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Abstract: Accurate soil total phosphorus (TP) prediction is essential to support sustainable agricul-
tural practices and formulate ecological conservation protection policies, particularly in complex
karst landscapes with high spatial variability and high phosphorus and cadmium content and in-
teractions, complicating nutrient management. This study uses GIS and geostatistical methods to
analyze the spatial distribution, influencing factors, and predictive modeling of soil TP in the karst
region of northern Mashan County, Guangxi, China. Using 427 surface soil samples, we developed
five predictive models: ordinary kriging (OK), regression kriging (RK) and geographically weighted
regression kriging (GWRK) combined with environmental variables such as land uses, soil types,
and topographic factors; residual mean-centered kriging (MM_OK), and residual median-centered
kriging (MC_OK). Our results indicate that higher TP levels were observed in agricultural lands
(paddy fields and dry land, at 766 and 913 mg·kg−1, respectively) may due to fertilization, while
forests and shrublands showed lower TP levels (383 and 686 mg·kg−1, respectively), reflecting natural
phosphorus cycling. The high-value areas of soil TP concentration are in the karst areas in the west
and east of the study area, and the low-value area is in the Hongshui River valley in the north of
Mashan. The spatial distribution of soil TP is affected by land use, soil type, and topography. The
GWRK model exhibited superior accuracy (80.6%), with predicted concentration of TP closely align-
ing with observed TP values, effectively capturing fine spatial variations, and showing the lowest
mean standardized error, average standard error, and mean absolute error. GWRK also achieved
the highest R2 (0.67), demonstrating robust predictive capability. MM_OK and MC_OK models
performed well and showed smoother spatial transitions, while the OK model displayed the lowest
predictive accuracy (62%). By utilizing spatially adaptive weighting, GWRK and its residual-centered
kriging method improve soil TP’s prediction accuracy and smoothness in karst areas, providing a
reference for targeted soil conservation and sustainable agricultural practices in spatially complex
karst environments.

Keywords: karst; geographically weighted regression; soil total phosphorus; spatial variation; land
use; residual-centered kriging

1. Introduction

Phosphorus is a critical indicator of soil quality, profoundly influencing soil fertility
and plant growth [1,2]. As an essential nutrient, soil phosphorus supports photosynthesis
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and root development [3], which are vital for maintaining ecological stability and enhancing
agricultural productivity. The phosphorus cycle is highly dynamic, and land use practices
and soil types interact to shape phosphorus distribution, availability, and cycling efficiency
within ecosystems [4–6]. In karst landscapes with shallow soils and severe erosion, the
phosphorus cycle is likely to be disrupted, as shallow soils have low phosphorus retention,
erosion can cause loss of topsoil, and the calcium in the landscape may bind phospho-
rus, reducing its availability [7–10]. Applying Cd-rich phosphate fertilizers to cultivated
land will also increase the risk of safe use of soil in karst areas with high Cd geological
backgrounds. Accurately mapping total phosphorus (TP) is crucial for understanding its
distribution, enabling targeted fertilization, enabling soil conservation, and formulating
ecological conservation protection policies [11].

As a widely applied regression technique, Ordinary Least Squares (OLS) is used to
identify linear relationships between TP and auxiliary variables, such as soil properties,
topography, and climate. Geographically Weighted Regression (GWR) extends OLS by
allowing regression coefficients to vary spatially, thereby accounting for local variations
in the relationships between TP and predictor variables. This approach has demonstrated
strong potential for capturing spatial heterogeneity and reducing autocorrelation within the
model, thereby enhancing prediction accuracy [12,13]. However, in complex karst terrains,
where topographical and spatial variability are high, both OLS and GWR may generate
inconsistent residual patterns, revealing limitations in these approaches.

Residual analysis is essential in regression modeling, as residuals reveal unexplained
spatial variability and help assess model robustness [14]. In spatial prediction, residual
kriging methods are frequently employed to enhance predictive accuracy. Co-kriging,
which integrates additional environmental variables, has shown promise in improving
prediction accuracy for soil properties, such as organic carbon and nitrogen, within karst
landscapes [15]. However, conventional kriging assumes spatial autocorrelation, which
contradicts the expectation that regression residuals should be randomly distributed. This
inconsistency can decrease the predictive accuracy of kriging for residuals, particularly if
residuals are not centered around zero.

To mitigate these limitations, centering residuals—by adjusting them around mean
or median values—has emerged as a promising approach to improve model stability,
reduce multicollinearity, and enhance spatial compatibility for kriging. Centering has been
shown to mitigate distortions in spatial prediction and improve parameter estimation by
addressing multicollinearity issues [16]. Despite advancements in TP spatial mapping,
accurately capturing spatial variability in complex karst regions remains challenging,
underscoring the need for refined methods tailored to these unique environments.

While considerable research has explored TP distribution, formation processes, and
ecological impacts in karst areas [17–19], few studies have focused on regression kriging
(RK) and geographically weighted regression kriging (GWRK) in these regions, mainly
due to data acquisition challenges associated with fragmented karst terrain [20]. This
study hypothesizes that centering residuals before kriging, using both mean and median
values, can enhance TP spatial prediction accuracy in karst regions by improving spatial
autocorrelation alignment and reducing regression bias. The specific objectives are: (1) to
investigate the relationship between TP and environmental variables (e.g., land use, soil
type) through regression modeling, evaluating how these factors influence TP spatial
prediction accuracy; and (2) to assess the predictive accuracy of various models—including
ordinary kriging (OK), RK and GWRK combined with environmental variables such as
land uses, soil types, and topographic factors; residual mean-centered kriging (MM_OK)
and residual median-centered kriging (MC_OK)—in mapping TP within a representative
karst landscape using high-density sampling data (approximately 8 samples/km2) from a
geochemical land survey.

This study focuses on a karst terrain in southwestern China, characterized by Car-
boniferous carbonate formations and diverse land covers including forest, shrubland, and
farmland, representative of the broader karst regions in southwest China. By comparing
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spatial prediction approaches, this research aims to advance TP spatial mapping techniques,
supporting sustainable soil management and conservation practices in ecologically sen-
sitive karst landscapes. The study’s findings will provide valuable insights into model
selection for soil nutrient prediction in karst areas, with implications for guiding sustainable
fertilization practices for farmers, supporting soil quality monitoring by scientists, and
informing policy decisions for regulators.

2. Materials and Methods
2.1. Overview of the Study Area

The study area is in northern Mashan County, Guangxi, China, within a typical karst
landscape (Figure 1). Positioned at coordinates 108.09–108.2 ◦E and 23.73–23.85 ◦N, the
region experiences a subtropical monsoon climate, with an average annual temperature of
21.3 ◦C and rainfall ranging from 1480 to 1667 mm [17]. The topography includes peak-
cluster depressions and valleys typical of southern China’s karst regions, with formations
of dolomitic limestone, Carboniferous limestone layers, and Permian to Triassic shales, silty
shales, and mudstones in the north-central region [17,21]. This geological diversity repre-
sents a mix of carbonate and non-carbonate rocks commonly found in Southwest China.
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Figure 1. Land use map of the study area. (a) Mashan County (blue background) in central Guangxi;
(b) study area (green background) in northern Mashan County; (c) Soil sample locations and land use
map of the study area (sourced from Mashan County Natural Resources Bureau).

The study area spans 60 km2 and encompasses diverse land uses: paddy fields
(10.55%), dry land (29.39%), shrublands (29.49%), and forests (12.86%). Dry land, which
includes ferralsols, lixisols, brown cambisols, and fluvisols, is found in karst depressions
and valley slopes, whereas paddy fields, which are made up of anthrosols, are found in
karst valleys, according to the WRB soil classification system. Shrublands occupy karst
hills with predominant brown cambisols, and forests are found on clastic rock hills with
Lixisols and ferralsols [22].

2.2. Sample Collection and Testing

The data on the spatial variability of soil total phosphorus in this study are consistent
with the data from the soil ecological stoichiometry study conducted by Ma et al. [17].
Surface soil samples were collected using a 500 m × 500 m grid from May to June 2017,
with adjustments based on land use and soil type as informed by a 1:50,000 land-use map
featuring contour lines and grids. Three to five soil columns of equal volume and depth
were collected within a range of 20–50 meters and combined into a single sample, resulting
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in a density of 4–12 samples per km2, depending on land use. Litter was removed before
sampling soil columns from the 0–20 cm depth, with uniformity maintained by excluding
roots, stones, and other debris. Samples were processed in an anti-pollution environment,
which included grinding and screening, to prepare them for subsequent analysis.

The concentration of TP was measured via X-ray fluorescence spectrometry (Nippon
Rigaku, ZSX Primus II, Tokyo, Japan), while available phosphorus (AvP) was determined
using ammonium fluoride-hydrochloric acid or sodium bicarbonate solutions followed
by ICP-OES ( iCAP™ 7600, Thermo Fisher Scientific, Waltham, MA, USA). Soil pH was
measured using a glass electrode (Shanghai Lei Ci, PHS-3C) with a soil-to-water ratio of
1:2.5. Soil organic matter (SOM) was quantified through potassium dichromate-sulfuric
acid oxidation, titrated with ammonium ferrous sulfate, following the “Land Quality
Geochemical Evaluation Specification” (DZ/T 0295-2016).

2.3. Data Sources and Research Methods
2.3.1. Data Sources and Processing

The study utilized 30-meter resolution digital elevation model (DEM) data from the
Geospatial Data Cloud (https://www.gscloud.cn). The slope, aspect, and elevation of
each sampling location were extracted by ArcGIS 10.6 to reveal the contribution of these
topographic factors in the soil TP regression analysis. These plots can be found in [22].
Land use data were derived from the 2014 land-use survey, while soil-type data were
obtained from the Second National Soil Survey [17]. The 2014 land-use survey utilized
high-resolution satellite imagery, supplemented by field validation to ensure accuracy,
with an overall classification accuracy exceeding 85%. Soil-type data from the Second
National Soil Survey were derived from extensive soil sampling and laboratory analyses
conducted nationwide, offering a high degree of detail and reliability. These datasets were
carefully evaluated for their applicability to the study area, ensuring consistency with local
conditions. Qualitative variables, such as soil type and land use, were encoded as dummy
variables for statistical analysis, with forest land serving as the reference category.

Point-biserial correlation in SPSS 20 assessed the relationships between land use,
soil type, and TP. Following outlier removal using the mean ± 3 × standard deviation,
427 samples were selected for TP spatial prediction. ArcGIS 10.6 statistical modules di-
vided samples into a training set (75%) and a validation set (25%), with descriptive and
significance testing conducted in SPSS 20.

The phosphorus activation coefficient (PAC), calculated as AvP/TP, serves as an
indicator of phosphorus availability, with high PAC values denoting high availability and
low values indicating strong phosphorus fixation [23].

2.3.2. Spatial Prediction Models: OK, RK, GWRK, MM_OK and MC_OK

This study employed five spatial prediction models—OK, RK, GWRK, MM_OK,
and MC_OK combined with environmental variables such as land use, soil type, and
topographic factors to predict TP. A detailed description of these models and interpolation
can be found in [22]. The RK model was used to decompose a predicted value and a residual
component and perform ordinary kriging interpolation (OK) on the residual component.
The final prediction result was generated by summing the above two components [24]. We
used the mean or median of the GWR residuals for centering and then interpolated and
added the predicted values to get the results of MM_OK and MC_OK.

Model accuracy was primarily verified using a training set for internal verification and
a validation set for external verification [22]. The best results of internal verification include
the following: the standard mean error (MSE) is closest to 0, the standard root mean square
(RMSS) prediction error is closest to 1, the root mean square (RMS) prediction error is the
smallest, and the average standard error (ASE) and the root mean square (RMS) prediction
error are closest. For better external verification, results are as follows: the smaller the root
mean square error (RMSE), the more stable the model, and the smaller the mean absolute
error (MAE), the higher the model accuracy. Accuracy can evaluate the accuracy of the

https://www.gscloud.cn
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prediction. The value range is 0~1, and the closer to 1, the more accurate the prediction. A
methodology flow chart is summarized in Figure 2.
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Figure 2. Methodology Flowchart.

3. Results
3.1. Geochemical Characteristics of TP in Soil
3.1.1. Descriptive Statistics and Correlation Analysis

The concentration of TP in soil within the study area ranges from 168 to 1791 mg·kg−1,
with an average of 796 mg·kg−1, significantly exceeding the national average of 500 mg·kg−1

for agricultural topsoil reported in China’s second national soil survey (Table 1). Data
distribution analysis indicates skewness and kurtosis values of 0.74 and 3.14, respectively.
The kurtosis value is slightly greater than the ideal value for a normal distribution (3).
This suggests that the distribution may have slightly heavier tails or a sharper peak than a
perfectly normal distribution. While the deviation is small, it supports the conclusion of
non-normality in combination with other measures. Skewness, with a value of 0.74, greater
than 0, indicates right skew (longer tail on the right). Following logarithmic transformation,
the data distribution approximates normality (p > 0.05).

Mean TP concentrations vary significantly across different land uses, following the
descending order of dry land > paddy fields > shrubland > forest (Tables 1 and 2). This
trend underscores the strong influence of land use on soil TP concentration. One-way
ANOVA results indicate significant differences (p < 0.05) in mean TP concentrations across
these land uses, suggesting that land use is a key factor affecting TP distribution, which
is critical for spatial mapping. Among soil types, cambisols exhibit the highest mean
TP levels.
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Table 1. Average Soil TP Concentrations and Basic Physical-Chemical Properties by Sample Type.

Parameters Sample Size pH TP/mg·kg−1 AvP/mg·kg−1 PAC (%) SOM/g·kg−1

Land uses

Paddy fields 83 6.16 b 766 b 17.50 b 2.25 b 20.7 a

Dry land 247 5.61 c 913 a 28.86 a 3.20 a 11.1 c

Forest 51 4.77 d 383 c 9.45 c 2.21 b 14.0 b

Shrubland 46 6.94 a 686 b 2.32 d 0.40 c 15.1 b

Soil types

Anthrosols 98 6.14 a 852 b 22.52 ab 2.59 b 18.5 a

Ferralsols 116 5.43 bc 697 c 21.24 b 2.92 b 12.5 b

Lixisols 64 5.47 bc 666 c 20.67 b 2.69 b 12.1 b

Cambisols 95 6.33 a 986 a 15.89 c 1.38 c 13.2 b

Fluvisols 54 5.10 c 733 b 31.09 a 3.97 a 10.2 c

Total samples 427 5.76 796 21.50 2.60 13.7

Note: PAC = AvP/TP × 100%. Lowercase letters indicate statistically significant differences (p < 0.05) between
land use or soil types.

Table 2. Descriptive Statistics of TP Concentration by Sample Type.

Parameters Samples Minimum Maximum Mean SD CV(%)

Land uses

Paddy fields 83 290 1550 766 b 261 34.13
Dry land 247 376 1791 913 a 334 36.57

Forest 51 168 848 383 c 138 35.98
Shrubland 46 169 1326 686 b 281 41.04

Soil types

Anthrosols 98 304 1791 852 b 347 40.71
Ferralsols 116 168 1704 697 c 363 52.15
Lixisols 64 205 1269 666 c 220 32.96

Cambisols 95 242 1753 986 a 368 37.33
Fluvisols 54 230 1086 733 b 165 22.55

Total samples 427 168 1791 796 343 43.1

Note: Minimum, maximum, mean and SD are in mg·kg−1; SD, standard deviation; CV, coefficient of variation;
lowercase letters in the upper right corner of the mean value indicate significant differences (p < 0.05).

Correlation analysis revealed significant relationships between TP concentration and
both land uses and soil types, showing a positive correlation in dry land and a negative
correlation in shrubland (Table 3). Both dry land and fluvisols show significant positive
correlations with TP levels, suggesting these conditions are associated with higher TP in
soils, possibly because these areas receive nutrient inputs like fertilizers or are subject to
minimal phosphorus loss. This aligns with studies indicating that TP variability is governed
by anthropogenic activities and land management practices, as supported by similar
findings in agricultural soils in China. Shrubland and ferralsols show significant negative
correlations with TP, indicating lower TP concentrations potentially due to phosphorus loss
from slopes caused by soil erosion [9]. Cambisols also have a significant positive correlation
with TP, likely due to high phosphorus retention capacity in calcareous soils. While
the correlation between TP and paddy fields is weak and not significant, this suggests
that paddy fields may experience phosphorus depletion due to regular waterlogging
and leaching.

Table 3. Pearson correlation coefficient analysis of TP and sample types.

Land Uses Soil Types

Paddy fields −0.047 Cambisols 0.296 **
Dry land 0.400 ** Anthrosols 0.085

Forest −0.041 Ferralsols −0.160 **
Shrubland −0.122 * Fluvisols 0.458 **

Lixisols 0.176 **
** and * Significantly correlated at the 0.01 and 0.05 level (bilateral), respectively.
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3.1.2. AvP and PAC Characteristics

Soil AvP levels range from 0.57 to 170.08 mg·kg−1, with an average of 21.50 mg·kg−1

(Table 1). The distribution of AvP is heterogeneous, as 54% of samples have concentrations
between 10 and 40 mg·kg−1, while 39.58% are below 10 mg·kg−1. These values align with
the average AvP concentrations reported for major rice-producing regions in China. AvP
concentrations are highest in dry land, followed by paddy fields, forest, and shrubland.
The positive correlation between TP and AvP (Figure 3, Table 4) suggests that TP influences
the availability of phosphorus in soils across land uses. Higher PAC values in cultivated
lands suggest that anthropogenic activities, particularly phosphorus fertilization, enhance
phosphorus availability.
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Table 4. Partial correlation results between soil phosphorus and basic physical and chemical properties.

TP AvP PAC SOM pH

TP 1 0.417 ** 0.094 0.011 0.346 **
AvP 0.417 ** 1 0.891 ** −0.202 ** −0.176 **
PAC 0.094 0.891 ** 1 −0.204 ** −0.314 **
SOM 0.011 −0.202 ** −0.204 ** 1 0.323 **
pH 0.346 ** −0.176 ** −0.314 ** 0.323 ** 1

Note: ** represents an extremely significant (p < 0.01) correlation.

3.1.3. Soil pH and Phosphorus Availability

The average soil pH is 5.76, ranging from 4.14 to 8.24, indicating mildly acidic to
slightly alkaline soil profiles across different land uses (Table 1). Soil pH varies across land
uses, decreasing from shrubland to forest, and across soil types, with cambisols exhibiting
the highest pH. pH has a significant positive correlation with TP and a significant negative
correlation with AvP (Table 4). High pH in the karst area promotes the formation of calcium–
phosphate compounds [25–27], which may be moderately soluble depending on specific



Land 2024, 13, 2204 8 of 14

conditions. Low pH promotes phosphorus fixation by aluminum and iron oxides [28],
reducing AvP levels even when TP concentrations are high.

3.2. Spatial Variation of Soil TP

The coefficient of variation (CV) for TP is 43.1%, indicating moderate spatial vari-
ability (Table 2). Among soil types, ferralsols have the highest CV (52.15%), suggesting
considerable heterogeneity, while fluvisols have the lowest CV, indicating a uniform TP dis-
tribution (Table 2). Semi-variance analysis using GS+ 9.0 software suggested that Gaussian
models fit cultivated land and the total dataset very well, while the spherical model for
non-cultivated land is less effective (R2 = 0.883). (Table 5). Determination coefficients (R2)
above 0.88 across models indicate a strong fit, with spatial correlation classified as high, par-
ticularly in cultivated land due to factors like fertilizer input. Cultivated land and the total
dataset have moderate spatial correlation, with substantial structural variance contribu-
tions. Non-cultivated land exhibits extremely high spatial correlation (C0/(C0 +C) = 0.1%),
indicating minimal random variability or error. Non-cultivated land has a larger spatial
correlation range (A = 3880 m), implying broader or more homogenous spatial structures
compared to cultivated land.

Table 5. Semi-variogram function model for soil TP and its corresponding parameters.

Sources Models R2 C0 C0 + C C C0/C0 + C (%) A (m)

Cultivated land Gaussian 0.987 0.0243 0.1216 0.098 20.0 2024
Non-cultivated land Spherical 0.883 0.0001 0.1112 0.1111 0.1 3880

Total Gaussian 0.995 0.0290 0.1340 0.1050 21.6 1850

Note, C0, nugget effect; C, The structural variance; C0 + C, finite sill value; C0/C0 + C, Nugget effect; A,
range parameter.

3.3. Soil TP Prediction and Mapping
3.3.1. OLS Model

The OLS model yielded an adjusted R2 of 0.40 and an Akaike Information Criterion
(AICc) of 6918, indicating that the model accounts for approximately 40% of the variance in
total phosphorus (TP) concentration. This suggests that land use, soil type, and topography
contribute moderately to the explanation of TP variability at a global scale, though the
model’s ability to capture local spatial patterns is limited.

3.3.2. GWR Model

The GWR model substantially improved upon the OLS fit, yielding an AICc of 6861
and a reduction of 57, which signifies a better balance between model fit and complexity.
The GWR model exhibited an adjusted R2 of 0.45, reflecting its enhanced capacity to
account for an additional 5% of the variance in TP concentration compared to OLS. This
improvement underscores the importance of incorporating spatial heterogeneity into the
modeling process.

Moreover, the global R2 value of 0.47 for the GWR model highlights its strong predic-
tive performance for spatial variation in TP concentration. By allowing model parameters
to vary locally rather than assuming global uniformity, the GWR model effectively captures
localized influences of environmental variables, such as spatial variations in land manage-
ment practices, soil composition, and microtopographic effects, which are critical drivers of
TP distribution.

3.3.3. Comparison of Prediction Models

Table 6 shows that the MM and MC models do not fully eliminate the spatial autocorre-
lation in the model residuals, and they can still be used for OK interpolation. Additionally,
as the relationship between a predicted value and the average of a set of predicted val-
ues (Z-score) decreases, the residuals become more concentrated, which may indicate
smoother data.
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Table 6. Global Moran’s I, Z-statistic, and p-value statistical analysis results of the four models.

Models OLS GWR MM MC

Moran’s I 0.552 0.568 0.365 0.365
Z-scores 3.742 3.854 2.479 2.479
p-value 0.00018 0.00012 0.01318 0.01318

Five prediction models were used to evaluate TP spatial interpolation (Figure 4), with
mean TP predictions across models closely aligning with observed values (796 mg·kg−1).
The GWRK model exhibited superior performance, with a prediction range from 189 to
1593 mg·kg−1 and an average of 794 mg·kg−1, closely matching observed TP levels. The
GWRK map displays higher phosphorus concentrations on both sides of the lower middle
part, indicated by darker shades (higher TP ranges) (Figure 4c). The presence of various
color bands suggests a strong sensitivity to local spatial variations. GWRK appears to
capture finer spatial details, reflecting small-scale variations in TP concentrations. This
method’s strength is in accommodating spatial heterogeneity, which may explain why areas
with slight concentration differences are more visible. The map generated by MM_OK also
shows variation across the region but appears smoother than GWRK (Figure 4d). The tran-
sitions between different TP levels are less distinct, implying a generalized approach that
may not capture very localized variations. MC_OK seems to provide results comparable to
GWRK in most areas, particularly with the prominent yellow and orange zones (mid-level
TP concentrations) (Figure 4e). However, it also has smoother transitions like MM_OK,
with less precise distinctions between small spatial units.
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3.3.4. Model Accuracy Assessment

The internal validation results of the five models are shown in Table 7. RK’s MSE is
closest to 0, suggesting it is highly accurate internally. GWRK also performs well with
an MSE of −0.0013, close to RK. MC_OK (0.0088) and MM_OK (−0.0209) have slightly
higher MSEs, while OK has the highest MSE (0.59), indicating poorer accuracy in internal
predictions. RMSS values close to 1 indicate well-calibrated models. MM_OK exhibits
the RMSS closest to 1 (1.06), followed by RK and GWRK (both at 1.08) and MC_OK (1.09).
OK has the lowest RMSS (196.12), suggesting it deviates more from ideal standardization
compared to the other models. Lower RMS values indicate lower error magnitudes in
predictions. MC_OK achieves the lowest RMS (207.84), closely followed by MM_OK
(208.25) and GWRK (214.21). RK has a higher RMS (219.11), while OK has a significantly
higher RMS (3279.88), indicating much poorer internal predictive accuracy. GWRK has the
lowest ASE (189.68), suggesting its errors are more consistent. ASE of MM_OK (193.55)
and MC_OK (194.30) also performs well, while RK has the highest ASE (200.14), indicating
greater variation in its prediction errors.

Table 7. Accuracy assessment of predicted TP concentrations using different models.

Models
Internal Verification External Verification

MSE RMSS RMS ASE MAE RMSE Accuracy (%) r R2

OK 0.59 196.12 3279.88 66.00 153.3 211.7 62.0 0.71 0.62
RK −0.0008 1.08 219.11 200.14 156.9 208.7 79.4 0.68 0.63

GWRK −0.0013 1.08 214.21 189.68 145.9 197.4 80.6 0.80 0.67
MC_OK 0.0088 1.09 207.84 194.30 149.2 198.9 79.7 0.70 0.66
MM_OK −0.0209 1.06 208.25 193.55 153.4 205.1 80.0 0.80 0.64

MAE reflects the average absolute difference between predictions and actual values.
GWRK has the lowest MAE (145.9), meaning it has the smallest average error in external
predictions. MC_OK (149.2) and MM_OK (153.4) follow closely, showing reasonable
accuracy. OK and RK have higher MAEs, suggesting greater average error. Lower RMSE
values indicate better predictive accuracy for external data. GWRK again performs best with
the lowest RMSE (197.4). MC_OK has a slightly higher RMSE (198.9), while MM_OK is a bit
higher still (205.1), followed by RK (208.7) and OK (211.7). GWRK and MM_OK both have
the highest accuracy (80.0%), suggesting these models have the highest accuracy in external
predictions. MC_OK is slightly lower at 79.7%, followed by RK (79.4%) and OK with a
significantly lower accuracy (62.0%). GWRK has the highest R2 (0.67), suggesting it explains
a substantial proportion of variance in TP concentration. MC_OK follows with an R2 of
0.66, and MM_OK has 0.64, both indicating good predictive power but slightly less than
GWRK. RK and OK have the lowest R2 values, indicating weaker predictive performance.

4. Discussions
4.1. Analysis of Influencing Factors on the Spatial Distribution of Soil TP in Karst Areas

The observed variability in TP across land uses and soil types highlights a complex
interplay between human activities and soil properties. Elevated TP in agricultural lands,
such as dry land and paddy fields, contrasts with lower levels in forests and shrublands,
reflecting the impact of fertilization and land management versus natural cycling in undis-
turbed soils [29,30]. Notably, phosphorus concentrations in dry lands are higher than in
paddy fields because irrigation water during rice growth increases phosphorus mobility [30].
The distribution of AvP across land uses, with higher levels in cultivated areas, indicates
the influence of fertilization practices. Variability in AvP—54% of samples between 10
and 40 mg·kg−1 and 39.58% below 10 mg·kg−1—reflects differential fertilizer application
and soil adsorption capacity. This uneven distribution is further supported by high PAC
values in cultivated land, suggesting that repeated fertilization and soil management boost
phosphorus desorption and reduce the fixation ratio. A strong positive correlation between
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TP and AvP concentration implies that rising TP generally increases AvP, though it also
presents risks for runoff and eutrophication [31]. Thus, balanced phosphorus inputs and
careful management are essential in agriculture to mitigate these environmental impacts.

Shrublands predominate on shallow carbonate soils, while forests grow in more
fertile non-karst soils. TP, AvP, and PAC levels are higher in cultivated lands than in
shrublands or forests [29,30]. A negative correlation between SOM and AvP also suggests
phosphorus availability is impacted by organic matter mineralization [30], along with
pH, mineral composition, and microbial factors [32]. Higher TP levels in cambisols than
those in ferralsols suggest a significant role for soil parent material. Cambisols, with their
higher calcium concentration, promote phosphorus retention due to calcium–phosphate
binding [25–27]. The range in soil pH, from mildly acidic to slightly alkaline, significantly
impacts phosphorus retention and availability. Higher TP levels in alkaline cambisols
reflect enhanced retention, while phosphorus in acidic soils is more prone to fixation by
aluminum and iron oxides, reducing its availability [27,33].

4.2. Spatial Variability and Prediction Model Performance

The observed moderate spatial variability of TP, indicated by a CV of 43.1%, reflects
the inherent heterogeneity of karst landscapes. In these landscapes, differences in topogra-
phy, soil composition, and parent material lead to significant variations in soil properties
across small distances. Both natural and anthropogenic factors influence this variability,
shaping the distribution and behavior of phosphorus [34]. The spatial patterns captured
by gaussian and spherical models for cultivated and non-cultivated areas, respectively,
suggest that these models effectively characterize TP heterogeneity across diverse land use
types. Determination coefficients exceeding 0.88 further affirm that land use and soil type
are crucial determinants of TP distribution, supporting previous findings on phosphorus
variability in heterogeneous environments [35,36].

Differences in block base ratios between cultivated and non-cultivated areas highlight
the role of agricultural practices, such as fertilizer application, in intensifying TP spatial
heterogeneity. For non-cultivated regions, the data indicate that intrinsic factors like
topography and soil type govern TP distribution, suggesting a need for conservation-
oriented land management practices to maintain balanced phosphorus levels and safeguard
environmental quality.

In karst areas, the intricate interaction between lithological variations and fragmented
topography influences soil properties [22]. Among the evaluated prediction models, the
GWRK model achieved the highest accuracy in estimating TP distribution in karst land-
scapes, with an R2 of 0.67 and the lowest MSE at −0.0013. This robust accuracy, confirmed
by both internal and external indicators (e.g., low MSE, RMSE, and MAE, alongside a
high adjusted R2), demonstrates GWRK’s capacity to capture the spatial heterogeneity of
TP within the complex spatial patterns of karst landforms. This is consistent with previ-
ous studies that used GWRK combined with local environmental data to better predict
fine-scale TP spatial changes [13,37]. The GWR model’s improved performance suggests
that regional-scale management strategies tailored to local conditions could significantly
enhance the effectiveness of interventions aimed at controlling TP levels.

While the MM_OK and MC_OK models also performed well in TP prediction, they
each demonstrated specific strengths and limitations compared to GWRK. MM_OK and
MC_OK yielded R2 values of 0.64 and 0.66, respectively, presenting viable alternatives for
TP mapping. MM_OK’s highest RMSS value (1.06) suggests its suitability for moderately
variable landscapes, as its mean-based approach smooths microvariations, making it more
applicable to large-scale TP mapping or cases where fine-scale accuracy is less critical.
However, this smoothing limits MM_OK’s ability to capture local anomalies, reducing its
effectiveness in landscapes with pronounced spatial variability [13]. Conversely, MC_OK
exhibited lower RMSE and MSE, suggesting greater accuracy and precision in TP estimation.
With its focus on the median rather than the mean, MC_OK is less sensitive to outliers—a
key advantage in heterogeneous environments, enhancing prediction accuracy in areas
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with uneven TP distribution. Nevertheless, the smoothed predictions of MC_OK may lack
the finer details needed for precision agriculture applications.

Unlike MM_OK and MC_OK, GWRK integrates local environmental variations, en-
abling predictions that more accurately reflect the spatial heterogeneity of TP in karst
landscapes. The OK model, in contrast, performed poorly, with an R2 of 0.62 and significant
prediction errors (Table 7), indicating its limitations in capturing TP variability in highly
heterogeneous karst regions. The limited range of TP values predicted by the OK model
suggests that it applies a strong smoothing effect, thereby smoothing local variations at the
expense of accuracy [13]. These findings underscore the strengths of models like GWRK
and MM_OK in addressing the complex phosphorus distribution within environmentally
diverse karst landscapes [12].

5. Conclusions

Land use and soil type significantly affect the spatial distribution of soil TP content in
karst areas. Agricultural lands such as dry land and paddy fields have higher TP levels due
to fertilization. In contrast, TP levels are lower in forests and shrublands in natural contexts.
Also, soil type and pH have a strong impact on phosphorus availability. Cambisols in karst
areas are rich in calcium and retain more TP, whereas alkaline soils tend to immobilize
phosphorus, making them less available.

Among the models assessed, the GWRK model stands out for its superior predictive
accuracy and stability, proving highly effective for capturing the spatial heterogeneity
of TP in karst landscapes characterized by complex topography and varied land use.
The model’s capacity to incorporate localized environmental variables allows it to provide
detailed spatial predictions, making it particularly suitable for highly variable environments.
MM_OK offers a broader distribution profile, which may be advantageous in applications
where broader trends are more relevant than fine-scale details, while MC_OK balances
the fine detail of GWRK with the smoothing effect of MM_OK, making it suitable for
scenarios requiring moderate spatial precision, while the lower accuracy of RK and OK
highlights the limitations of models that do not account sufficiently for spatial variability.
Overall, these findings provide valuable insights for guiding agricultural productivity
and ecological conservation in sensitive landscapes and reinforce the potential of spatially
adaptive kriging models in developing sustainable phosphorus management strategies
tailored to local environmental conditions, informing sustainable fertilization practices for
farmers, monitoring soil quality for scientists, and guiding policy decisions for regulators
in karst areas.
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