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Abstract: With the evolution of remote sensing, more data products concerning cropland distribution
are becoming available. However, the accuracy and consistency across all datasets in crucial regions
are inherently uncertain. We delved into the Middle Yangtze Plain, a complex and vital agricultural
area with relatively high cultivation intensities in China. We used confusion matrices and consistency
analysis to compare the accuracy and consistency of four multi-year cropland distribution data
products. These include Global Land Analysis & Discovery Cropland Data (GLAD), Annual Global
Land Cover (AGLC), the China Land Cover Dataset (CLCD), and China’s Annual Cropland Dataset
(CACD). Key findings include the following: GLAD has the highest precision at 96.09%, the CLCD
has the highest recall at 98.41%, and AGLC and CACD perform well in achieving a balance between
precision and recall, with F1 scores of 90.30% and 90.74%, respectively. In terms of consistency,
GLAD and the CLCD show inconsistency at 69.58%. When all four products unanimously classify
a pixel as cropland, the identified cropland area closely corresponds to the statistical data reported
in the yearbook. The Jianghan Plain holds the majority of cropland in the Middle Yangtze Plain,
constituting 50.88%. From 2003 to 2019, the cropland area experienced fluctuating and ascending
trends. Shangrao City witnessed the most notable rise in cropland area, with an increase of 323.0 km2,
whereas Wuhan City underwent the most substantial decline, amounting to 185.8 km². These findings
contribute valuable insights into the precision and consistency of existing cropland distribution
products, offering a foundation for further research.

Keywords: cropland distribution; Middle Yangtze Plain; GLAD (Global Land Analysis & Discovery);
AGLC (Annual Global Land Cover); CLCD (China Land Cover Dataset); CACD (China’s Annual
Cropland Dataset)

1. Introduction

Food security is a crucial cornerstone for maintaining social stability and economic
development in China. Human activities exert a more significant influence on food security
when contrasted with the impact of climate factors [1]. Cropland plays a crucial role
in supporting food production and is also a vital land use category. The conversion
between cropland and other land use types (such as forests and construction land) is closely
related to the region’s food security, ecological environment, and economic development.
During development, human activities can lead cropland to expand into natural areas like
forests or grasslands [2,3], while construction activities encroach upon cropland [4,5]. This
urban development leads to the fragmentation of cropland in China [6]. To control the
quantity and quality of cropland in our country, policies such as cropland occupation and
compensation balance have been implemented [7], and cropland protection redlines and
permanent basic farmland have been designated. In order to ensure ecological security,
China has carried out a Grain to Green Project [8]. Long-term cropland distribution data
form the basis for studying the response of cropland to relevant policies [9]. According to
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several national land spatial surveys in China, there have been significant changes in the
distribution of cropland in the past [10].

The Middle Yangtze Plain possesses high-quality cropland resources, serving as a
crucial component of China’s economic development and concurrently representing a
significant region for ecological environment protection and restoration along the Yangtze
River [11]. Since 1980, land use changes in cropland in China have primarily shifted toward
construction land [12]. The Middle Yangtze Plain features a flat terrain, abundant sunlight,
and ample water resources, making it suitable for crop cultivation. Encompassing the
Jianghan Plain, Dongting Lake Plain, and Poyang Lake Plain, it is a vital grain production
area among China’s nine major grain bases [6,13]. Moreover, the urban cluster in the Middle
Yangtze region, known as the Central Yangtze River City Cluster or the “Central Triangle,”
is an integral part of the Yangtze River Economic Belt. It undertakes the critical tasks of
promoting the rise of the central region and facilitating new urbanization strategies. The
Central Yangtze River City Cluster, including the Wuhan Metropolitan Area, the Changsha–
Zhuzhou–Xiangtan Urban Agglomeration, and the Poyang Lake Urban Agglomeration,
has emerged as a new growth pole for China’s economic development [14]. Simultaneously,
the region boasts two of China’s largest freshwater lakes: Poyang Lake and Dongting Lake.
Consequently, the Middle Yangtze Plain holds special significance in terms of ecological
environment protection and restoration. Notably, from 1975 to 2015, the predominant shift
in land use changes in lakes in the Middle Yangtze region was toward cropland [15]. In
summary, the changes in cropland in this region have become a focal point of attention for
multiple policies.

With the continuous advancement of remote sensing technology, the production of
land cover and land use data products has witnessed substantial development. In terms of
spatial resolution, existing data products have progressed from 1 km to 10 m (e.g., FROM-
GLC10 [16], Esri Land Cover [17], WorldCover [18]). Moreover, in terms of temporal
resolution, “near real-time” releases have been achieved (Dynamic World [19]). As a
critical land use type, cropland has also seen the development of specialized datasets such
as Global Land Analysis & Discovery Cropland Data (GLAD) [9] and China’s Annual
Cropland Dataset (CACD) [20]. However, despite the continuous improvement in the
temporal and spatial resolution of cropland distribution data, the accuracy and consistency
of various data products in key regions remain unclear. Additionally, remote sensing
classification products often face challenges of accurately classifying similar objects in
geographically heterogeneous areas [9]. In this study, we aim to analyze four 30 m datasets
with high temporal resolution to assess their accuracy and consistency in the Middle
Yangtze Plain. We also explore and discuss how to leverage existing datasets to enhance
the accuracy of cropland distribution in specific region. The findings may offer valuable
insights for the effective regional application of these large-region products.

2. Materials and Methods
2.1. Study Area

The Middle Yangtze Plain spans three provinces in central China: Hunan, Hubei, and
Jiangxi, between 28◦ N and 31.5◦ N latitude and 111◦ E–117◦ E longitude (Figure 1). This
area is characterized by a subtropical monsoon climate. The region receives average annual
precipitation of 950–1800 mm, with an average annual temperature of 10–18 ◦C and average
relative humidity of 75–82%. The annual sunshine hours range from 1400 to 2000. The
study region is a typical alluvial plain, including the Dongting Lake Plain, Jianghan Plain,
E’dong Plain Along the Yangtze River, and Poyang Lake Plain. The soil is fertile, with loose
texture, primarily composed of human-modified soil, strongly leached soil, and alluvial
soil. The terrain is predominantly low and gently sloping, with approximately 86% of the
region below 100 m in elevation and 85% having a slope less than 4◦. Moreover, this area
boasts the largest number of lakes in China, spanning a total area of 2 million hectares,
constituting 16.9% of the region.
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Figure 1. The geographical and topographic characteristics of the study area (Projection: Krasovsky
1940 Albers; Geodetic System: WGS 84).

2.2. Materials

Based on the study region and time interval, we selected four data products to compare
(Table 1): Global Land Analysis & Discovery Cropland Data (GLAD) [9], Annual Global
Land Cover (AGLC) [21], the China Land Cover Dataset (CLCD) [22], and China’s Annual
Cropland Dataset (CACD) [20]. We also conducted a comparison between the statistical
data of administrative regions derived from the products and the corresponding level of
China Yearbook statistics. The regions meeting these criteria are within Hubei Province.
The cropland area data for these regions are sourced from the “Hubei Agricultural Statistical
Yearbook,” accessible from the China National Knowledge Infrastructure (CNKI) [23].

GLAD is a dataset that contains five periods (2003, 2007, 2011, 2015, 2019) of global
30 m cropland distribution data. The AGLC dataset covers global land cover and land use
data from 2000 to 2015. To create this dataset, data from Globeland30, FROM-GLC, and
GLC-FCS30 were combined to produce a single-year product called AGLC-2015. For the
same year, a specific classification category was replaced with land use and land cover
data from Global Annual Urban Dynamics (GAUD), Global Forest Change (GFC), and the
Global Surface Water dataset (GSW). The CLCD contains annual land cover and land use
data for China from 1990 to 2019. The dataset’s samples are primarily based on the CLUDs
(China’s land use/cover datasets) and validated through samples from Geo-Wiki and
GLCVSS. CACD contains annual cropland distribution data for China from 1986 to 2021.
Potential sample points are generated based on CLCD and CLUD products. Then, Time-
Weighted Dynamic Time Warping (TWDTW) is used to compare the spectral time series
between potential sample points and high-quality sample points (obtained through visual
interpretation), eliminating points with low similarity. To generate multi-year cropland
distribution, the LandTrendr algorithm is employed, and the GSW and Global Impervious
Surface dataset (GAIA) are used for non-cropland masking.

Each product uses different techniques and procedures to enhance accuracy and efficiency
in the classification process. Regional differences are addressed by using regional models and
diverse predictor variables. For example, GLAD selects 924 representative grid cells for various
agricultural settings to consider the heterogeneity of geographical landscapes, while CACD
introduces the concept of agricultural zones to better capture regional characteristics. GLAD
incorporates phenological indicators based on NDVI in its classification features, while the
CLCD integrates location features into its production process. CACD employs the TWDTW
method for automated sample generation and precision control, aligning and generating
samples based on spectral time series with high-quality samples to improve efficiency. AGLC
uses the CCDC algorithm for land change detection, while CACD utilizes the LandTrendr
algorithm for the generation of multi-year products.
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Table 1. Overview of product datasets.

Dataset Time Period Reference Products Classification
Method Features Accuracy Source

GLAD
2003, 2007,
2011, 2015,

2019

Global
Food-and-Water
Security-support

Analysis Data
(GFSAD)

Bagging
Decision Trees

(1◦ × 1◦)

Bands and
their linear

combinations,
phenological

features,
topographical

features

98.3% ± 1.1% (OA) https://glad.umd.edu/dataset/croplands
(accessed on 25 February 2024)

AGLC 2000–2015

FROM-GLC,
Globeland30,
FROM-GLC,

GLC-FCS30, GAUD,
GFC, GSW, ESA

CCI-LC

Random forest
(4◦ × 4◦)

Bands and
their linear

combinations

76.1%
(AGLC-2015 OA);

Cropland UA85.3%,
PA74.23%

https://code.earthengine.google.com/
?asset=users/xxc/GLC_2000_2015

(accessed on 25 February 2024)

CLCD 1990–2019 CLUDs
Random forest
(0.5◦ hexagonal

grid)

Bands and
their linear

combinations,
time features,
topographical

features, location
features

79.30% ± 1.99%
(OA); Cropland

UA77.73%,
PA73.66%

https://zenodo.org/records/5816591
(accessed on 25 February 2024)

CACD 1986–2021 CLCD, CLUD, GSW,
GAIA

Random forest
(0.8◦ × 0.8◦)

Bands and
their linear

combinations,
topographical

features

OA (93% ± 1%) https://zenodo.org/records/7936885
(accessed on 25 February 2024)

Note: OA—Overall accuracy, UA—User’s Accuracy, PA—Producer’s Accuracy.

2.3. Methods

This research focused on the Middle Yangtze Plain to assess the accuracy and con-
sistency of different cropland distribution products. Cropland sample point labels were
derived through the visual interpretation of high-resolution imagery from Google Earth
Pro. Considering the platform’s image availability and the products’ timeframe, the year
of approximately 2011 was chosen for comparison. The comparison and analysis were
performed using a GIS platform.

To guarantee sample point randomness and sufficiency, we partitioned the study
region into hexagons and randomly selected five sample points within each hexagon
(Figure 2). The use of hexagons could improve the sampling strategy by establishing
a regular grid, ensuring uniform coverage, and reducing bias associated with irregular
shapes. With fewer edges, hexagons decrease bias near partition edges and optimize
nearest-neighbor distances, fostering a more representative distribution across the region
for reliable and unbiased data. Points located outside the study region boundary were
excluded, resulting in a total of 5986 sample points. Of these, 3452 were recognized as
cropland through visual interpretation comparison. The assessment of various cropland
distribution products utilized a confusion matrix with User’s Accuracy (UA), Producer’s
Accuracy (PA), overall accuracy (OA), and F1 score as evaluation metrics.

Furthermore, we conducted a comparative analysis of the accuracy of multiple crop-
land distribution products under various identification scenarios. Leveraging multiple
products for cropland identification overcomes limitations associated with relying on a
single product. Depending solely on one product can introduce errors and incomplete data
due to variations in accuracy, coverage, timing, resolution, and algorithmic biases. The con-
sidered scenarios were as follows: (1) All four products identifying the point as cropland.
(2) Three or more products identifying the point as cropland. (3) Two or more products
considering the point as cropland. (4) Products GLAD, AGLC, and CLCD collectively
determining the point as cropland. (5) Products GLAD, AGLC, and CACD collectively
determining the point as cropland. (6) Products GLAD, CLCD, and CACD collectively
determining the point as cropland. (7) Products AGLC, CLCD, and CACD collectively
determining the point as cropland.

https://glad.umd.edu/dataset/croplands
https://code.earthengine.google.com/?asset=users/xxc/GLC_2000_2015
https://code.earthengine.google.com/?asset=users/xxc/GLC_2000_2015
https://zenodo.org/records/5816591
https://zenodo.org/records/7936885
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Figure 2. The distribution of sample points.

The accuracy was measured based on the sample and confusion matrix (Table 2)
following previous methods [24]. The accuracy comparison metrics used included UA, PA,
OA, and F1 score. UA, also known as precision, represents the ratio of correctly classified
instances in the classification product and is calculated as 1 minus errors of commission.
PA, also known as recall or sensitivity, is the ratio of correctly classified instances in the true
class and is calculated as 1 minus errors of omission. OA is the ratio of correctly classified
instances to all validation points. The F1 score is a composite metric of recall and precision.
The specific formulas are as follows:

UA =
TP

TP + FP
(1)

PA =
TP

TP + FN
(2)

OA =
TP + TN

TP + TN + FP + FN
(3)

F1 =
2PA×UA
PA + UA

(4)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively.

Table 2. Confusion matrix.

Predicted
Labeled

True False

True TP FP
(error of commission)

False FN
(error of omission) TN

The evaluation of consistency involves three main aspects: area comparison, per-pixel
comparison, and comparison between products and statistical yearbooks [25,26]. Area
comparison and per-pixel comparison primarily focus on comparative evaluations between
the four products. Area comparison examines whether the proportions of cropland in
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different products are consistent on the statistical grid, while per-pixel comparison assesses
whether different products exhibit consistency at the pixel level. In area comparison, the
products are typically gridded first, and then, the proportion of cropland is calculated at
the grid scale. Per-pixel comparison involves direct spatial overlay analysis of the classified
products to achieve every-pixel consistency. Additionally, we conducted a comparative
evaluation between the products and statistical yearbook data.

3. Results
3.1. Accuracy Assessment

All four cropland distribution products in the study region had overall accuracies
exceeding 85% (Table 3). GLAD, AGLC, the CLCD, and CACD achieved overall accuracies
of 88.80%, 88.22%, 85.57%, and 88.60%, respectively. GLAD exhibited higher precision
(i.e., lower errors of commission) at 96.09%, while the CLCD demonstrated higher recall
(i.e., lower errors of omission) at 98.41%. This implies that GLAD has higher accuracy in
determining cropland, while the CLCD provides a more comprehensive assessment of
cropland. Although AGLC and CACD have some errors of commission and omission, they
exhibit the highest F1 scores, indicating a balanced performance in precision and recall and
higher comprehensive classification accuracy.

Table 3. Accuracy under different cropland identification scenarios.

Scenario User’s Accuracy
(UA)

Producer’s
Accuracy (PA)

Overall
Accuracy (OA) F1 Score

GLAD 96.09% 83.95% 88.80% 89.61%
AGLC 85.81% 95.28% 88.22% 90.30%
CLCD 80.73% 98.41% 85.57% 88.69%
CACD 85.16% 97.10% 88.60% 90.74%

(1) 97.64% 81.63% 88.30% 88.92%
(2) 89.84% 95.57% 91.23% 92.62%
(3) 84.05% 98.29% 88.29% 90.61%
(4) 97.45% 81.92% 88.37% 89.01%
(5) 97.65% 81.72% 88.35% 88.98%
(6) 96.74% 83.49% 88.89% 89.63%
(7) 90.51% 93.34% 90.53% 91.90%

Combining multiple products for cropland identification enhances precision and over-
all accuracy. Depending on the specific requirements of precision prioritization, different
cropland identification scenarios can be employed. When prioritizing precision, scenarios
(1), (4), (5), and (6) achieved higher precision than GLAD. This indicates that cropland
identification results in these scenarios are more accurate, with lower errors of commission.
When prioritizing overall accuracy, scenarios (2), (6), and (7) achieved higher overall ac-
curacy than GLAD. Prioritizing F1 score, scenarios (2) and (7) obtained higher F1 scores
than CACD. This suggests that these scenarios exhibit better performance in balancing
precision and recall, resulting in higher overall accuracy. Since AGLC lacks classification
data for 2019, we utilized cropland identification scenarios (1) and (6) to obtain cropland
distribution data with the highest precision for the years 2003, 2007, 2011, 2015, and 2019.
In contrast, the CLCD provides cropland distribution data with the highest recall for these
five years.

3.2. Consistency Evaluation

Consistency between products is closely related to the reference data used in the data
generation process. The GLAD product only introduces GFSAD in its production process,
resulting in lower consistency with the other three products (Figure 3). CACD introduces
the CLCD in its production process, leading to the highest level of consistency between
them. Both AGLC and CACD introduce GSW and GAIA in their production processes,
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resulting in relatively high consistency between the two. Comparatively, GLAD exhibits
higher consistency with CACD and AGLC, while its consistency with the CLCD is lower.
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fitted regression line for these cropland percentage data points.).

Figure 3 illustrates the contrast in area consistency within the statistical grid among
the four products. The x and y axes represent the proportion of cropland in hexagonal grids
for individual products. AGLC, the CLCD, and CACD demonstrate high consistency, as
they exhibit a higher degree of fit to the y = x line (R2 > 0.85). The CLCD tends to estimate
a larger cropland area compared to the other three products, as indicated by the higher
number of data points between the CLCD y-axis and the y = x line. This aligns with CLCD’s
higher recall compared to the other three products. Similarly, GLAD estimates a smaller
cropland area, consistent with its highest precision.

In terms of distribution consistency, the proportion of consistency among the four prod-
ucts in cropland classification reached 63.36%. The main inconsistency between the four
products arose from GLADand the CLCD. Specifically, the consistency ratio between GLAD
and the CLCD was 69.58% (Figure 4), while the consistency ratio among AGLC, the CLCD,
and CACD was 81.92%. Among these three highly consistent products, AGLC and the CLCD
exhibited relatively lower consistency at 85.68%. CACD showed higher consistency with
AGLC and the CLCD, with agreement ratios of 88.26% and 89.90%, respectively.

Around 69.58% of GLAD and the CLCD were inconsistent. In regions with incon-
sistencies, the primary focus is on Wuhan City in Hubei, Yueyang City, and the northern
part of Changde City in Hunan. Additionally, concentrated areas of inconsistency are
found around Dongting Lake, Poyang Lake, Wuhan City, and the along the Jianghan Plain
in eastern Hubei. Statistical data from county-level administrative regions reveal areas
with notably high inconsistency between the two, including Yueyang County (1321.7 km2),
Taoyuan County (971.0 km2), and Li County (825.5 km2) in Hunan; Huangpi District (1260.4
km2), Jiangxia District (905.0 km2), and Xishui County (873.6 km²) in Hubei; and Poyang
County (1038.8 km²) in Jiangxi.
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Figure 4. Consistency between GLAD and the CLCD (the distribution plot above and on the right
illustrates the inconsistent area (in square kilometers) across longitude and latitude. Different colors
represent varying slopes: blue corresponds to 0–2◦, green to 2–6◦, yellow to 6–15◦, orange to 6–25◦,
and red to slopes greater than 25◦).

To evaluate the cropland area, we compared two scenarios: scenario 1, which has the
highest precision, and the CLCD, which has the highest recall. We compared these products
separately against the cropland area from the statistical yearbook of 2011. The comparison
was made in four prefectures (Wuhan, Huangshi, Ezhou, and Jingzhou) and 22 counties,
which have the same statistical scale and available data for comparison.

In general, scenario 1 aligned more closely with the 2011 yearbook statistics, whereas
the CLCD tended to provide higher estimations (Figure 5). The cropland areas for the
four prefectures in 2011 were 2065.20 km2, 1204.40 km2, 413.90 km2, and 6586.50 km2,
respectively. Scenario 1’s estimated cropland areas closely matched these figures, measuring
2089.82 km2, 592.49 km2, 442.95 km2, and 7734.35 km2, with minimal differences except
for Huangshi. However, the CLCD’s estimates significantly surpassed the statistical data,
measuring 5881.52 km2, 2154.59 km2, 1080.52 km2, and 11,250.21 km2, respectively. At the
county level, scenario 1 occasionally overestimated cropland areas in certain regions, but
overall, most areas aligned well with the yearbook statistics (scatter points close to the
y = x line). Conversely, the CLCD consistently overestimated cropland areas at the county
level, with scatter points consistently below the y = x line.

3.3. Cropland Distribution and Its Changes

In Scenario 1, we conducted a statistical analysis of cropland area changes at different
boundary levels from 2003 to 2019. In 2019, the Jianghan Plain had the largest cropland area,
covering 18,436.1 km2, which accounted for 50.88% of the total cropland area. The Dongting
Lake Plain, Poyang Lake Plain, and E’Dong Plain Along the Yangtze River accounted for
24.59%, 14.70%, and 9.82%, respectively. When examining cropland area statistics at the
provincial and municipal levels for 2019, we found that Hubei, Hunan, and Jiangxi had
cropland areas of 21,830.8 km2, 8910.9 km2, and 5492.2 km2, respectively. Notably, Hubei
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contributed more than half, reaching 60.25% of the total. Among prefectures, Jingzhou City
had the largest cropland area, making up 21.29% of the total cropland.
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From 2003 to 2019, the cropland area in the study region showed a fluctuating upward
trend. Specifically, there was a noticeable increase in cropland area (548.6 km2, 1.55%)
from 2003 to 2007, followed by a slight decrease (−57.2 km2, −0.16%) from 2007 to 2011.
Subsequently, there was a modest increase in cropland area (3.6 km2, 0.01%) from 2011 to
2015. Finally, a significant increase in cropland area (440.6 km2, 1.12%) occurred from 2015
to 2019. Significant regional differences were observed in cropland changes. The Dongting
Lake Plain and Poyang Lake Plain showed fluctuating increases in cropland area, with a
rise of 616.21 km2 (7.42%) and 374.34 km2 (7.56%), respectively. However, the cropland
area in the E’dong Plain Along the Yangtze River decreased by 46.00 km2 (1.28%), and in
the Jianghan Plain, it decreased by 8.96 km2 (0.05%).

In 2019, the cropland area in the study region increased by 935.6 km2 compared
to 2003. Notable changes in cropland area were observed at the provincial level. Hunan
Province and Jiangxi Province saw an increase in cropland area by 616.2 km2 and 372.7 km2,
respectively, while Hubei Province experienced a decrease of 53.4 km2. Within Hunan
and Jiangxi, various cities witnessed an upward trend in cropland areas from 2003 to
2019 (Figure 6). Among them, Shangrao City in Jiangxi experienced the largest increase,
adding 323.0 km2, representing a 19.62% increase. In Hunan, Yueyang City (290.6 km2,
11.29%), Yiyang City (159.9 km2, 7.32%), and Changde City (165.7 km2, 4.68%) also saw
significant increases in cropland area. Certain areas in Hubei showed distinct patterns,
with Jingzhou City having the most significant increase in cropland area, adding 238.7 km2.
Cities experiencing a decrease in cropland area included Wuhan City, Ezhou City, Xiaogan
City, Huanggang City, Qianjiang City, and Xiaogan City. Wuhan City had the largest
decrease in cropland area, reaching 185.8 km2, followed by Qianjiang City (−94.3 km2),
Xiaogan City (−81.3 km2), and Huanggang City (−70.2 km2). At the county level, Poyang
County and Yugan County in Shangrao City, Jiangxi, saw the most significant increases
in cropland area, reaching 166.8 km2 and 156.2 km2, respectively. Additionally, Xiangyin
County in Yueyang City, Yuanjiang City in Yiyang City, and Hanshou County in Changde
City in Hunan experienced substantial increases in cropland area. In Hubei, Songzi City in
Jingzhou City had the largest increase in cropland area at the county level, adding 68.8 km2.
Significant decreases in cropland area occurred in Qianjiang City, Jiangxia District in Wuhan
City, and Hanchuan City in Xiaogan City.
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4. Discussion

The potential disparity in accuracy comparison results between GLAD and the CLCD
may be attributed to differences in the definitions of cropland. GLAD categorizes crop-
land as areas dedicated to the cultivation of both annual and perennial herbaceous crops
intended for human consumption, fodder (including hay), and biofuel production. This
definition excludes lands utilized for cultivating perennial woody crops, permanent pas-
tures, and areas left fallow for more than four years due to crop rotation. On the other hand,
the CLCD classifies cropland as encompassing paddy rice fields, greenhouses, and other
cultivated areas, along with orchards, managed grasslands, and temporarily bare farmland.
Besides this, the complexity of the observed surface may affect the result as well. When the
observed object is complicated, nonlinear interactions of light would happen, which would
result in the spectral-mixing problem [27]. Different strategies used in these products could
help mitigate the issue. GLAD chooses 924 representative grid cells for diverse agricultural
settings, and CACD introduces the concept of agricultural zones.

Other factors, including the sample data source [28], predictor variables, and model
algorithm, may influence the accuracy of the results. GLAD employs visual interpretation
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to generate samples, demanding substantial human and time resources. In contrast, AGLC
and CACD utilize algorithms for land use and land cover change detection in both sample
and result migration, potentially affecting the ultimate accuracy. GLAD employs phenolog-
ical indicators as predictors, while the CLCD integrates location features, both of which
could impact the final outcome. Three model algorithms utilize random forest, with GLAD
utilizing bagging decision trees.

Consistency was proven to be strongly correlated with factors such as topography and
farming practices in previous studies [29,30]. In this study, there is a clear inconsistency
as the CLCD designates certain beach areas around Dongting Lake as cropland, despite
the predominant presence of poplar trees, reeds, cattails, and lake grass in these areas [31].
We also observed the phenomenon that the consistency of the products can be influenced
by the reference data. GLAD exclusively utilized GFSAD as the reference data, presenting
a relatively independent source compared to the other three datasets. As a result, the
consistency between GLAD and the other three is comparatively lower. In contrast, AGLC
and CACD both referenced GSW, and CACD referenced the CLCD and CLUDs. This
direct alignment in data sources contributes to higher consistency among these three
products, with the utmost consistency observed between CACD and the CLCD. The mixed
pixels issue in fragmented landscapes [32] may result in the difference between the area
derived from distribution products and yearbook statistics. For a more accurate cropland
distribution, it is advised to utilize the intersection of all four products, emphasizing the
highest precision. When dealing with marginal cropland regions, it is preferable to employ
the scenario that yields the highest recall.

The dynamics of cropland are influenced by various factors aligned with stakeholder
decisions. In response to the 1998 flood, the Grain for Green Project was initiated to address
soil erosion and land degradation in China. The project aims to convert farmland into
forests or grasslands to improve the ecological environment and promote sustainable
development. As part of the project, approximately 447.48 km2 of farmland in the Dongting
Lake area was transformed into lakes. Additionally, in the northern and western parts
of Dongting Lake, some cropland was repurposed for planting poplar trees [33]. The
transformation of cropland into non-agricultural uses is significantly influenced by the
agricultural labor force [34]. The swift progress in economic development and continuous
urbanization has resulted in a substantial workforce migrating from rural regions to urban
areas and industrial sectors [35]. In areas where croplands experience poor endowment
conditions, leading to limited output and profits, abandonment is observed [36,37].

There are several limitations to this study, which can be explored in future research. The
paper could include additional products for a more comprehensive assessment of accuracy
and consistency, a task that could be undertaken in future studies. Google Earth provides
free and easily accessible satellite imagery with global coverage, widely applied in land use
and land cover classification [38]. However, its horizontal positional accuracy varies across
regions [39]. Evidence suggests that in specific areas, it is sufficient for obtaining very accurate
ground truth samples and measurements, suitable for producing large-scale planimetric
maps [40]. Moreover, the time resolution of images on Google Earth is lower than that of
satellite images, resulting in limited information about the temporal dynamics of cropland.
Nonetheless, it can efficiently obtain relatively accurate samples overall.

5. Conclusions

All cropland distribution products have an overall accuracy of above 85% in the study
region. GLAD has a high precision rate of 96.09%, indicating its accuracy in identifying
croplands. The CLCD achieves a recall rate of 98.41%, indicating its thorough assessment
of croplands. AGLC and CACD perform well in balancing precision and recall. To enhance
precision and overall accuracy, the utilization of multiple products is recommended. Specif-
ically, when all four products classify a point as cropland, higher precision is achieved. To
enhance overall accuracy, it is recommended to select three or more products to classify a
point as cropland or to directly use the joint assessment of AGLC, the CLCD, and CACD.
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The four products have a consistent proportion of 63.36% in cropland classification in
the study region. The primary inconsistency is observed between GLADand the CLCD.
Specifically, the consistency between GLADand the CLCD is 69.58%, while the consistency
between the CLCD and CACD is notably high at 89.90%. Since CACD incorporates the
CLCD in its production process, the consistency between CACD and the CLCD is the
highest. This suggests that the level of consistency between products is closely tied to the
data used in the generation process. Areas of inconsistency are predominantly concentrated
in Wuhan City, Hubei, Yueyang City in Hunan, and the northern part of Changde City.
Additionally, inconsistent distribution is also concentrated around Dongting Lake, Poyang
Lake, Wuhan City, and the E’dong Plain Along the Yangtze River.

In the study region, the largest cropland area is in Jianghan Plain, which is about
half of the total cropland. Hubei has the most cropland, contributing 60.25% to the total.
Among cities, Jingzhou City has the biggest cropland area, making up 21.29%. From 2003
to 2019, the overall cropland in the study region increased by 935.6 km2. However, different
regions experienced varied changes. The Dongting Lake Plain and Poyang Lake Plain saw
increases, while the Jianghan Plain and E’dong Plain Along the Yangtze River had decreases.
Notably, Poyang County and Yugan County in Jiangxi Province saw significant cropland
increases, reaching 166.8 km2 and 156.2 km2. On the other hand, some cities, including
Wuhan City, Qianjiang City, Xiaogan City, and Huanggang City, witnessed considerable
reductions, with Wuhan City having the most significant decrease of 185.8 km2.
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