An Ecological Overview of Halophytes and Salt-Affected Soils at El Hito Saline Pond (Central Spain): Baseline Study for Future Conservation–Rehabilitation Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Soil Samples Collected
2.3. Soil Sample Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. On the Origin of Soil Salinity in El Hito Saline Pond
4.2. Discussion on Halophyte Adaptation to Salt-Affected Soils
4.3. Ecosystem Services of El Hito Saline Pond: Proposal for Conservation–Rehabilitation Measures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rengasamy, P. World salinization with emphasis on Australia. Comp. Biochem. Phys. A Mol. Integr. Physiol. 2005, 141, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, C.; Herrero, J. Assessing the degradation of saline wetlands in an arid agricultural region in Spain. Catena 2008, 72, 205–213. [Google Scholar] [CrossRef]
- Kargas, G.; Chatzigiakoumis, I.; Kollias, A.; Spiliotis, D.; Kerkides, P. An Investigation of the Relationship between the Electrical Conductivity of the Soil Saturated Paste Extract ECe with the Respective Values of the Mass Soil/Water Ratios 1:1 and 1:5 (EC1:1 and EC1:5). In Proceedings of the 3rd EWaS International Conference on “Insights on the Water-Energy-Food Nexus”, Lefkada Island, Greece, 27–30 June 2018; Volume 2, p. 661. [Google Scholar]
- Omuto, C.T.; Vargas, R.R.; El Mobarak, A.M.; Mohamed, N.; Viatkin, K.; Yigini, Y. Mapping of Salt-Affected Soils: Technical Manual; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Herrero, S.; Castañeda, C. Comparing Two Saline-Gypseous Wetland Soils in NE Spain. Land 2023, 12, 1990. [Google Scholar] [CrossRef]
- Tanji, K.K. (Ed.) Agricultural Salinity Assessment and Management; Manual Reports on Engineering Practices, 71; ASCE: New York, NY, USA, 1990. [Google Scholar]
- Rath, K.M.; Fierer, N.; Murphy, D.V.; Rousk, J. Linking Bacterial Community Composition to Soil Salinity along Environmental Gradients. ISME J. 2019, 13, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kang, Y. Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation. Agric. Water Manag. 2020, 231, 105995. [Google Scholar] [CrossRef]
- Nachshon, U. Cropland soil salinization and associated hydrology: Trends, processes and examples. Water 2018, 10, 1030. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 9, 330. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Soriano-Hernando, O.; Álvarez-Cobelas, M. (Eds.) Limnología de las Lagunas de la Cuenca del Guadiana; Grupo de Investigación del Agua, Serie Limnoiberia: Madrid, Spain, 2016. [Google Scholar]
- Manchado, E.M.; Sánchez-Palencia, Y.; García-Romero, E.; Torres, T.; Ortiz, J.E.; Suárez, M. Estudio mineralógico de los sedimentos de la Laguna de El Hito (Cuenca). Macla 2018, 23, 53–54. [Google Scholar]
- Cirujano, S.; Alvarez-Soto, M. Caracterización y cambios de la vegetación en un humedal salino continental. Laguna de El Hito (Cuenca). Acta Bot. Malacit. 2023, 48, 74–92. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014 Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resource Report No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Castroviejo, S.; Cirujano, S. Sarcocornietea en La Mancha (España). Anal. Jard. Bot. Madr. 1980, 37, 143–154. [Google Scholar]
- Cirujano, S. Las lagunas manchegas y su vegetación I. Anal. Jard. Bot. Madr. 1980, 37, 155–192. [Google Scholar]
- Cirujano, S. Las lagunas manchegas y su vegetación II. Anal. Jard. Bot. Madr. 1981, 38, 187–232. [Google Scholar]
- Cirujano, S. Flora y Vegetación de las Lagunas y Humedales de la Provincia de Cuenca; Real Jardín Botánico: Madrid, Spain, 1995. [Google Scholar]
- Cirujano, S.; Medina-Domingo, L.; Chirino-Argenta, M. Plantas Acuáticas de las Lagunas y Humedales de Castilla-La Mancha; Junta Comunidades Castilla-La Mancha: Toledo, Spain, 2002. [Google Scholar]
- Ritchey, E.L.; McGrath, J.M.; Gehring, D. Determining Soil Texture by Feel. Agriculture and Natural Resources Publications 139. 2015. Available online: https://uknowledge.uky.edu/anr_reports/139 (accessed on 23 January 2024).
- Peech, M.; Alexander, L.T.; Dean, L.A.; Reed, J.F. Methods of Soil Analysis for Soil Fertility Investigations, 1st ed.; United States Department of Agriculture: Washington, DC, USA, 1947; p. 25.
- Richards, L.A. Diagnosis and Improvements of Saline and Alkali Soils; Agriculture Handbook Nº. 60; USDA: Washington, DC, USA, 1954.
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Part 2, Chemical and Mineralogical Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–557. [Google Scholar]
- Thomas, G.W. Exchangeable cations. In Methods of Soil Analysis, Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular No. 939; US Government Printing Office: Washington, DC, USA, 1954.
- Bremner, J.M.; Mulvaney, C.S. Total nitrogen. In Methods of Soil Analysis. Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph 9, American Society of Agronomy: Madison, WI, USA, 1982; pp. 1149–1170. [Google Scholar]
- Jiménez-Ballesta, R.; Pérez-De-Los-Reyes, C.; Amorós, A.; Bravo, S.; Navarro, F.J.G. Pedodiversity in Vineyards of Castilla-La Mancha, Spain. In Proceedings of the XIII Congres International Terroir, Zaragoza, Spain, 18–22 June 2018; pp. 324–329, ISBN 978-84-09-03040-8. [Google Scholar]
- Qadir, M.; Noble, A.D.; Schubert, S.; Thomas, R.J.; Arslan, A. Sodicity induced land degradation and its sustainable management: Problems and prospects. Land Degrad. Dev. 2006, 17, 661–676. [Google Scholar] [CrossRef]
- Rengasamy, P. Soil chemistry factors confounding crop salinity tolerance-a review. Agronomy 2016, 6, 53. [Google Scholar] [CrossRef]
- He, B.; Cai, Y.; Ran, W.; Zhao, X.; Jiang, H. Spatiotemporal heterogeneity of soil salinity after the establishment of vegetation on a coastal saline field. Catena 2015, 127, 129–134. [Google Scholar] [CrossRef]
- Boulaine, J. Sol, Pedon et Genon. Concepts et definitions. Bull. AFES 1969, 5, 7–10. [Google Scholar]
- Rossiter, D.G.; Bouma, J. A new look at soil phenoforms—Definition, identification, mapping. Geoderma 2018, 314, 113–121. [Google Scholar] [CrossRef]
- Dobarco, M.R.; McBratney, A.; Minasny, B.; Malone, B. A modelling framework for pedogenon mapping. Geoderma 2021, 393, 115012. [Google Scholar] [CrossRef]
- Jang, H.J.; Dobarco, M.R.; Minasny, B.; McBratney, A.; Jones, E. Developing and testing of pedogenons in the lower Namoi valley, NSW, Australia. Geoderma 2022, 428, 116182. [Google Scholar] [CrossRef]
- Soil Survey Staff, Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Durand, J.H. Les Sols Irrigables; Etude Pedologique; Presses Universitaires de France: Paris, France, 1983. [Google Scholar]
- Boettinger, J.L.; Richardson, J.L. Saline and Wet Soils of Wetlands in Dry Climates. In Wetland Soils: Genesis, Hydrology, Landscapes, and Classification; Richardson, J.L., Vepraskas, M.J., Eds.; Lewis Publishers CRC Press LLC.: Boca Raton, FL, USA, 2001; pp. 383–390. [Google Scholar]
- Schaetzl, R.J.; Anderson, S. Soils, Genesis and Geomorphology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Shao, M.A.; Zhang, B.W. Experimental study on the infiltration of crude oil into disturbed soil. J. Soil Sci. 2009, 5, 781–787. [Google Scholar] [CrossRef]
- Rangesamy, P.; Marchuk, A. Cation ratio of soil structural stability (CROSS). Soil Res. 2011, 49, 280–285. [Google Scholar] [CrossRef]
- Omuto, C.T.; Vargas, R.R.; El Mobarak, A.A.; Mapeshoane, B.E.; Koetlisi, K.A.; Ahmadzai, H.; Abdalla Mohamed, N. Digital Soil Assessment in Support of a Soil Information System for Monitoring Salinization and Sodification 693 in Agricultural Areas. Land Degrad. Dev. 2022, 33, 1204–1218. [Google Scholar] [CrossRef]
- Hopmans, W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S.; et al. Critical knowledge gaps and research priorities in global soil salinity. Adv. Agron. 2021, 169, 1–191. [Google Scholar] [CrossRef]
- Sastre, A.; Martínez, S.; Jurado, A.; Acaso, E. Geohidrología del Humedal de El Hito (prov. de Cuenca); Fernández Uría, A., Ed.; IX Simposio de Hidrogeología: Elche, Spain, 2008; pp. 305–314. [Google Scholar]
- Rengasamy, P. World salinisation with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Datta, K.K.; de Jong, C. Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India. Agric. Water Manag. 2002, 57, 223–238. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Ondrasek, G.; Rengel, Z. Environmental salinization processes: Detection, implications & solutions. Sci. Total Environ. 2021, 754, 142432. [Google Scholar] [CrossRef]
- Dikilitas, M.; Karakas, S. Crop Production for Agricultural Improvement. In Behavior of Plant Pathogens for Crops under Stress during the Determination of Physiological, Biochemical and Molecular Approaches for Salt Stress Tolerance; Ashraf, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 417–441. [Google Scholar]
- Otlewska, A.; Migliore, M.; Dybka-Stępień, K.; Manfredini, A.; Struszczyk-Świta, K.; Napoli, R.; Białkowska, A.; Canfora, L.; Pinzari, F. When Salt Meddles Between Plant, Soil, and Microorganisms. Front. Plant Sci. 2020, 11, 553087. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef]
- Meng, X.; Zhou, J.; Sui, N. Mechanisms of salt tolerance in halophytes: Current understanding and recent advances. Open Life Sci. 2018, 13, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Rozema, J.; Schats, H. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ. Exp. Bot. 2013, 92, 83–95. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Morton, M.J.L.; Awlia, M.; Al-Tamimi, N.; Saade, S.; Pailles, Y.; Negrão, S.; Tester, M. Salt stress under the scalp–dissecting the genetics of salt tolerance. Plant J. 2019, 97, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Cheeseman, J.M. The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol. 2015, 206, 557–570. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.-M.; Dietz, K.-J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef]
- Singh, M.; Nara, U.; Kumar, A.; Choudhary, A.; Singh, H.; Thapa, S. Salinity tolerance mechanisms and their breeding implications. J. Genet. Eng. Biotechnol. 2021, 19, 173. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, R.; Petropoulos, E.; Yu, B.; Zhang, J.; Lin, X.; Feng, Y. Interactive effects of salinity and SOM on the ecoenzymatic activities across coastal soils subjected to a saline gradient. Geoderma 2022, 406, 115519. [Google Scholar] [CrossRef]
- Akramkhanov, A.; Martius, C.; Jin Park, S.; Hendrickx, J.M.H. Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma 2011, 163, 55–62. [Google Scholar] [CrossRef]
- Zheng, C.; Jiang, D.; Liu, F.; Dai, T.; Liu, W.; Jing, Q.; Cao, W. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ. Exp. Bot. 2009, 67, 222227. [Google Scholar] [CrossRef]
- Schroter, M.; Stumpf, K.H.; Loos, J.; van Oudenhoven, A.P.E.; Böhnke-Henrichs, A.; Abson, D.J. Refocusing ecosystem services towards sustainability. Ecosyst. Serv. 2017, 25, 35–43. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Global Environmental Change. Hum. Policy Dimens. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Kingsford, R.T.; Basset, A.; Jackson, L. Wetlands: Conservation’s poverty cousins. Aquat. Conserv. Mar. Freshw. Echoes. 2016, 26, 892–916. [Google Scholar] [CrossRef]
- Chaplin-kramer, R.; Sharp, R.P.; Weil, C.; Bennett, E.M.; Pascual, U.; Arkema, K.K.; Brauman, K.A.; Bryant, B.P.; Guerry, A.D.; Haddad, N.M.; et al. Global modeling of nature’s contributions to people. Science 2019, 336, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. A global view of regulatory ecosystem services: Existed knowledge, trends, and research gaps. Ecol. Process. 2020, 9, 461. [Google Scholar] [CrossRef]
- Hong, Z.D.; Ding, S.Y.; Zhao, Q.H.; Qiu, P.W.; Chang, J.L.; Peng, L.; Wang, S.Q.; Hong, Y.Y.; Liu, G.J. Plant trait-environment trends and their conservation implications for riparian wetlands in the Yellow River. Sci. Total Environ. 2021, 767, 144867. [Google Scholar] [CrossRef]
- Chang, L.; Zhao, Z.B.; Jiang, L.X.; Li, Y.F. Quantifying the Ecosystem Services of Soda Saline-Alkali Grasslands in Western Jilin Province, NE China. Int. J. Environ. Res. Public Health 2022, 19, 4760. [Google Scholar] [CrossRef]
- Yuan, M.; Huang, L.L.; Chen, J.H.; Wu, J.; Xu, Q. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct. Target. Ther. 2019, 4, 61. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shahrivar, A.A.; Hagare, D.; Maheshwari, B. Impact of Recycled Water Irrigation on Soil Salinity and Its Remediation. Soil Syst. 2022, 6, 13. [Google Scholar] [CrossRef]
- Cassaniti, C.; Romano, D.; Flowers, T.J. The response of ornamental plants to saline irrigation water. Water Manag. Pollut. Altern. Strateg. 2012, 131, 158. [Google Scholar]
- Alvarez, S.; Sanchez-Blanco, M.J. Comparison of individual and combined effects of salinity and deficit irrigation on physiological, nutritional and ornamental aspects of tolerance in Callistemon laevis plants. J. Plant Physiol. 2015, 185, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Koyro, H.-W.; Lieth, H.; Gul, B.; Ansari, R.; Huchzermeyer, B.; Abideen, Z.; Hussain, T.; Kahn, M. Importance of the Diversity within the Halophytes to Agriculture and Land Management in Arid and Semiarid Countries. In Sabkha Ecosystems 4: Cash Crop Halophyte and Biodiversity Conservation; Khan, M.A., Böer, B., Münir Öztürk, M., Abdessalaam, T.Z., Clüsener-Godt, M., Gul, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 175–198. [Google Scholar]
- Sharma, R.; Wungrampha, S.; Singh, V.; Pareek, A.; Sharma, M.K. Halophytes as bioenergy crops. Front. Plant Sci. 2016, 7, 1372. [Google Scholar] [CrossRef] [PubMed]
- Duarte, B.; Caçador, I. Iberian Halophytes as Agroecological Solutions for Degraded Lands and Biosaline Agriculture. Sustainability 2021, 13, 1005. [Google Scholar] [CrossRef]
- Giordano, R.; Saii, Z.; Fredsgaard, M.; Hulkko, L.S.S.; Poulsen, T.B.G.; Thomsen, M.E.; Henneberg, N.; Zucolotto, S.M.; Arendt-Nielsen, L.; Papenbrock, J.; et al. Pharmacological Insights into Halophyte Bioactive Extract Action on Anti-Inflammatory, Pain Relief and Antibiotics-Type Mechanisms. Molecules 2021, 26, 3140. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.J.; Pinto, D.C.; Cunha, A.; Silva, H. Halophytes as medicinal plants against human infectious diseases. Appl. Sci. 2022, 12, 7493. [Google Scholar] [CrossRef]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magne, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.; Gopal, B. Saline Wetlands of the Arid Zone of Western India. In The Wetland Book II; Finlayson, C.M., Milton, G.R., Prentice, R.G., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Fallovo, C.; Cardarelli, M.; Graifenberg, A. Use of Salsola soda as a companion plant to improve greenhouse pepper (Capsicum annuum) performance under saline conditions. N. Z. J. Crop Hortic. Sci. 2006, 34, 283–290. [Google Scholar] [CrossRef]
- Milic, D.; Lukovic, J.; Ninkov, J.; Zeremski-Skoric, T.; Zoric, L.; Vasin, J.; Milic, S. Heavy metal content in halophytic plants from inland and maritime saline areas. Cent. Eur. J. Biol. 2012, 7, 307–317. [Google Scholar] [CrossRef]
- Lorestani, B.; Cheraghi, M.; Yousefi, N. Accumulation of Pb, Fe, Mn, Cu and Zn in plants and choice of hyperaccumulator plant in the industrial town of Vian, Iran. Arch. Biol. Sci. 2011, 63, 739–745. [Google Scholar] [CrossRef]
- Abdellaoui, R.; Elkelish, A.; El-Keblawy, A.; Mighri, H.; Boughalleb, F.; Bakhshandeh, E. Editorial: Halophytes: Salt stress tolerance mechanisms and potential use. Front. Plant Sci. 2023, 14, 1218184. [Google Scholar] [CrossRef] [PubMed]
- Nedjimi, B.; Daoud, Y.; Carvajal, M.; Martínez-Ballesta, M.C. Improvement of the adaptation of Lygeum spartum L. to salinity under the presence of calcium. Commun. Soil Sci. Plant Anal. 2010, 41, 2301–2317. [Google Scholar] [CrossRef]
- García-Fuentes, A.; Salazar, C.; Torres, J.A.; Cano, E.; Valle, F. Review of communities of Lygeum spartum L. in the southeastern Iberian Peninsula (western Mediterranean). J. Arid Environ. 2001, 48, 323–339. [Google Scholar] [CrossRef]
- Khan, M.A.; Ungar, I.A. Influence of salinity and temperature on the germination of Haloxylon recurvum Bunge ex. Boiss. Ann. Bot. 1996, 78, 547–551. [Google Scholar] [CrossRef]
- Rogel, J.A.; Silla, R.O.; Ariza, F.A. Edaphic characterization and soil ionic composition influencing plant zonation in a semiarid Mediterranean salt marsh. Geoderma 2001, 99, 81–98. [Google Scholar] [CrossRef]
- Meot-Duros, L.; Magné, C. Effect of salinity and chemical factors on seed germination in the halophyte Crithmum maritimum L. Plant Soil 2008, 313, 83–87. [Google Scholar] [CrossRef]
- Nedjimi, B. Effect of salinity and temperature on germination of Lygeum spartum L. Agric. Res. 2013, 2, 340–345. [Google Scholar] [CrossRef]
- Nedjimi, B. Lygeum spartum L.: A review of a candidate for West Mediterranean arid rangeland rehabilitation. Rangel. J. 2016, 38, 493–499. [Google Scholar] [CrossRef]
Parameter | Method | References |
---|---|---|
Texture | Touch | [22] |
pH | pH meter measurements of 1:2.5 soil/water suspension | [23] |
Electric conductivity (EC) | Conductivity meter measurements of 1:5 soil/water suspension | [24] |
CaCO3 | Bernard method with a calcimeter | |
Organic matter (OM) | Dichromate digestion (Walkley and Black) | [25] |
CEC | Percolation with ammonium acetate solution at pH = 7 | [26] |
P | The Olsen method | [27] |
N | The Kjeldahl distillation method | [28] |
Ca2+, Mg2+, Na+, K+ | Inductively coupled plasma optical emission spectrometry (ICP-OES) | |
SO42−, Cl− | Ion chromatography | |
Mineralogy | X-ray diffraction | |
Elements | X-ray fluorescence spectrometers |
Pedogenon | Horizon | pH (H2O) | EC (dS/m) | OC (%) | N (%) | C/N | P (mg/kg) | CaCO3 (%) |
---|---|---|---|---|---|---|---|---|
El Hito | Az | 9.06 | 10.38 | 1.10 | 0.16 | 1.9 | 155.31 | 10.5 |
C1 | 8.75 | 6.19 | 0.25 | 0.04 | 6.3 | 95.62 | 11.6 | |
C2 | 8.69 | 8.12 | 0.23 | 0.03 | 7.6 | 41.31 | 4.8 |
Pedogenon | Horizon | Ca2+ | Mg2+ | Na+ | K+ | SO42− | Cl− | CO3H− | CO32− |
---|---|---|---|---|---|---|---|---|---|
mg/kg | |||||||||
El Hito | Az | 5621 | 6800 | 930 | 754 | 32,652 | 7110 | 138 | 147 |
C1 | 3627 | 5250 | 1150 | 503 | 18,017 | 7503 | 96 | 101 | |
C2 | 3559 | 6350 | 1275 | 450 | 25,125 | 9750 | 106 | 113 |
Soil Surface | Vegetation Type | Coordinates | pH (H2O) | ECe (dS/m) |
---|---|---|---|---|
C1 | Puccinellia festuciformis meadows | 39.877087–2.701919 | 9.42 | 41.00 |
C2 | Salsola soda meadows | 39.876511–2.701869 | 9.48 | 30.70 |
C3 | Bare soil with Salsola soda | 39.872515–2.702211 | 9.61 | 32.70 |
C4 | Puccinellia festuciformis meadows | 39.870211–2.700909 | 9.71 | 16.26 |
C5 | Aeluropus litoralis meadows | 39.867876–2.698168 | 8.62 | 2.18 |
C6 | Puccinellia festuciformis meadows | 39.866100–2.695747 | 8.74 | 2.89 |
C7 | Bare soil with Salsola soda | 39.866407–2.692898 | 9.89 | 39.70 |
C8 | Salsola soda and Salicornia ramosissima | 39.869053–2.687970 | 9.71 | 4.99 |
C9 | Lygeum spartum formations | 39.871532–2.684968 | 8.78 | 2.58 |
C10 | Grassland among Lygeum spartum | 39.871252–2.684295 | 9.25 | 5.83 |
C11 | Grassland among Lygeum spartum | 39.875732–2.678837 | 8.54 | 1.39 |
C12 | Fallow with Bassia scoparia | 39.865365–2.673279 | 8.79 | 2.10 |
C13 | Elymus repens meadows | 39.866324–2.674148 | 8.68 | 4.00 |
C14 | Aeluropus litoralis meadows | 39.866599–2.674488 | 8.37 | 1.96 |
C15 | Fallow | 39.860569–2.678548 | 8.79 | 1.99 |
C16 | Frankenia laevis and Plantago coronopus | 39.860592–2.679418 | 9.65 | 27.40 |
C17 | Salicornia ramosisima and Puccinellia caespitosa | 39.862437–2.679445 | 9.54 | 12.97 |
C18 | Bare soil | 39.863784–2.682094 | 9.51 | 20.00 |
C19 | Salsola soda meadows | 39.863516–2.684056 | 9.46 | 8.00 |
C20 | Grassland among Lygeum spartum | 39.858481–2.686284 | 8.96 | 2.13 |
C21 | Bare soil-fallow | 39.858233–2.694175 | 8.93 | 3.94 |
C22 | Grassland among Lygeum spartum | 39.858594–2.699989 | 8.29 | 2.13 |
C23 | Fallow with Salsola kali | 39.860900–2.709894 | 8.42 | 2.33 |
C24 | Fallow | 39.867409–2.711967 | 8.64 | 2.06 |
C25 | Fallow | 39.872950–2.710535 | 8.92 | 0.74 |
C26 | Bare soil-fallow | 39.878496–2.709827 | 8.99 | 0.49 |
C27 | Puccinellia caespitosa meadows | 39.876401–2.695190 | 9.59 | 16.89 |
C28 | Salsola soda meadows | 39.874595–2.701872 | 9.60 | 9.50 |
C29 | Bare soil with Salsola soda | 39.872515–2.702211 | 8.53 | 8.06 |
C30 | Puccinellia festuciformis meadows | 39.866100–2.695747 | 8.44 | 2.69 |
C31 | Bare soil with Salsola soda | 39.866407–2.692898 | 9.67 | 21.30 |
Variable | Mean | Median | Min | Max | SD | CV | Kurtosis |
---|---|---|---|---|---|---|---|
pH (H2O) | 9.08 | 8.96 | 8.29 | 9.89 | 0.49 | 0.05 | −1.48 |
ECe (dS/m) | 10.67 | 4.00 | 0.49 | 41.00 | 12.15 | 1.13 | 0.38 |
Pedogenon | Horizon | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | Cl | PPC |
---|---|---|---|---|---|---|---|---|---|---|---|
(%) | |||||||||||
El Hito | Az | 4.15 | 1.02 | 0.27 | 30.63 | 4.02 | 0.33 | 0.24 | 36.88 | 0.19 | 21.74 |
C1 | 4.01 | 0.83 | 0.27 | 31.12 | 2.30 | 0.35 | 0.23 | 33.59 | 0.21 | 23.09 | |
C2 | 6.45 | 1.28 | 0.48 | 28.21 | 9.34 | 0.40 | 0.31 | 27.94 | 0.25 | 24.56 |
EC (dS/m) | Salinity Classes | Number of Soil Samples | % Soil Samples |
---|---|---|---|
≤0.6 | Non-saline soil | 1 | 3.7 |
0.6 < EC ≤ 1 | Slightly saline soil | 1 | 3.7 |
1 < EC ≤ 2 | Moderately saline soil | 3 | 11.1 |
2 < EC ≤ 4 | Very saline soil | 9 | 33.3 |
>4 | Extremely saline soil | 13 | 48.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Ballesta, R.; Cirujano-Bracamonte, S.; Palencia-Mayordomo, E.; Álvarez-Soto, M. An Ecological Overview of Halophytes and Salt-Affected Soils at El Hito Saline Pond (Central Spain): Baseline Study for Future Conservation–Rehabilitation Measures. Land 2024, 13, 449. https://doi.org/10.3390/land13040449
Jiménez-Ballesta R, Cirujano-Bracamonte S, Palencia-Mayordomo E, Álvarez-Soto M. An Ecological Overview of Halophytes and Salt-Affected Soils at El Hito Saline Pond (Central Spain): Baseline Study for Future Conservation–Rehabilitation Measures. Land. 2024; 13(4):449. https://doi.org/10.3390/land13040449
Chicago/Turabian StyleJiménez-Ballesta, Raimundo, Santos Cirujano-Bracamonte, Eduardo Palencia-Mayordomo, and Mario Álvarez-Soto. 2024. "An Ecological Overview of Halophytes and Salt-Affected Soils at El Hito Saline Pond (Central Spain): Baseline Study for Future Conservation–Rehabilitation Measures" Land 13, no. 4: 449. https://doi.org/10.3390/land13040449
APA StyleJiménez-Ballesta, R., Cirujano-Bracamonte, S., Palencia-Mayordomo, E., & Álvarez-Soto, M. (2024). An Ecological Overview of Halophytes and Salt-Affected Soils at El Hito Saline Pond (Central Spain): Baseline Study for Future Conservation–Rehabilitation Measures. Land, 13(4), 449. https://doi.org/10.3390/land13040449