Development of Activity Data for Greenhouse Gas Inventory in Settlements in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Workflow Overview
2.3. Definition and Spatial Extent of Settlements
2.4. Construction of Land Use and Land Use Change Matrix and Activity Data
2.5. Comparison of Activity Data Considering Other Land Use Categories
2.6. Estimation of Carbon Emission and Absorption
3. Results
3.1. Construction of Land Use and Land Use Change Matrix
3.2. Comparison of Activity Data Considering Other Land Use Categories
3.2.1. Land Converted to Settlements
3.2.2. Settlements Remaining Settlements
3.2.3. Biomass Change Ratio by Land Use and Land Use Change
3.3. Estimation of Carbon Emission and Absorption
3.3.1. Land Converted to Settlements
3.3.2. Settlements Remaining Settlements
3.3.3. Overall CO2 Inventory
4. Discussion
4.1. Definition of Settlement and Spatial Extent Setting
4.2. Construction of Activity Data
4.3. Evaluation of GHG Inventory Statistics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AFOLU | Agriculture, Forestry and Other Land Use |
BTR | Biennial transparency reports |
BUR | Biennial update reports |
CDMs | Cadastral maps |
DFTMs | Digital forest type maps |
ETF | Enhanced Transparency Framework |
GHG | Greenhouse gas |
GIR | Greenhouse Gas Inventory and Research Center |
GL | Guidelines |
IPCC | Intergovernmental Panel on Climate Change |
IPPU | Industrial Processes and Product Use |
LS | Land converted to settlements |
LULUCF | Land use, land use change, and forestry |
MRV | Monitoring–reporting–verification |
NDCs | Nationally determined contributions |
NIR | National inventory reports |
PA | Paris Agreement |
REDD+ | Reducing Emission from Deforestation and Forest Degradation plus |
SFMs | Smart farm maps |
SS | Settlements remaining settlements |
TACCC | Transparency, accuracy, completeness, comparability, consistency |
UNFCCC | United Nations Framework Convention on Climate Change |
References
- Jeong, S.H.; Kim, M.-S.; Son, J.-S.; Kim, G.-H.; Lee, J.-S.; Kim, T.-H. The role and challenges of carbon spatial mapping for net-zero city planning. Urban Inf. Serv. 2023, 491, 4–20. [Google Scholar]
- Cantarello, E.; Newton, A.C.; Hill, R.A. Potential effects of future land-use change on regional carbon stocks in the UK. Environ. Sci. Policy 2011, 14, 40–52. [Google Scholar] [CrossRef]
- Bloomfield, J.; Pearson, H.L. Land Use, Land-Use Change, Forestry, and Agricultural Activity in the Clean Development Mechanism: Estimates of Greenhouse Gas Offset Potential; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Schlamadinger, B.; Bird, N.; Johns, T.; Brown, S.; Canadell, J.; Ciccarese, L.; Dutschke, M.; Fiedler, J.; Fischlin, A.; Fearnside, P.; et al. A synopsis of land use, land-use change and forestry (LULUCF) under the Kyoto Protocol and Marrakech accords. Environ. Sci. Policy 2007, 10, 271–282. [Google Scholar] [CrossRef]
- Andersson, K.; Evans, T.P.; Richards, K.R. National forest carbon inventories: Policy needs and assessment capacity. Clim. Change 2009, 93, 69–101. [Google Scholar] [CrossRef]
- Gainza-Carmenates, R.; Carlos Altamirano-Cabrera, J.; Thalmann, P.; Drouet, L. Trade-offs and performances of a range of alternative global climate architectures for post-2012. Environ. Sci. Policy 2010, 13, 63–71. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Hayama, Japan, 2006. [Google Scholar]
- UNFCCC; FCCC/CP. Paris Agreement; 2015/10/Add.1; UNFCCC: New York, NY, USA, 2015; Volume 2015. [Google Scholar]
- Roh, D. Recent Developments in the Discussions on the Paris Agreement in the UN Climate Change Negotiations; United Nations: New York, NY, USA, 2020. [Google Scholar]
- Greenhouse Gas Inventory and Research Center (GIR). A Study on the Construction of Land Use and Land Use Change Matrix in the LULUCF Sectors Using Spatial Image Information; Greenhouse Gas Inventory and Research Center (GIR): Seoul, Republic of Korea, 2015. [Google Scholar]
- Jeong, Y.J.; Yim, J.S.; Kim, J.S. Improving institutional arrangements to enhance GHG inventory of the LULUCF sector. J. Clim. Change Res. 2020, 11, 729–738. [Google Scholar] [CrossRef]
- Park, J.W.; Na, H.S.; Yim, J.S. Comparison of land-use change assessment methods for greenhouse Gas inventory in land sector. J. Clim. Change Res. 2017, 8, 329–337. [Google Scholar] [CrossRef]
- Park, J.M.; Yim, J.S.; Lee, J.S. Evaluation of a land use change matrix in the IPCC’s land use, land use change, and forestry area sector using national spatial information. J. Environ. Sci. 2017, 33, 295. [Google Scholar] [CrossRef]
- Park, E.B.; Song, C.H.; Ham, B.Y.; Kim, J.W.; Lee, J.Y.; Choi, S.E.; Lee, W.K. Comparison of sampling and wall-to-wall methodologies for reporting the GHG Inventory of the LULUCF Sector in Korea. KSCCR 2018, 9, 385–398. [Google Scholar] [CrossRef]
- Yim, J.S.; Kim, R.H.; Lee, S.J.; Son, Y.M. Land-use change assessment by permanent sample plots in national forest inventory. KSCCR 2015, 6, 33–40. [Google Scholar] [CrossRef]
- Yu, S.C.; Shin, D.B.; Ahn, J.W. Analysis of land use, land-use change, and forestry (LULUCF) and construction of statistics in Korea. Sens. Mater. 2019, 31, 3215–3228. [Google Scholar] [CrossRef]
- Yu, S.; Ahn, W.; Ok, J.A. A Study on Construction Plan of the Statistics for National Green House Gas Inventories (LULUCF Sector). Sens. Mater. 2015, 23, 67–77. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2020; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2021. [Google Scholar]
- Ministry of Land, Infrastructure and Transport. Urban Planning Status and Statistics; Ministry of Land, Infrastructure and Transport: Sejong, Republic of Korea, 2022. [Google Scholar]
- Brown, D.G.; Johnson, K.M.; Loveland, T.R.; Theobald, D.M. Rural land-use trends in the conterminous United States, 1950–2000. Ecol. Appl. 2005, 15, 1851–1863. [Google Scholar] [CrossRef]
- Churkina, G.; Brown, D.G.; Keoleian, G. Carbon stored in human settlements: The conterminous United States. Glob. Change Biol. 2010, 16, 135–143. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Alberti, M. Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region. Glob. Change Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport. Cadastral Statistical Annual Report; Ministry of Land, Infrastructure and Transport: Sejong, Republic of Korea, 2021. [Google Scholar]
- Ministry of Land, Infrastructure and Transport. Cadastral Statistical Annual Report; Ministry of Land, Infrastructure and Transport: Sejong, Republic of Korea, 2001. [Google Scholar]
- Ministry of Land, Infrastructure and Transport. Study on Calculating Settlement GHG Statistics Based on Land Use; Ministry of Land, Infrastructure and Transport: Sejong, Republic of Korea, 2018. [Google Scholar]
- Choi, S.-E.; Ham, B.; Song, C.; Park, E.; Kim, J.; Lee, W.-K. Pilot study and development of activity data for greenhouse Gas inventory of settlement categories in Korea: A case of Incheon Seo-gu. J. Clim. Change Res. 2020, 11, 187–196. [Google Scholar] [CrossRef]
- Hong, S.; Ham, B.; Choi, S.-E.; Kim, W.; Ha, R.; Park, S.; Lee, W.-K. Comparative analysis on the sequestration of CO2 depending on spatial ranges for estimating greenhouse Gas inventory in settlement—In case of Seoul. J. Clim. Change Res. 2021, 12, 767–776. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Good Practice Guidance for Land Use, Land-Use Change and Forestry; Intergovernmental Panel on Climate Change (IPCC): Hayama, Japan, 2003. [Google Scholar]
- Greenhouse Gas Inventory and Research Center (GIR). Guidance for Calculating, Reporting, and Verifying National Greenhouse Gas Statistics; Greenhouse Gas Inventory and Research Center (GIR): Sejong, Republic of Korea, 2021. [Google Scholar]
- Korea Forest Service. Forest Basic Statistics; Korea Forest Service: Daejeon, Republic of Korea, 2020. [Google Scholar]
- Statistics Korea. Agricultural Area Survey; Statistics Korea: Sejong, Republic of Korea, 2020. [Google Scholar]
- Korea Forest Service. Forest Basic Statistics; Korea Forest Service: Daejeon, Republic of Korea, 2000. [Google Scholar]
- National Institute of Forest Science. Carbon Emission Coefficients for Key Tree Species in the Forest GHG Inventory; National Institute of Forest Science: Seoul, Republic of Korea, 2014. [Google Scholar]
- Greenhouse Gas Inventory and Research Center (GIR). 2021 National Greenhouse Gas Inventory Report; Greenhouse Gas Inventory and Research Center (GIR): Sejong, Republic of Korea, 2021. [Google Scholar]
- Ministry of the Environment. Improvement Measures for Land Use and Land-Use Change MRV System for National Carbon Sink Management; Ministry of the Environment: Sejong, Republic of Korea, 2022. [Google Scholar]
- Achard, F.; Grassi, G.; Martin, H.; Maurizio, T. Use of Satellite Remote Sensing in LULUCF Sector; GOFC-GOLD Report 33; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Martínez, S.; Mollicone, D. From land cover to land use: A methodology to assess land use from remote sensing data. Remote Sens. 2012, 4, 1024–1045. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geis, H.J. Land Use and Land Cover Change: Local Processes and Global Impacts; Springer Science and Business Media: Berlin, Germany, 2008. [Google Scholar]
- Kruska, R.L.; Reid, R.S.; Thornton, P.K.; Henninger, N.; Kristjanson, P.M. Mapping livestock-oriented agricultural production systems for the developing world. Agric. Syst. 2003, 77, 39–63. [Google Scholar] [CrossRef]
- Tomlinson, S.J.; Dragosits, U.; Levy, P.E.; Thomson, A.M.; Moxley, J. Quantifying Gross vs. Net Agricultural Land Use Change in Great Britain Using the Integrated Administration and Control System. Sci. Total Environ. 2018, 628–629, 1234–1248. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-S.; Park, J.-S.; Lim, E.-S.; Ahn, Y.-H.; Cho, M.S.; Yoon, E.-J.; Lee, Y.-J.; Park, J.-H.; Hong, N.-E. Local and Spatial GHG Reduction Strategies. Sejong, Republic of Korea, 2021. [Google Scholar]
- Greenhouse Gas Inventory and Research Center. Guideline for Calculation, Reporting and Verification of National GHG Statistics; Greenhouse Gas Inventory and Research Center (GIR): Sejong, Republic of Korea, 2023; Volume 2022. [Google Scholar]
- Ministry of the Environment; Greenhouse Gas Inventory Office of Japan; CGER; NIES. National Greenhouse Gas Inventory Report of Japan; Center for Global Environmental Research: Tsukuba, Japan, 2022. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Pataki, D.E.; Xu, T.; Luo, Y.Q.; Ehleringer, J.R. Inferring biogenic and anthropogenic carbon dioxide sources across an Urban to rural gradient. Oecologia 2007, 152, 307–322. [Google Scholar] [CrossRef] [PubMed]
- U.S Department of Agriculture. Agriculture and Forestry Greenhouse Gas Inventory 1990–2005; U.S Department of Agriculture: Washington, DC, USA, 2008. [Google Scholar]
- Kasperson, J.X.; Kasperson, R.E.; Turner, B.L. Regions at Risk: Comparisons of Threatened Environments; United Nations University Press: Tokyo, Japan, 1995. [Google Scholar]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Zhao, M.; Running, S.W.; Wofsy, S.C.; Urbanski, S.; Dunn, A.L.; Munger, J.W. Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sens. Environ. 2003, 88, 256–270. [Google Scholar] [CrossRef]
- Lead, C.; Kasperson, R.E.; Dow Lead, K.; Archer, E.R.M.; Cáceres, D.; Downing, T.E.; Elmqvist, T.; Eriksen, S.; Folke, C.; Han, G.; et al. Vulnerable peoples and places. In Ecosystems and Human Well-Being. Current State and Trends; Island Press: Washington, DC, USA, 2005; Volume 1, pp. 143–164. [Google Scholar]
- Oh, S.-H.; Ohn, I.-S.; Kim, H. Quantifying methods for uncertainties in greenhouse Gas inventory. Korean J. Public Health 2014, 51, 47–53. [Google Scholar]
- Birigazzi, L.; Gregoire, T.G.; Finegold, Y.; Cóndor Golec, R.D.; Sandker, M.; Donegan, E.; Gamarra, J.G.P. Data quality reporting: Good practice for transparent estimates from forest and land cover surveys. Environ. Sci. Policy 2019, 96, 85–94. [Google Scholar] [CrossRef]
- Lee, G.-H.; Lim, J.G. Study on the Establishment of the Foundation for the Preparation of the Third National Report of the UNFCCC; UNFCCC: New York, NY, USA, 2004. [Google Scholar]
- UNFCCC. Decision 18; China Meteorological Administration; UNFCCC: New York, NY, USA, 2019; p. 1. [Google Scholar]
- Särndal, C.-E.; Lundström, S. Estimation in Surveys with Nonresponse; John Wiley: Hoboken, NJ, USA, 2005; ISBN 0470011335. [Google Scholar]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Mitigation of Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Goetz, S.J.; Smith, A.J.; Jantz, C.; Wright, R.K.; Prince, S.D.; Mazzacato, M.E.; Melchior, B. Monitoring and predicting urban land use change applications of multi-resolution multi-temporal satellite data. In Proceedings of the IEEE International, Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 1567–1569. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A Gradient Analysis of Urban Landscape Pattern: A Case Study from the Phoenix Metropolitan Region; Arizona, USA; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Zhou, W.; Troy, A. An object-oriented approach for analysing and characterizing urban landscape at the parcel level. Int. J. Remote Sens. 2008, 29, 3119–3135. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban Trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Mcpherson, G.; Simpson, J.R.; Peper, P.J.; Maco, S.E.; Xiao, Q. Municipal forest benefits and costs in five US cities. J. For. 2005, 103, 411–416. [Google Scholar] [CrossRef]
- Escobedo, F.; Varela, S.; Zhao, M.; Wagner, J.E.; Zipperer, W. Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities. Environ. Sci. Policy 2010, 13, 362–372. [Google Scholar] [CrossRef]
- Lawrence, A.B.; Escobedo, F.J.; Staudhammer, C.L.; Zipperer, W. Analyzing growth and mortality in a subtropical urban forest ecosystem. Landsc. Urban Plan. 2012, 104, 85–94. [Google Scholar] [CrossRef]
- Jo, H.K. Carbon uptake and Ernissions in urban landscape, and the role of Urban greenspace for several cities in Kangwon Province. J. Korean Inst. Landsc. Archit. 1999, 27, 39–53. [Google Scholar]
- Jo, H.-K.; Ahn, T.-W. Role of Atmospheric Purification by Trees in Urban Ecosystem -in the Case of Yongin. J. Korean Inst. Landsc. Archit. 2001, 29, 38–45. [Google Scholar]
- Jo, H.-K. Effects of Urban greenspace on microclimate amelioration, CO2 sequestration and fire obstruction. Korean J. Plant Resour. 2000, 13, 162–170. [Google Scholar]
- Jo, H.-K.; Cho, Y.-H.; Ahn, T.-W. Effects of Urban greenspace on improving atmospheric environment. Environ. Res. 2003, 20, 114–121. [Google Scholar]
Spatial Data | Description | Time Series Coverage | Data Type | Reference |
---|---|---|---|---|
Cadastral Maps | A detailed map of the cadastral status of the South Korea | 1970s–present (renewed monthly) | Vector | National Spatial Infrastructure Portal (https://www.vworld.kr/ (accessed on 5 March 2021)) |
Digital Forest type Maps (1:25,000) | A spatialized forest map of the distribution of forests on the land cover | 1st (1971–1974), 2nd (1978–1980), 3rd (1986–1992), 4th (1996–2005), 5th (2006–2010) | Vector | Forest Geospatial Information System (https://fgis.forest.go.kr/ (accessed on 1 April 2023)) |
Digital Forest type Maps (1:5000) | Large-scale maps of the spatial distribution of forests on the land cover | 2009–2013 (renewed annually) | Vector | |
Forest aerial photographs | Aerial photographs of South Korea’s entire national territory collected in four different periods | 1st (1971–1974), 2nd (1978–1980), 3rd (1986–1992), 4th (1996–2005) | Raster (0.8 m) | Forest Big Data Exchange Platform (https://www.bigdata-forest.kr (accessed on 15 March 2021)) |
Smart Farm Maps | Provides area and attribute information for cropland on the land cover | 2014–2018 | Vector | Agricultural and Rural Affairs Farm map Service (https://agis.epis.or.kr/ (accessed on 1 April 2023)) |
Orthoimages | Images that have been orthorectified from aerial photographs | 2002–present (Renewed every 2 years) | Raster (urban 12 cm, others 25 cm) | National Geographic Information Institute (https://map.ngii.go.kr/ms/map/NlipMap.do/ (accessed on 25 June 2021)) |
Land Use Categories | Categories in Cadastral Map |
---|---|
Forest land | Forest land |
Cropland | Field, paddy, orchard |
Grassland | Pasture |
Wetlands | River, ditch, reservoir, fish farm |
Settlements | Mineral spring site, salt flat, site, factory site, school site, parking zone, gas station, storage site, road, railroad, embankment, waterways, park, Sport site, amusement park, religion site, historic site, grave, miscellaneous land |
Division | Supplementary Data, Emission Absorption Factors | Reference | |
---|---|---|---|
Forest land converted to settlements | Area and stock (ha, m3) | Conifer, deciduous, mixed forest | [32] |
Basic wood density (t d.m. m−3) | Conifer: 0.46, deciduous: 0.68, mixed: 0.57 | [33] | |
Biomass expansion factor | Conifer: 1.43, deciduous: 1.51, mixed: 1.47 | ||
Root–shoot ratio | Conifer: 0.27, deciduous: 0.36, mixed: 0.32 | ||
Carbon fraction | 0.5 | ||
Croplands converted to settlements | 2006 IPCC default coefficient: 4.7 C ha−1) | [7] | |
Grassland converted to settlements | 2006 IPCC default coefficient: 13.5 t.d.m.ha−1 for warm temperate-wet climate zone, non-woody biomassCarbon fraction: 0.5 tC (tonne d.m.)−1 |
Division | Total Land Area (ha) | Area of Land Converted to Settlements (ha) | Area of Settlements Remaining Settlements (ha) | Total Area of Settlements (ha) | Settlements Ratio (%) | Sampling Ratio (%) |
---|---|---|---|---|---|---|
Gangwon-do | 1,682,968 | 28,274 | 49,799 | 78,073 | 4.6 | 10.4 |
Gyeonggi-do | 1,019,527 | 77,346 | 123,917 | 201,263 | 19.7 | 10.4 |
Gyeongsangnam-do | 1,054,055 | 30,371 | 72,662 | 103,033 | 9.8 | 10.9 |
Gyeonsangbuk-do | 1,903,403 | 47,170 | 71,313 | 118,482 | 6.2 | 10.1 |
Gwangju-si | 50,113 | 4701 | 11,232 | 15,932 | 31.8 | 9.5 |
Daegu-si | 88,349 | 6923 | 16,456 | 23,378 | 26.5 | 10.2 |
Daejeon-si | 53,966 | 3574 | 11,722 | 15,296 | 28.3 | 10.0 |
Busan-si | 77,007 | 7788 | 19,961 | 27,749 | 36.0 | 11.1 |
Seoul-si | 60,523 | 2997 | 35,662 | 38,659 | 63.9 | 10.1 |
Sejong-si | 46,491 | 4442 | 3157 | 7599 | 16.3 | 9.6 |
Ulsan-si | 106,209 | 5830 | 13,745 | 19,575 | 18.4 | 9.9 |
Incheon-si | 106,523 | 9233 | 28,127 | 37,360 | 35.1 | 11.7 |
Jeollanam-do | 1,234,809 | 36,902 | 84,582 | 121,483 | 9.8 | 11.4 |
Jeollabuk-do | 806,984 | 14,171 | 66,270 | 80,441 | 10.0 | 10.1 |
Jeju-si | 185,021 | 10,973 | 16,335 | 27,308 | 14.8 | 10.2 |
Chungcheongnam-do | 824,617 | 33,426 | 64,569 | 97,995 | 11.9 | 10.4 |
Chungcheongbuk-do | 740,695 | 23,212 | 44,814 | 68,027 | 9.2 | 10.1 |
Total | 10,041,260 | 347,331 | 734,322 | 1,081,653 | 10.8 | 10.5 |
Unit: ha | ||||||
---|---|---|---|---|---|---|
Division | Before (2000) | After (2019) | ||||
19 Categories in CDM | Overlapping | Exclude Overlapping | 19 Categories in CDM | Overlapping | Exclude Overlapping | |
Gangwon-do | 19,226 | 3362 | 15,864 | 7494 | 4023 | 3471 |
Gyeonggi-do | 52,571 | 6245 | 46,325 | 13,221 | 6710 | 6511 |
Gyeongsangnam-do | 14,922 | 1099 | 13,823 | 5603 | 1793 | 3810 |
Gyeonsangbuk-do | 28,526 | 2549 | 25,977 | 9046 | 3978 | 5067 |
Gwangju-si | 3997 | 259 | 3738 | 1165 | 412 | 753 |
Daegu-si | 4720 | 505 | 4214 | 1509 | 807 | 702 |
Daejeon-si | 2620 | 381 | 2239 | 1067 | 631 | 437 |
Busan-si | 5774 | 273 | 5501 | 1278 | 664 | 614 |
Seoul-si | 1452 | 506 | 946 | 1335 | 820 | 515 |
Sejong-si | 3093 | 298 | 2795 | 1252 | 952 | 300 |
Ulsan-si | 5082 | 162 | 4920 | 841 | 180 | 662 |
Incheon-si | 3310 | 487 | 2822 | 2328 | 965 | 1363 |
Jeollanam-do | 26,499 | 1959 | 24,540 | 7549 | 3020 | 4528 |
Jeollabuk-do | 10,515 | 726 | 9789 | 1536 | 615 | 921 |
Jeju-si | 9067 | 1393 | 7674 | 2496 | 1391 | 1105 |
Chungcheongnam-do | 23,356 | 1768 | 21,588 | 4826 | 2682 | 2143 |
Chungcheongbuk-do | 16,481 | 1005 | 15,476 | 4642 | 2521 | 2121 |
Total | 231,209 | 22,977 | 208,232 | 67,187 | 32,164 | 35,022 |
Unit: ha | ||||||
---|---|---|---|---|---|---|
Division | Before (2000) | After (2019) | ||||
19 Categories in CDM | Overlapping | Exclude Overlapping | 19 Categories in CDM | Overlapping | Exclude Overlapping | |
Gangwon-do | 13,185 | 7152 | 7286 | 13,582 | 5899 | 6429 |
Gyeonggi-do | 16,832 | 4410 | 11,657 | 18,195 | 5175 | 13,785 |
Gyeongsangnam-do | 9886 | 7202 | 5536 | 17,193 | 4350 | 9991 |
Gyeonsangbuk-do | 12,726 | 7957 | 6830 | 15,979 | 5896 | 8021 |
Gwangju-si | 1126 | 674 | 858 | 2188 | 268 | 1514 |
Daegu-si | 1849 | 1655 | 1067 | 3607 | 782 | 1952 |
Daejeon-si | 2085 | 1197 | 1211 | 2664 | 874 | 1467 |
Busan-si | 2688 | 1636 | 2052 | 3638 | 636 | 2002 |
Seoul-si | 2690 | 1941 | 1988 | 7248 | 702 | 5307 |
Sejong-si | 185 | 360 | 107 | 823 | 77 | 463 |
Ulsan-si | 747 | 472 | 483 | 1874 | 264 | 1402 |
Incheon-si | 1098 | 927 | 983 | 4338 | 115 | 3411 |
Jeollanam-do | 10,536 | 4905 | 6535 | 14,346 | 4001 | 9441 |
Jeollabuk-do | 7909 | 2936 | 5269 | 7214 | 2640 | 4278 |
Jeju-si | 2550 | 1425 | 1442 | 3488 | 1108 | 2063 |
Chungcheongnam-do | 7102 | 4512 | 4742 | 8606 | 2360 | 4093 |
Chungcheongbuk-do | 8017 | 3984 | 5437 | 8488 | 2580 | 4504 |
Total | 101,209 | 53,346 | 63,482 | 133,469 | 37,727 | 80,123 |
Division | CDMs | Without Other Spatial Data | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Forest (ktCO2) | Cropland (ktCO2) | Grassland (ktCO2) | Total CO2 Emission (ktCO2) | Annual CO2 Emission (ktCO2yr−1) | Forest (ktCO2) | Cropland (ktCO2) | Grassland (ktCO2) | Total CO2 Emission (ktCO2) | Annual CO2 Emission (ktCO2yr−1) | |
Gangwon-do | 1438 | 98 | 78 | 1614 | 81 | 967 | 76 | 65 | 1108 | 55 |
Gyeonggi-do | 3609 | 375 | 163 | 4147 | 207 | 2660 | 336 | 141 | 3137 | 157 |
Gyeongsangnam-do | 856 | 108 | 56 | 1019 | 51 | 712 | 98 | 51 | 862 | 43 |
Gyeonsangbuk-do | 1618 | 215 | 112 | 1945 | 97 | 1260 | 187 | 98 | 1545 | 77 |
Gwangju-si | 105 | 47 | 12 | 164 | 8 | 72 | 41 | 11 | 125 | 6 |
Daegu-si | 147 | 46 | 25 | 218 | 11 | 81 | 40 | 21 | 142 | 7 |
Daejeon-si | 161 | 21 | 8 | 190 | 10 | 102 | 20 | 7 | 130 | 7 |
Busan-si | 166 | 48 | 44 | 257 | 13 | 130 | 46 | 37 | 212 | 11 |
Seoul-si | 126 | 9 | 3 | 138 | 7 | 51 | 9 | 2 | 62 | 3 |
Sejong-si | 245 | 19 | 11 | 274 | 14 | 197 | 18 | 10 | 225 | 11 |
Ulsan-si | 301 | 35 | 22 | 358 | 18 | 276 | 34 | 21 | 330 | 17 |
Incheon-si | 183 | 21 | 25 | 229 | 11 | 101 | 18 | 19 | 138 | 7 |
Jeollanam-do | 881 | 246 | 159 | 1287 | 64 | 566 | 212 | 127 | 905 | 45 |
Jeollabuk-do | 447 | 108 | 30 | 585 | 29 | 350 | 94 | 28 | 472 | 24 |
Jeju-si | 668 | 49 | 56 | 773 | 39 | 430 | 40 | 49 | 520 | 26 |
Chungcheongnam-do | 1186 | 172 | 131 | 1489 | 75 | 926 | 151 | 118 | 1196 | 60 |
Chungcheongbuk-do | 1077 | 122 | 55 | 1254 | 63 | 932 | 109 | 49 | 1089 | 55 |
Total | 13,213 | 1738 | 990 | 15,941 | 797 | 9812 | 1530 | 854 | 12,196 | 610 |
Division | CDMs | Without Other Spatial Data | ||||||
---|---|---|---|---|---|---|---|---|
Past CO2 Absorption (ktCO2yr−1) | Present CO2 Absorption (ktCO2 yr−1) | Total change in CO2 Absorption (ΔktCO2 yr−1) | Annual Change in CO2 Absorption (ktCO2yr−1) | Past CO2 Absorption (ktCO2yr−1) | Present CO2 Absorption (ktCO2 yr−1) | Total Change in CO2 Absorption (ΔktCO2 yr−1) | Annual Change in CO2 Absorption (ktCO2yr−1) | |
Gangwon-do | 140 | 144 | 4 | 0 | 78 | 68 | −9 | −1 |
Gyeonggi-do | 179 | 194 | 15 | 1 | 124 | 147 | 23 | 1 |
Gyeongsangnam-do | 105 | 183 | 78 | 4 | 59 | 106 | 47 | 2 |
Gyeonsangbuk-do | 135 | 170 | 35 | 2 | 73 | 85 | 13 | 1 |
Gwangju-si | 12 | 23 | 11 | 1 | 9 | 16 | 7 | 0 |
Daegu-si | 20 | 38 | 19 | 1 | 11 | 21 | 9 | 1 |
Daejeon-si | 22 | 28 | 6 | 0 | 13 | 16 | 3 | 0 |
Busan-si | 29 | 39 | 10 | 1 | 22 | 21 | −1 | 0 |
Seoul-si | 29 | 77 | 49 | 2 | 21 | 56 | 35 | 2 |
Sejong-si | 2 | 9 | 7 | 0 | 1 | 5 | 4 | 0 |
Ulsan-si | 8 | 20 | 12 | 1 | 5 | 15 | 10 | 1 |
Incheon-si | 12 | 46 | 35 | 2 | 11 | 36 | 26 | 1 |
Jeollanam-do | 112 | 153 | 41 | 2 | 70 | 100 | 31 | 2 |
Jeollabuk-do | 84 | 77 | −7 | 0 | 56 | 46 | −11 | −1 |
Jeju-si | 27 | 37 | 10 | 1 | 15 | 22 | 7 | 0 |
Chungcheongnam-do | 76 | 92 | 16 | 1 | 50 | 44 | −7 | 0 |
Chungcheongbuk-do | 85 | 90 | 5 | 0 | 58 | 48 | −10 | −1 |
Total | 1076 | 1419 | 343 | 17 | 675 | 852 | 177 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.-E.; Kim, M.; Son, Y.; Jeon, S.-W.; Lee, K.-H.; Kim, W.; Lee, S.-J.; Lee, W.-K. Development of Activity Data for Greenhouse Gas Inventory in Settlements in South Korea. Land 2024, 13, 497. https://doi.org/10.3390/land13040497
Choi S-E, Kim M, Son Y, Jeon S-W, Lee K-H, Kim W, Lee S-J, Lee W-K. Development of Activity Data for Greenhouse Gas Inventory in Settlements in South Korea. Land. 2024; 13(4):497. https://doi.org/10.3390/land13040497
Chicago/Turabian StyleChoi, Sol-E, Moonil Kim, Yowhan Son, Seong-Woo Jeon, Kyeong-Hak Lee, Whijin Kim, Sun-Jeoung Lee, and Woo-Kyun Lee. 2024. "Development of Activity Data for Greenhouse Gas Inventory in Settlements in South Korea" Land 13, no. 4: 497. https://doi.org/10.3390/land13040497
APA StyleChoi, S. -E., Kim, M., Son, Y., Jeon, S. -W., Lee, K. -H., Kim, W., Lee, S. -J., & Lee, W. -K. (2024). Development of Activity Data for Greenhouse Gas Inventory in Settlements in South Korea. Land, 13(4), 497. https://doi.org/10.3390/land13040497