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Abstract: The expansion of urban areas and unsustainable land use associated with human activities
have brought about a decline in habitat quality (HQ), especially in arid regions with fragile ecosystems.
A precise prediction of land use and habitat quality changes across different scenarios is crucial for
the sustainable maintenance of ecological diversity. In this article, the InVEST model was employed
to assess both the quality and degradation levels of habitats in the Turpan–Hami Basin (THB)
spanning 1990~2020. Additionally, the InVEST-PLUS coupling model was employed to forecast
habitat conditions under three different scenarios in 2050. Specifically, it involved the comparison of
land use changes and spatial distribution of HQ across natural development (ND) scenarios, town
development (UD) scenarios, and ecological protection (EP) scenarios, along with the analysis of hot
spots of HQ spanning 1990~2050. The outcomes revealed the following: (1) The primary land use in
the THB was categorized as unused land, alongside notable expansions in cultivated land, grassland,
and built-up land. Conversely, there was a considerable decline observed in forests, water bodies, and
unused land spanning 1990~2020. (2) The HQ within the THB exhibited evident spatial clustering
characteristics. Between 1990 and 2020, areas with low HQ accounted for over 85%, areas with
unchanged HQ constituted 88.19%, areas experiencing deteriorated HQ comprised approximately
5.02%, and areas displaying improved HQ encompassed around 6.79%. (3) Through the comparison
of HQ for the ND, UD, and EP scenarios in 2050, it was observed that the average HQ under the
EP scenario ranked highest, exhibiting the lowest degree of degradation on average. This indicates
that the EP scenario is most advantageous for preserving HQ. Conclusively, this research provides
valuable viewpoints for making decisions aimed at enhancing HQ in ecologically fragile arid regions.

Keywords: habitat quality; PLUS model; InVEST model; Turpan–Hami Basin

1. Introduction

Ensuring the availability of ecosystem services is paramount for human welfare [1–3],
and the United Nations Decade for Ecosystem Restoration (2021–2030) is committed to
advancing the preservation and rehabilitation of ecosystems globally. This endeavor aims to
enhance the benefits that humans and nature derive from these ecosystems while restoring
their service capacities [4]. HQ degradation due to unsustainable land use practices is a
major global concern [5–8]. HQ refers to an ecosystem’s capacity to furnish conducive
conditions for the sustained survival and growth of individuals and populations. It serves
as a representation of natural value and the ecosystem’s ability to provide ecological ser-
vices [9–11]. It can reflect ecological health and regional biodiversity status to a certain
extent. In recent years, the excessive exploitation of ecological resources driven by the de-
mands of economic development has caused degraded ecological functions and significant
alterations in the spatial structure of land use [12], thereby exerting a substantial impact on
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regional habitats. Changes in land use have been demonstrated to be a significant determi-
nant in the modification of HQ, subsequently impacting the ecological milieu and regional
biodiversity [13–15]. Recently, it has been emphasized that multi-scenario simulation can
effectively unveil the potential problems and conflicts related to regional HQ under future
land use changes. This approach serves as a foundation for making informed decisions for
regional ecological management and promoting sustainable development [16,17].

Land use is the foundation of biodiversity, and its alteration stands as the most direct
manifestation of human activities. Rational land utilization contributes to the enhancement
of HQ. Therefore, predicting land use changes proves instrumental in implementing mea-
sures to avert deterioration in HQ. Based on current research, the methods for predicting
land use changes mainly include dynamic simulation models that incorporate quantitative
and spatial alterations, along with their hybrid counterparts. Common models include
(1) the Markov model [18,19], which predicts the probability of future land use variations
by analyzing historical data based on state transition probabilities; (2) the cellular automa-
ton (CA) and its improved model [20,21], which simulate the dynamic process across land
use variations using discrete space–time cellular units; (3) the system dynamics model
(SD) [22], which describes the behavior or characteristics of the land use variations over
time through simulation calculations based on interaction and feedback mechanisms be-
tween various system components; and (4) the patch generation land use simulation model
(PLUS) [23–25], a combination of the Markov model and CA that considers both spatial
and quantitative changes to simulate land use variations. The PLUS model, among the
aforementioned models, is a combination of random forest and cellular automata, exhibit-
ing superior simulation accuracy [26], comprehensive functionality, convenient operation,
and excellent user experience. It has been extensively applied in land use change research.
For instance, Meimei, et al. [27] employed the PLUS model to predict the land use types
and conflicts in Xining City from 2020 to 2030 under different scenarios, and believed
that the expansion trend of construction land in the core area and peripheral areas was
similar. However, the reduction in cultivated land in the peripheral areas was notably
more pronounced. Through assessing both absolute and relative land use conflicts, they
proposed sustainable development strategies. Gao et al. [28] utilized the PLUS model to
simulate the land use in Nanjing across four scenarios encompassing commercial normal-
ity, rapid economic development, ecological protection, and ecological-economic balance.
They acquired the ecological risks associated with land use under different scenarios and
designed different development models to mitigate these risks based on the outcomes of
ecological risk assessment.

Because HQ represents biodiversity and ecosystem services, its assessment has re-
ceived significant attention from geographers and ecologists. To date, a variety of method-
ologies and tools have been employed for evaluating HQ, including Social Values for
Ecosystem Services (SolVES) [29,30], Soil and Water Assessment Tool (SWAT) [31,32], the
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, etc. The InVEST
model is capable of capturing the spatial heterogeneity of HQ with minimal parameters
and presenting results in a visually appealing manner. Consequently, it has been widely
utilized for quantitative research on HQ. For instance, Chen et al. (2023) [33] employed the
InVEST model to assess the changes in HQ within the fern forest area of the Mohe River
basin located in the western Tianshan Mountains and then analyzed the factors influencing
HQ. Their findings indicated an increase in fragmentation within the study area, with low
habitat value observed in areas prone to geological disasters and human activity interfer-
ence. Zhang and Chen (2022) [34] employed the InVEST model to evaluate and simulate
the HQ within the Tarim River basin and proposed suggestions for land use planning and
protection on the basis of evaluation results. Therefore, the InVEST model can be used to
quantify HQ, enabling deci-sion-makers to effectively evaluate the societal implications of
land use alterations (Wang et al. 2022) [35]. This approach provides a scientific foundation
and decision support for professionals engaged in land use planning and management. In
the context of future predictions or multi-scenario simulations, numerous scholars have
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achieved promising results using the PLUS-InVEST model. For example: Wei et al. [36]
utilized the PLUS-InVEST model to assess the HQ and degradation level of Aibi Lake Basin
in Xinjiang from 1990 to 2030, which facilitated the establishment of ecological zoning
based on evaluation outcomes. Wang et al. [37] utilized the PLUS-InVEST model to assess
the HQ of three distinct compact urban scenarios in 2040 and 2060 within the Guangdong–
Hong Kong–Macao Greater Bay Area. Their results revealed a significant decline in urban
HQ under the highly compact scenario, emphasizing the need for collaborative efforts
toward ecological protection and sustainable development. Liu et al. (2023) [38] applied the
GMOP-PLUS-InVEST model to simulate land use/land cover changes and evaluate water
yield in the Nansi Lake Basin, China. Their study conducted multi-scenario simulations
to explore how different land use changes impact water resources, providing insights
into sustainable land and water management practices in the region. Li et al. (2023) [39]
utilized the PLUS-InVEST model to analyze the spatial distribution of ecosystem carbon
storage in Liaoning Province, China. Their results highlighted significant variation in
carbon storage, with higher concentrations in forested and wetland areas, and lower levels
in anthropogenically impacted regions. The study identified land use and climate as key
drivers of carbon storage patterns, offering insights for optimizing land management to
enhance carbon sequestration.

The Turpan–Hami Basin (THB) is a typical representative of an extremely arid area and
extremely fragile ecological environment. This study comprehensively used 3S technology
and the InVEST model to evaluate and analyze the HQ of the THB, predicted the HQ of
the THB in 2050 with the PLUS model, and analyzed the cold hot spot of HQ from 1990
to 2050. According to the policy planning and advocacy suggestions during China’s 14th
Five-Year Plan period, three scenarios were established, namely the natural development
(ND) scenario, town development (UD) scenario, and ecological protection (EP) scenario.
By means of the PLUS model, the spatial distribution pattern of land use in the THB by
2050 was predicted and analyzed, and in combination with the InVEST model, the changes
in HQ of the THB across different development scenarios were assessed. This research is
processed with following objectives: (1) explore the spatio-temporal patterns of land use
variations in the THB spanning 1990~2020; (2) assess the spatio-temporal patterns of HQ in
the THB spanning 1990~2020; (3) predict the distribution difference in HQ across different
future scenarios; (4) unravel the distribution law of HQ in the THB from 1990 to 2050 by
analyzing its hot and cold spots.

2. Study Area and Data Sources
2.1. Study Area

The Turpan–Hami Basin (87◦16′–96◦23′ E, 40◦52′–45◦05′ N), located in the eastern part
of the Xinjiang Uygur Autonomous Region, is recognized as one of China’s largest land
basins (Figure 1). Positioned between the northern foothills of the Tianshan Mountains
and the southern foothills of the Altay Mountains, this basin boasts a relatively flat terrain.
It comprises two distinct parts, the Turpan Basin and the Hami Basin, with a composite
area of roughly 21 × 104 km2, accounting for 12.6% of Xinjiang’s total land area. The
region encompasses six counties: Gaochang District, Shanshan County, Toxsun County,
Yizhou District, Barkun County, and Yiwu County, with a total population of around
1.36 million. The region has a typical continental arid climate with large diurnal temperature
differences, very low precipitation, and high evaporation [40], and shows an average
annual rainfall in the range of 10 to 30 mm and an average annual potential evaporation
of 3000 to 4000 mm. Frequent occurrences of gales and extremely high temperatures
contribute to its complex ecosystem consisting of mountains, oases, and deserts [41]. The
ecological environment within this basin is highly fragile, with desertification coexisting
alongside wetland degradation, and ecological droughts pose significant challenges to
restoration efforts. However, due to ongoing economic development coupled with societal
progressions in recent years, great pressure has been placed on ecological restoration
projects within the THB.



Land 2024, 13, 2186 4 of 20

Land 2024, 13, x FOR PEER REVIEW 4 of 22 
 

environment within this basin is highly fragile, with desertification coexisting alongside 
wetland degradation, and ecological droughts pose significant challenges to restoration 
efforts. However, due to ongoing economic development coupled with societal progres-
sions in recent years, great pressure has been placed on ecological restoration projects 
within the THB. 

 
Figure 1. (a) Location of the study area in China and (b) elevation of the study area. 

2.2. Data Sources 
The study data mainly consist of various datasets encompassing digital elevation 

model (DEM), land use, soil, topographic, climate, road accessibility, and socio-economic 
data (Table 1). The land use data were sourced from the Institute of Resource and Envi-
ronment Science and Data Center affiliated to Chinese Academy of Sciences, providing 30 
m resolution land use data for the years 1990, 2000, 2010, and 2020.  

Table 1. Data table. 

Type Data Data Source Resolution 

Land Use Data CAS-LULC 

Resource and Environment Science and 
Data Center, Chinese Academy of Sci-

ences (https://www.resdc.cn/(accessed 
on 13 December 2022))  

30 m 

Natural Environ-
ment Indicators 

DEM 
National Geospatial Data Cloud 

(http://www.gscloud.cn/(accessed on 
13 December 2022)) 

30 m 

Slope Based on ArcGIS10.8 30 m 

NPP 
USGS (https://www.usgs.gov(accessed 

on 13 December 2022))  
500 m 

NDVI 
NASA (https://earthdata.nasa.gov/(ac-

cessed on 13 December 2022)) 
 

Annual evapotranspiration data National Tibetan Plateau Data Center 
(https://data.tpdc.ac.cn/home(accessed 

on 13 December 2022))  

1 km 

Annual precipitation data 1 km 

Soil type 
Soil dataset for China Based on the World 

Soil Database (HWSD) 
(https://iiasa.ac.at/models-tools-

1 km 
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2.2. Data Sources

The study data mainly consist of various datasets encompassing digital elevation
model (DEM), land use, soil, topographic, climate, road accessibility, and socio-economic
data (Table 1). The land use data were sourced from the Institute of Resource and Environ-
ment Science and Data Center affiliated to Chinese Academy of Sciences, providing 30 m
resolution land use data for the years 1990, 2000, 2010, and 2020.

Table 1. Data table.

Type Data Data Source Resolution

Land Use Data CAS-LULC Resource and Environment Science and Data Center, Chinese Academy of
Sciences (https://www.resdc.cn/ (accessed on 13 December 2022)) 30 m

Natural
Environment

Indicators

DEM National Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 13
December 2022)) 30 m

Slope Based on ArcGIS10.8 30 m
NPP USGS (https://www.usgs.gov (accessed on 13 December 2022)) 500 m

NDVI NASA (https://earthdata.nasa.gov/ (accessed on 13 December 2022))
Annual evapotranspiration data National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/home

(accessed on 13 December 2022))
1 km

Annual precipitation data 1 km

Soil type
Soil dataset for China Based on the World Soil Database (HWSD)

(https://iiasa.ac.at/models-tools-data/hwsd
(accessed on 13 December 2022))

1 km

Temperature ERA5-Land dataset (https://cds.climate.copernicus.eu (accessed on 13
December 2022)) 1 km

Human
Activity

Indicators

Nighttime light data National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/home
(accessed on 13 December 2022)) 500 m

Population World pop (https://hub.worldpop.org (accessed on 13 December 2022))
GDP Statistical Yearbook

Transportation
Convenience

Indicators

Distance from first-class road

OpenStreetMap (https://www.openstreetmap.org/
(accessed on 13 December 2022))

Distance from second-class road
Distance from third-class road

Distance from highway
Distance from railway
Distance from water

Distance from the county seat

According to the requirements of accuracy and practicability for the PLUS model,
three categories of indicators were selected, i.e., natural environment, transportation con-
venience, and human activity (Table 1), which included 18 driving factors affecting land
use change, including elevation, net primary productivity (NPP), gross domestic product
(GDP), normalized difference vegetation index (NDVI), population, rain, slope, tempera-
ture, and distance from roads. Distances to water bodies, county governments, and roads

https://www.resdc.cn/
http://www.gscloud.cn/
https://www.usgs.gov
https://earthdata.nasa.gov/
https://data.tpdc.ac.cn/home
https://iiasa.ac.at/models-tools-data/hwsd
https://cds.climate.copernicus.eu
https://data.tpdc.ac.cn/home
https://hub.worldpop.org
https://www.openstreetmap.org/
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were computed utilizing Euclidean distance of ArcGIS software. Then, all datasets were
trimmed by the vector boundary of the THB, and the projection coordinate system and
resolution were unified, followed by resampling to a resolution of 30 m.

3. Methods
3.1. HQ Assessment

This research utilized the InVEST model to assess the level of habitat degradation and
HQ in the THB. The HQ module of the InVEST (3.13.0) model considers HQ as a biodiversity
indicator linked to various land use types [42]. It assumes that areas with higher HQ are
able to sustain a greater diversity of species, while a decrease in HQ will result in reduced
biodiversity. The primary input data are composed of land use/cover, predominant threat
factors, weight and impact distance of threat sources, and the sensitivity of land use/cover
to each threat source. The parameters for the InVEST model were established in accordance
with previous research [13,15,43], as shown in Tables 2 and 3. Using these parameters, we
calculated the extent of habitat degradation and HQ in the THB across four time nodes:
1990, 2000, 2010, and 2020.

Table 2. Threat factor parameters.

Threat Max_Dist (km) Weight Decay

Cultivated 4 0.6 linear
Rural * 5 0.8 exponential
Urban 8 1 exponential
Other construction * 7 0.8 exponential
Unused 4 0.4 linear

* represents threat factors not applied in the three scenarios for 2050.

Table 3. Sensitivity parameters of various land use types to habitat threat factors.

Land Use Type Habitat Suitability
Threat Factors

Cultivated Rural * Urban Other Construction * Unused

Cropland 0.5 0 0.8 0.6 0.7 0.4
Forest 1 0.7 0.9 0.7 0.8 0.5

Grassland 0.9 0.8 0.7 0.75 0.75 0.7
Water 0.9 0.5 0.6 0.7 0.7 0.5

Built-up land 0 0 0 0 0 0
Unused 0.3 0.2 0.4 0.45 0.6 0

* represents threat factors not applied in the three scenarios for 2050.

First, the degree of the habitat degradation is calculated:

Dxj =
R

∑
r=1

Yr

∑
y=1

 wr
R
∑

r=1
wr

ryirxyβxSjr (1)

irxy = 1 −
(

dxy

drmax

)
(2)

irxy = exp
[
−
(

2.99
drmax

)
dxy

]
(3)

where Dxj represents the index of habitat degradation; R represents the amount of threat
factors; wr represents the weight assigned to the threat factor r; Yr represents the amount
of grids affected by the threat factor r; ry represents the value of the threat factor r on a
specific grid; irxy represents the distance from the habitat to the threat source, as well as the
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influence of threats on space; βx represents factors that mitigate threats’ impact on habitat
according to different protection policies (e.g., legal protection degree, where 0 indicates no
legal protection and 1 indicates full legal protection); Sjr represents the sensitivity of habitat
type j to the threat factor r; dxy denotes the Euclidean distance from grid x to grid y; and
drmax signifies the longest distance at which a particular threat source can affect habitats. A
higher score in the calculation reflects more significant degrees of threats posed by these
factors towards habitats, indicating higher levels of habitat degradation.

Following the above results of HQ degradation, the HQ is evaluated as follows:

Qxj = Hj

[
1 −

(
DZ

xj

DZ
xj + kz

)]
(4)

where Qxj represents the HQ index of grid x in land use j; Hj denotes the habitat suitability
of habitat type j ranging between 0 and 1; k is the semi-saturation constant, typically set
as half the maximum value of the habitat degradation; and Z is the normalized constant,
usually set to 2.5.

3.2. Prediction of Land Use Changes in Future

The Patch-generating Land Use Simulation (PLUS) model is a novel land use simula-
tion model designed by [44] at China University of Geosciences, based on the enhanced CA
model. It can simulate the changes in land use resulting from patches, providing benefits
for investigating the drivers of such changes and dynamically simulating diverse land use
types, particularly patch alterations in forests and grassland. The PLUS model primarily
consists of two components, the land expansion analysis strategy module (LEAS) as well
as the CA module utilizing various types of random patch seeds (CARS).

LEAS employs the random forest algorithm to mine various types of land use expan-
sion and their corresponding driving force factors, followed by the calculation of likelihood
of the development for each land use type and the quantification of impact of specific
driving factors on the expansion of each land use type during the given period. This
module preserves the capability of the model to dissect the mechanism underlying land
use changes within a defined timeframe and demonstrates versatility in its application. On
the other hand, CARS integrates random seed generation with the threshold-decreasing
mechanism. Building upon the probability maps generated by the LEAS module, not only
can it predict the likelihood of development for different land use types, but the spatial
distribution of land use patterns can also be simulated. CARS operates as a scenario-based
land use simulation model, providing insights into potential future land use scenarios.

3.2.1. Multi-Scenario Simulation Setting

Based on previous research findings, the parameters such as domain weight within
the PLUS model were determined [32,39,44]. Subsequently, land use simulations for three
scenarios in 2050 were conducted. The ND scenario served as the benchmark scenario in
this study. In this particular scenario, the historical trend in land use changes spanning
1990~2020 was preserved, and predictions for land use in 2050 were generated using the
PLUS model’s Markov chain module. The objective of the UD scenario is to enhance the
level of urbanization, expand urban infrastructure, restrict the conversion of urban land
into other land categories, and promote the transformation of unused and underutilized
land into urban construction zones. The EP scenario aims to safeguard regions with high-
quality habitats by strictly limiting conversions from water bodies, forests, and grasslands
to cultivated or developed lands while controlling excessive expansion in these areas.
Additionally, it seeks to unlock the developmental potential of forests and grasslands. The
PLUS model was employed for predicting species-specific changes in distribution under
the ND scenario as well as across both UD and EP scenarios.
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3.2.2. Model Validation

To ensure the model simulation accuracy, this study utilized the land use data of 2010
as the baseline. By incorporating 18 driving factors specific to the THB, we conducted
simulations and forecasts for the land use data up to 2020. Subsequently, a comparison was
made between the PLUS model-generated THB land use map and the factual THB land use
map in 2020. The reliability of the PLUS model simulation was evaluated using the Kappa
coefficient [39].

3.3. Analysis of Spatial Data Hot Spots

A 5 km×5 km grid network of fishing points was established within the study area.
Using ArcGIS extraction tools, grid values were extracted to points for hot spot analysis
(Getis-Ord Gi*). A detailed investigation was conducted focusing on hot spots with statisti-
cal significance and confidence levels exceeding 90%. Utilizing the ArcGIS platform, spatial
clustering and distribution characteristics of the HQ index in the THB were analyzed,
revealing the spatial distribution patterns of the HQ index in the THB.

4. Results
4.1. Analyses of Land Use Changes Spanning 1990 to 2020

The land use changes spanning 1990 to 2020 are depicted in Figure 2. By 2020, the
THB is predominantly characterized by unused land, constituting 78.81% of the total
land use area. Grassland is the second largest land use type, comprising 18.81% of the
area, while other land use classes have a minor share, accounting for less than 3% of the
total. This distribution can be explained by the unique terrain of the THB, where the
limited oasis areas result in grasslands and forests primarily distributed along the Bogda
Mountains in the eastern segment of the Tianshan Mountains. To visually analyze the land
use changes during the study period, a visualization analysis of its transition matrix was
conducted (Figure 3). Overall, 89.3% of land use classes remained unchanged. Among them,
farmland increased by a total of 1117.57 km2 over the past three decades; forest land shows
a consistent decreasing trend, with the largest reduction of 224 km2 observed between
2000 and 2010 and a total decrease of 256.33 km2; grassland exhibits a trend of decreasing
and then increasing, notably growing between 2000 and 2010, with a total increase of
7873.40 km2 in the past three decades; water bodies show a fluctuating decreasing trend,
with an overall reduction of 67.30 km2; urban areas experience a continuous increase,
totaling an increment of 708.05 km2; and unused land exhibits a continuous decrease,
with a total reduction of 9375.39 km2. From Figure 4, it can be observed that the increase
in grassland primarily originates from previously unused land, and grassland is mainly
concentrated around mountain ranges, including the Bogda Mountains in the eastern part
of the Tianshan Mountains and the Jueluotage Mountains in the central branch of the
Tianshan Mountains. The increase in farmland mainly comes from grassland and unused
land, and farmland is predominantly distributed around urban areas.
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Figure 4. (a) Area decrease and (b) area increase of land use types in THK spanning 1990~2020.

4.2. Spatio-Temporal Evolution of Habitat Degradation Spanning 1990 to 2020

Within the InVEST model, a habitat degradation index is usually adopted to quantify
the habitat degradation extent. Figure 5 illustrates the extent of habitat degradation in the
THB spanning 1990~2020. The majority of areas have remained unaffected by degradation,
primarily consisting of unused land types. To quantify the habitat degradation in the
THB, the study divided the habitat degradation extent into five grades (Figure 6), i.e., low
(0–0.1), below average (0.1–0.2), moderate (0.2–0.3), above average (0.3–0.4), and high (>0.4).
Specifics of the change in habitat degradation extent spanning 1990 to 2020 are as follows:
199,537.31 km2 areas in the THB remain unchanged, accounting for 96.41% of the total area;
5420.40 km2 areas show an increased degradation extent, accounting for 2.62% of the total
area; and 2045.56 km2 areas exhibit a decreased degradation extent, accounting for 0.97%
of the total area. The habitat degradation areas are mainly concentrated around the cities,
and the overall trend in degradation is aggravated.
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4.3. Spatio-Temporal Evolution of HQ Spanning 1990 to 2020

Based on the InVEST model, the HQ Index was employed to assess the condition of
HQ. The HQ Index demonstrates a spectrum of values ranging between approximately 0
and 1, with a higher value suggesting improved habitat quality, thereby fostering biodi-
versity conservation. Following the natural break method, the HQ in the study area was
categorized into four levels [36,45], i.e., poor (0–0.25), fair (0.25–0.5), moderate (0.5–0.75),
and high (0.75–1). As illustrated in Figure 7, the HQ in the THB spanning 1990~2020
shows no significant spatial variation in most areas. The average HQ Index decreases from
0.112 in 1990 to 0.110 in 2000, increases to 0.129 in 2010, and then declines to 0.126 in 2020.
According to the HQ levels in 2020, regions classified as high, moderate, and fair HQ levels
are predominantly characterized by grassland, accounting for 96.44%, 98.72%, and 92.76%
of the overall land areas, respectively. Conversely, the primary land use type in areas
categorized as poor HQ level is unused land, constituting 91.11%. In terms of land use
classification, 84.19% of arable land is distributed in areas categorized as poor HQ, with the
remainder in fair-quality regions. Forest land is predominantly distributed in high-quality
areas, representing 45.95%, with the rest spread across various levels. Grassland accounts
for 31.32% and 30.17% in regions with poor and moderate quality levels, respectively.
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Meanwhile, urban land and unused land almost exclusively occupy poor quality level
regions, nearly reaching 100% in distribution.
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The HQ levels spanning 1990~2020 (Figure 8) and their corresponding area changes
are presented in Table 4. The area of habitats categorized as poor quality decreased by
3808.2 km2, while the area of moderate-quality habitats increased by 3493.06 km2. Changes
in the areas classified as fair and high-quality are relatively minimal. Notably, throughout
the period spanning 1990~2020, areas designated as poor-quality habitats consistently
account for over 85% of the total area. Areas with unchanged HQ levels cover 88.19% of
the total area, while areas with decreased HQ levels account for 5.02%, and those with
improved HQ levels constitute 6.79%. Consistent with spatial patterns of land use, areas
characterized by poor HQ levels are primarily concentrated within desert regions and
urban built-up areas, while areas with high HQ levels are predominantly distributed along
mountainous terrains.

Table 4. Specific data of areas across HQ levels spanning 1990~2020.

HQ Level
1990 2020 Changes in Areas Spanning 1990~2020

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/%

Poor 183,319.13 0.8857 179,510.93 0.8673 −3808.2 −0.0184
Fair 7657.38 0.0369 7937.19 0.0383 279.81 0.0014

Moderate 8281.93 0.0400 11,774.99 0.0569 3493.06 0.0169
High 7712.45 0.0373 7748.28 0.0374 35.83 0.0002
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4.4. Predictions for Three Scenarios in 2050

In this study, the Kappa coefficient for the validation of the PLUS model was 0.8762,
suggesting the simulation results could meet the research needs. Using the PLUS model,
the land use changes in the THB for the year of 2050 under three scenarios, namely ND, UD,
and EP scenarios, were simulated and predicted. The simulation results provide distinct
distribution patterns for the three scenarios.

4.4.1. Land Use Predictions for Three Scenarios in 2050

Based on the land use data in the year 2020, the PLUS model was employed to predict
the land use data in 2050. Figure 9 illustrates the land use types distribution pattern for
the year of 2050 across the three scenarios, while Table 5 displays the land use types in the
THB corresponding to these scenarios. Under the ND scenario, the alterations in data for
various land use types from 2020 to 2050 are as follows: except for the unused land, the rest
land types have an increasing trend in varying degrees. Among them, the built-up land
has the largest increase, increasing by 943.80 km2, the forest increases by 26.82 km2, the
grassland increases by 76.91 km2, the water area increases by 81.45 km2, while the unused
land decreases by 1042.81 km2. In the EP scenario, taking the ND scenario in 2050 as a
reference, the cultivated land increases by 792.68 km2, the forest increases by 93.63 km2,
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the grassland increases by 720 km2, and the water area increases by 142 km2. On the
contrary, the built-up land and unused land decreases by 319.20 km2 and 1429.11 km2,
respectively. In the UD scenario, taking the ND scenario in 2050 as a reference, the built-up
land increases by 832.99 km2, and the unused land decreases by 900 km2. For each of the
three scenarios in 2050, the percentage of unused land in the total land use area remains
the highest, reaching over 78%, with the EP scenario exhibiting the highest utilization rate
for such land. In comparison to 2020, cultivated land decreases under both the ND and UD
scenarios, while it increases under the EP scenario. Across all scenarios in 2050, there is
an overall increase in water areas, particularly noticeable within the ecological scenario.
Additionally, built-up land experiences significant expansion across all scenarios, with the
UD scenario showcasing the most pronounced growth.
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Table 5. Areas of land use types for the three scenarios in 2050.

Land Use
Type

ND Scenario in 2020 ND Scenario in 2050 UD Scenario in 2050 EP Scenario in 2050

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/%

Cropland 3052.66 1.47 2966.41 1.43 2966.41 1.43 3759.09 1.82
Forest 568.24 0.27 595.06 0.29 592.07 0.29 688.69 0.33

Grassland 38,523.84 18.61 38,600.75 18.65 38,600.75 18.65 39,320.75 19.00
Water 301.37 0.15 382.84 0.18 452.84 0.22 524.84 0.25

Built-up land 977.18 0.47 1920.98 0.93 2753.96 1.33 1601.77 0.77
Unused land 163,547.60 79.02 162,504.79 78.52 161,604.79 78.08 161,075.68 77.83

The trends in different land use types are consistent with the scenarios, showcasing
the impacts of urbanization and economic development on natural resources, as well as the
sustainable development of resources under ecological conservation scenarios. These trend
analyses provide an understanding of various land use type changes across different land
use scenarios, which helps guide future land planning and sustainable development deci-
sions.

4.4.2. Habitat Degradation and HQ Analysis

The habitat degradation across different scenarios for the year 2050 is depicted in
Figure 10. Overall, the average degradation degree stands at 0.071 under the ND scenario,
0.079 under the UD scenario, and 0.068 under the EP scenario. The highest level of
degradation occurs under the UD scenario.

The HQ across different scenarios in 2050 is illustrated in Figure 11. The average HQ
under the ND scenario is 0.219, which is 0.201 lower than the UD scenario and 0.223 lower
than the EP scenario. The EP scenario exhibits the highest HQ. Across the three scenarios,
areas with poor and fair HQ account for over 80% of the total land. The most significant
changes occur in areas with lower HQ, whereas areas with moderate or higher HQ remain
distributed along the mountain ranges with less noticeable variations. From Figure 11d,
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HQ levels decrease in the UD scenario compared to the ND scenario, with a shift in most
regions from a fair to a poor quality rating. Additionally, Figure 11e shows an improvement
in HQ under the EP scenario compared to the NP scenario, with a major transition from
poor to fair quality levels.
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4.5. Contribution Analysis

The land use expansion analysis module within the PLUS model employs a strategy
to extract and analyze different land use expansions between two periods of change. It
then samples from the increased portion and identifies the factors contributing to these
expansions using the random forest algorithm. This process enables the determination of
the likelihood of the development for different land uses and the quantification of the impact
of driving forces on their expansion during this period. Taking the land use data of 2020 as
an example, the contributions of 18 driving factors to land expansion during this period are
presented in Figure 12. The most significant factor for cultivated land is NDVI, contributing
approximately 13.61%, followed by the human activity index with a contribution of about
12.42%. The third influential factor is potential evapotranspiration, contributing around
8.03%. For forests, DEM emerges as the primary driver with a substantial impact of
approximately 16.66%, closely followed by potential evapotranspiration with about 13.35%.
Rainfall stands out as the dominant factor affecting grassland with a contribution of roughly
13.16%. Both DEM and potential evapotranspiration play a crucial role in the expansion
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of water bodies, contributing approximately 9.37% and 10.51%, respectively. The human
activity index exhibits the highest impact on built-up land, accounting for about 36.79%
of its expansion rate while rainfall takes precedence in influencing unused land at around
13.42%. It should be noted that precipitation has a significant impact and contribution of
over 5% across all types of land uses. In particular, its impact on unused land and grassland
is more pronounced compared to cultivated areas, where its influence is comparatively less.
The combined average contribution of precipitation and potential evapotranspiration to all
types of land reaches 17%.
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Figure 12. Contribution map of driving factors of environmental quality in 2020. A: DEM; B: GDP;
C: night lights; D: NDVI; E: NPP; F: potential evapotranspiration; G: population; H: rainfall; I: slope;
J: soil type; K: temperature; L: distance from the 1st-class road; M: distance from the 2nd-class road;
N: distance from the 3rd-class road; O: distance from highway; P: distance from railway; Q: distance
from water; R: distance from county seat.

4.6. Analysis of Cold and Hot Spots

Figure 13 depicts the hot and cold spots of spatial distributions for HQ in the THB
from 1990 to 2050 (under three different scenarios). It reveals a distinct clustering pattern
of HQ in the study area, with a relatively balanced distribution of hot and cold spots.
However, over time, not only does the hot spot area expand, but it also gains increased
confidence. Furthermore, the predictions for the three scenarios in 2050 further accentuate
this trend, revealing the diffusion of hot spots at different confidence levels. In particular,
under the EP scenario, hot spots may cover a broader area at a 99% confidence level. They
are primarily located in the Bogda Peak Mountains of the eastern segment of the North
Tianshan Mountains and the Jueluotage Mountains of the middle and eastern segments,
showing a clustered distribution along mountain ranges. Cold spots tend to aggregate in
unused areas, and 90% of the regions showing no significant changes are located in these
unused areas. In addition, the spatial distribution of hot spots indicated by HQ levels in
the Turpan Basin aligns closely with the distribution pattern of high-value spatial regions,
while the distribution of cold spots matches that of low-value spatial regions. Hot spot areas
accounted for 23.04% in 1990, increased to 26.18% in 2020, peaked at 26.78% in 2010, and
decreased by 0.6% from 2010 to 2020. Cold spot areas exhibited a continuously increasing
trend spanning 1990~2020, signifying a deterioration in HQ within low-value areas. In
2050, hot spots under all three scenarios show a decreasing trend, among which the UD
scenario exhibits the lowest percentage of hot spots at 16.33% and the EP scenario exhibits
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the lowest percentage of cold spots at 28.81%. The majority of regions with insignificant
changes exhibit similar spatial distribution characteristics to both high- and low-value areas
of HQ.
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Figure 13. Distribution of hot spots of HQ in the THB at different times: (a) 1990, (b) 2000, (c) 2010,
(d) 2020. Distribution of hot spots of HQ for the three scenarios in 2050: (e) ND; (f) UD; (g) EP.

5. Discussion
5.1. Response Mechanism of HQ to Land Use

Researchers have long focused on the relationship between HQ and land use [46,47]. In
recent decades, urbanization has accelerated, exacerbating the scarcity of land resources [48].
The loss of ecosystem services has escalated in tandem with the rapid pace of land de-
velopment [49,50]. The THB exhibits a typical continental arid climate, representing an
extremely arid region. The ecosystem in this area is highly delicate and possesses weak
environmental resilience. Once the ecological environment is compromised, restoration
to its previous state becomes challenging. Multiple factors collectively contribute to the
variations in land use patterns, with cultivated land, urban areas, and unused land posing
threats to HQ. Changes in the extent across various land use types directly impact the
quality of habitats. In the case of land use transitions, the period between 2000 and 2010
exhibited the most significant land shifts. Unused land notably decreased, while farmland,
grassland, and urban areas experienced substantial increases. Specifically, the transition
from unused land to grassland covered an area of 4803.51 km2, and the transition from
grassland to forest land amounted to 427.74 km2. These trends are closely associated with
the implementation of national strategies such as the Western Development Program and
ecological projects, the Three-North Shelterbelt Program, the Grain for Green Project, and
the Grazing Withdrawal and Grassland Restoration Project. The average HQ also improved
from 0.110 in 2000 to 0.129 in 2010. Research indicates that natural vegetation significantly
contributes to HQ restoration. Concurrently, urban expansion has been linked to HQ degra-
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dation [51–53]. These findings are consistent with the rapid urban development observed
during 2010–2020.

5.2. Changes in HQ Under Different Future Scenarios

To assess the impact of ecological development and urbanization on HQ, we con-
ducted simulations and compared changes in HQ for the three scenarios in 2050. The
findings revealed that the most significant decline in HQ occurred under the UD scenario.
The primary cause lies in the unregulated expansion of built-up areas, destroying forest,
grassland, and water bodies, thereby posing a threat to biodiversity’s living environment.
Excessive urban expansion also negatively affects water resource availability and water
environment protection, consequently constraining economic development and construc-
tion activities within the THB. The EP scenario leads to a significant enhancement in HQ,
primarily attributed to the expansion of ecological land, including forest, grassland, and
water bodies. This expansion promotes ecosystem stability and aligns with previous re-
search findings [54–56]. The development of land use types is closely intertwined with
climate factors [57]. Upon investigating the drivers behind the growth of various land use
types, it is evident that precipitation, potential evaporation, and temperature are pivotal
factors influencing the development of grassland, forest, water bodies, and unused land,
which highlights the importance of climate factors in driving changes in HQ. The THB is
a critical region constrained by limited water resources, which in turn restricts both the
advancement of the economy and the preservation of ecological integrity. Upon comparing
the simulation results of the three scenarios, opting for the UD scenario, characterized by
significant built-up land expansion, is not advisable. Conversely, the EP scenario falls short
of fulfilling economic development objectives. In light of the THB’s ecological fragility
and severe water shortage, maintaining a balance between urban progress and ecological
protection becomes crucial. This can be achieved rationally by controlling the increase in
built-up land, protecting or appropriately increasing ecological land, and promoting green
urbanization construction, so as to address the equilibrium between economic development
and ecological conservation for sustainable growth in the THB.

5.3. Limitations of the Study

This work studies the dynamics of habitat quality (HQ) degradation and spatial
distribution in the Turpan–Hami Basin from 1990 to 2050 using the InVEST model to
evaluate historical changes and the PLUS-InVEST coupling model to predict future sce-
narios However, certain limitations need to be acknowledged. Given the unique land use
patterns observed in the THB, where a significant proportion of land remains unused,
overall changes in HQ may not be substantial. Furthermore, the calculation of HQ relies
on subjective parameters associated with the selection of land use types and threat source
suitability. Subsequent research endeavors will integrate more detailed remote sensing
data analysis for each specific land type while exploring the relationship between driving
factors and HQ. Additionally, future studies will expand to include time-series analysis
of remote sensing data, multi-factor driver analysis, and high-resolution satellite imagery
to refine the understanding of land use impacts on HQ. GIS-based spatial analysis and
ecological modeling will also be employed to assess spatial patterns and predict HQ under
different land use scenarios. Furthermore, socio-economic factors, as well as future land
use planning scenarios, will be incorporated to provide a comprehensive view of land
management’s role in shaping habitat quality. Additionally, future research will explore the
coupling of ecosystem service flows from various dimensions, investigating how different
ecosystem services interact and contribute to overall ecological health and resilience in
the region.
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6. Conclusions

This study examines the spatiotemporal dynamics of the HQ by means of the InVEST-
PLUS model, identifies the hot and cold spots of HQ in the THB spanning 1990 to 2020,
and predicts the situations from 1990 to 2050. The derived conclusions are as follows:

1. Thank you, modified to this form of serial number, please check out1. Over the
past three decades, cultivated land, grassland, and built-up land within the THB have been
on an upward trend. Conversely, forests, water bodies, and unused land have exhibited
a declining trend. Notably, built-up land has experienced the most substantial increase,
leading to significant alterations in the spatial distribution pattern of HQ between 1990
and 2020.

2. The ecological environment within the THB is relatively fragile, and the overall
HQ is low. Spatial clustering of HQ is evident across areas, and areas with high HQ are
primarily concentrated along the Tianshan Mountains where grassland and forest play a
significant role.

3. Unused land dominates the landscape composition of the THB; therefore, different
patterns of land usage significantly influence the variations in HQ dynamics. The UD
scenario results in severe degradation of HQ while the EP scenario greatly enhances
the HQ.

The discoveries of this study can aid policymakers in obtaining a more profound
comprehension of the urgency and critical areas for habitat protection. Additionally,
they can aid in the timely detection of changing trends in HQ, warning against potential
ecological risks, and developing corresponding strategies and management measures to
optimize HQ. This study offers valuable insights for ecological regionalization planning
and upgrading of HQ in arid regions.
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