectral indices derived from Sentinel-2
imagery [73]. The study tested various indices, including Brightness Index (BI), Color
Index (CI), Green Normalized Difference Vegetation Index (GNDVI), Second Modified Soil-
Adjusted Vegetation Index (MSAVI2), Normalized Difference Index (NDI45), Normalized
Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and
Soil-Adjusted Vegetation Index (SAVI). In the classification of forest classes using Random
Forest algorithms, only CI showed significance. The forest categories included evergreen
conifers (Pinus pinaster, Pinus pinea), dense evergreen broadleaf stands (Quercus rotundifolia,
Quercus suber with canopy cover >60%), sparse evergreen broadleaf areas (20–60% canopy
cover), and deciduous broadleaf forests (Quercus pyrenaica, Castanea sativa), along with nine
additional land use classes [73]. Thus, these VIs can contribute to the spectral separability
of forest species with proximal spectral response, such as Q. rotundifolia and Q. suber.

The incorporation of texture indices, specifically GLCM metrics, has also proven valu-
able in various LULC studies, demonstrating improvements in classification accuracy, as
observed in our research [4,101,129,130]. In this study, GLCM proved to have higher sensi-
tivity to the variation of crown cover and abrupt variation in digital numbers neighboring
image features, which are predominant in the dry season [131]. Moreover, when studying
forest classes with heterogeneous and complex spatial distribution, these bands highlight
the contrast at stand boundaries [132,133]. Zheng et al. [68] found that incorporating tex-
ture measures into Sentinel-2 spectral data in the RF classification algorithm resulted in
a significant increase in LULC accuracy, including in agricultural and vegetation classes.
This approach proved effective in mitigating the limitations inherent to pixel-based map
classification, addressing the insufficiencies in spatial detail and image sharpness of this
algorithm [68].

In the Mediterranean region, Fragoso-Campón et al. [73], investigating the use of a
single date for Sentinel data, found that Sentinel-2 texture metrics were very important
for optimizing the classification algorithm, especially those derived from visible (B2 and
B3), NIR (B5 and B6), and SWIR (B11) bands, which ensured good classification results
in the Extremadura region, Spain. Blanco-Sacristán et al. [134] conducted a study using
Sentinel-2 data to classify shrub populations in areas affected by historical fires in Sierra
Nevada, Spain. In assessing the regeneration process and conservation status of vegetation,
the incorporation of textural features derived from GLCM demonstrated a significant
contribution to increasing mapping accuracy [134]. Morell-Monzó et al. [135], using very-
high-resolution (VHR) images and GLCM textures in mapping abandoned citrus fruits in
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Oliva, eastern Spain, found that texture features with a 9 × 9 window size had the best
overall accuracy with the Random Forest model.

Other studies conducted by Wang et al. [136] found that textures improved the accu-
racy of vegetation classification in wetland areas using high-resolution Pléiades satellite
images. Feng et al. [137], investigating urban vegetation classification using the RF al-
gorithm and ultra-high-resolution (UHR) digital images obtained by unmanned aerial
vehicles (UAVs), highlighted the significant contribution of GLCM textural features in gain-
ing accuracy and eliminating image blurriness, inconsistencies in vegetation classification,
and especially the “salt and pepper” effects. Furthermore, the authors observed that the
integration of textural metrics compensated for the spectral limitation’s characteristic of
UAV images [137]. This study highlights the relevance of optical sensors, such as Sentinel-2,
in the classification of tree species, based on evidence from the literature. Strategically,
it incorporated a set of vegetation indices and textural features to enhance the spectral
separability of forest classes and optimize overall classification accuracy. This approach
aims to overcome the inherent complexities in classifying Mediterranean forest ecosystems
characterized by complex mosaics. The proposed methodology seeks to optimize the ap-
plication of remote sensing techniques in contexts of high landscape heterogeneity, where
precise discrimination of forest classes represents a significant challenge.

Our approach of incorporating vegetation indices and texture, in addition to the
standard Sentinel-2 spectral bands, aligns with these findings from the literature. The
observed improvement in our classification accuracy suggests that the inclusion of these
additional variables played a significant role in enhancing our results obtained from open-
source software and plugins.

4.2. The Forest Occupancy Classification Challenges with Images from Sentinel-2

In Mediterranean ecosystems, LULC classification studies using Sentinel-2 images
have demonstrated that spectral separability is challenging due to the spectral overlap
among pairs of forest classes, montado systems, and shrublands, as observed in the au-
tonomous region of Valencia, Spain [138], and among distinct types of broadleaf and
coniferous forests in Italy [139]. When it comes to classifying a landscape dominated by
fragmented forest stands, remote sensing-based landscape classification remains challeng-
ing, as most pixels exhibit similar spectral signatures influenced by ground reflectance or
other species and shadows [140,141].

In our study, the classification reliability was verified through visual analysis, compar-
ing the classified map with a reference map, such as high-resolution images from Google
Earth. In general, the Q. rotundifolia class exhibited several pixels resembling the Q. suber
class, shrub and agriculture surface. The mixed species composition in agro-silvopastoral en-
vironments and along stand boundaries resulted in categorization errors for Q. rotundifolia
and Q. suber stands in montado regions. Particularly in montado systems, classifiers might
struggle to detect the spatial arrangements of species due to significant variations in mosaic
patterns and distribution of forest species [18,142–144]. The spectral similarity between the
transition boundaries of regions with center-pivot agriculture, olive groves, and variously
oriented vineyard planting lines across all analyzed locations also led to the confusion of
some pixels in the Q. rotundifolia and Q. suber classes. In the AG and BA regions, some
Q. rotundifolia stands, still young or spatially dispersed in the landscape, had some pixels
confused with the shrub surface class. The understory vegetation or soils reflectance was
reported in other studies in young stands, caused by canopy gaps [145,146]. In the AG
region, signatures similar to Q. suber were identified within mosaic fragments featuring
agricultural surfaces, along with plantations of other crops like Ficus carica, Prunus dulcis,
Ceratonia siliqua, and Citrus spp.

In regions characterized by steep terrain, situated in AA (Natural Park of Serra de São
Mamede), AL (Serra do Cercal), and AG (Serra do Caldeirão and Serra do Monchique),
the P. pinaster class exhibited a higher classification error along boundaries of the land use
patches with Eucalyptus spp. stands. In satellite optical imagery, remote sensing techniques
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do not account for topographic effects [147,148]. Therefore, our accuracy results might have
been influenced by the presence of mountainous areas. Slopes that receive varying sunlight
impact the proportion of light returning to the sensor due to changes in solar geometry and
topography [149–151]. In these regions, we found greater challenges in defining Regions of
Interest (ROIs) due to the vegetation’s heterogeneity, comprising other broadleaf species,
shrubs, and young cork oaks. For these reasons, there was a heightened spectral confusion
between the shrubland class and the Q. suber class, which is characteristic of mountainous
regions, valley bottoms, north-facing slopes with less solar exposure, and coastal areas (AL
and AG). Conversely, the gently undulating relief of the AC region may have contributed
to higher accuracy in the LULC classes [152]. These justify the lower accuracy obtained for
these regions.

Among the pairs of classes Q. suber and P. pinea, the confusion between them was nearly
equal in the AL region. This is due to the more frequent occurrence of mixed stands of
P. pinea with Q. suber in this region. However, across all studied regions, the classes
Eucalyptus spp., P. pinea, and P. pinaster exhibited classification errors due to spectral con-
fusion between riparian species and orchards with similar spectral signatures, as well as
mixed stands. The P. pinea and P. pinaster stands were gradually replaced by Eucalyptus spp.
due to decreased economic interest in resinous forests and a preference for rapidly grow-
ing and economically viable eucalyptus stands [153]. On the other hand, the emergence
of mixed areas dominated by pine and eucalyptus reflected the lack of management in
P. pinaster stands and agricultural abandonment [153]. For these reasons, between the
classes of P. pinaster and Eucalyptus spp., the classifier struggled to delineate the com-
position of smaller P. pinaster mosaics accurately intertwined with larger Eucalyptus spp.
mosaics. Furthermore, in our study, we identified small fragments of the second rotation of
Eucalyptus spp., sparse P. pinaster stands, and young P. pinea plantations that influenced the
spectral response due to spatially open canopies and higher reflectance from the ground,
rocks, and/or shrub surfaces [154].

The monitoring of land use and land cover (LULC) dynamics is essential for landscape-
scale conservation and management. While satellite-based remote sensing constitutes
the most feasible approach for large spatial scales, heterogeneous landscapes can pose
significant challenges for accurate land cover classification and change detection [155].
A primary obstacle encountered in this study was the classification of forest cover types
across extensive territorial expanses, necessitating field expertise, in situ knowledge, visual
interpretation of landscape features through ancillary data, and the utilization of high-
performance computing resources for image processing. Nonetheless, this investigation
addresses a critical gap in the existing literature regarding the large-scale application of
algorithmic approaches to LULC analysis in southern Portugal.

Additionally, incorporating multitemporal S2 imagery and leveraging the synergy
between Sentinel-1 data, as demonstrated in studies [1,4,156–158], can enhance the clas-
sification accuracies of forest occupation classes. Combining texture features extracted
from Sentinel-1 (S1) data with Sentinel-2 (S2) multispectral bands enhances classification
capabilities. While radar signals from S1 are sensitive to geometric properties (e.g., rough-
ness, texture, and internal structure), optical reflectance from S2 is influenced by vegetation
physiology [159,160]. To further improve the non-parametric models used in this research,
we propose (1) incorporating additional forest classes, (2) integrating S1 and S2 data into
time series, and (3) including new vegetation indices, texture metrics, and elevation features.
These enhancements can address existing gaps and potentially increase model accuracy.

5. Conclusions

In this study, we propose an integrative approach to mapping the composition and
distribution of the main forest species on a regional scale in southern Portugal, which
involves the use of machine learning classification algorithms and free open-source tools.
In environmental management and sustainable development, comprehensive mapping
of forest land use and cover provides relevant information for developing sustainable
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forest management practices, climate change mitigation, managing natural resources, and
protecting biodiversity and contributes significantly to improving the accuracy of forest
biomass models.

The methodology was developed for mapping forest species using Sentinel-2 data in
southern Portugal. The performance of two machine learning algorithms, K-Nearest Neigh-
bor (KNN) and Random Forest (RF) from the OTB plugin, were analyzed to map the main
forest species dominating in the five regions of Alentejo and Algarve, Portugal. Despite the
complexity of forest species occupancy with high intraclass variability, accurate mapping
using OTB plugin classification algorithms was achieved using single Sentinel-2A data.

The RF algorithm achieved the best accuracy results in all evaluated regions when
compared to KNN. The best classification accuracies with RF and KNN algorithms were
achieved in the AC region (RF: OA = 92.16%, k = 0.91; KNN: OA = 88.69, k = 0.87), followed
by AL, BA, AA, and AG. Incorporating ancillary data, such as vegetation and texture
indices, into the classification process contributes to the good results obtained. In addition,
images acquired in the summer contributed to a good classification due to the lower
occurrence of clouds and the distinctive spectral behavior of the understory, as well as
between forest classes and other uses. Considering the scale and scope of this investigation,
which encompasses the entire southern region of Portugal, the present study significantly
expands existing knowledge about the area’s forest cover. While previous research has
focused on analyses of larger scales [161] or more restricted areas [9], this work fills a
crucial gap by providing a more detailed assessment of forest cover across the southern
Portuguese region.

The methodology developed in this study offers an efficient and cost-effective ap-
proach for producing forest classification maps, utilizing intuitive interface tools like QGIS,
SNAP, and the OTB plugin. Sentinel-2 data emerge as a viable and free alternative for
large-scale forest classification. Its high spatial and temporal resolution competes with
higher-resolution commercial satellite data. Image processing tools from non-commercial
software packages facilitate forest species mapping in the Mediterranean ecosystem. These
allow users without advanced programming knowledge to achieve good accuracy in
their mappings.

Future work perspectives involve expanding the methodology to include classes
with lower representation, encompassing the central–northern region of Portugal, and
potentially other European regions. Integrating other data sources can help validate the
studied model, including field data integration, and merging data from satellites, inte-
grating LiDAR (Light Detection and Ranging) data, high-resolution images obtained from
UAVs, and synthetic aperture radar (SAR) data from Sentinel-1. Specifically, integrating
LiDAR data, it is worth mentioning that according to the Portuguese Directorate-General
for Territory (DGT), the government intends to produce land use and cover maps, as well
as hydrography, altimetry, and the Digital Terrain Model based on LiDAR coverage [162].
This project aims to democratize access to national cartographic resources, sharing open
data information and integrating cartography resulting from cooperation between various
levels of Public Administration.
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