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Abstract: Urbanization has significantly altered the carbon cycle of the terrestrial environment, partic-
ularly in relation to net primary productivity (NPP). Gaining a more comprehensive comprehension
of how NPP is affected by urbanization is crucial for obtaining fresh perspectives on sustainable
urban landscape design and decision making. While there is a significant body of research examining
the geographical and temporal patterns of NPP supply capacity, there are only a few studies that
have investigated the spatial relationships between NPP and urbanization, particularly at the grid
scale. This research investigated the temporal and geographical features and patterns of NPP and
their impact mechanisms. In order to estimate NPP and the level of urbanization in the Yangtze River
Delta Urban Agglomeration (YRDUA), we used a combination of different models and datasets. To
evaluate the geographical correlations and dependence between NPP and urbanization, we utilized
local bivariate autocorrelation methods and spatial regression models to describe and visualize
these relationships. The findings revealed that there was a consistent negative relationship between
NPP and urbanization on a global scale from 1990 to 2020. However, when examining the local
scale, the geographical correlations could be classified into four distinct categories: areas with both
low NPP and low urbanization, areas with high NPP and high urbanization, areas with low NPP
and high urbanization, and areas with high NPP and low urbanization. Our analysis showed that
spatial regression models are more suitable for quantifying the spatial relationship between NPP
and urbanization due to their ability to include the impacts of spatial Moran’s I techniques. Due
to the growing urbanization, the highest NPP value was recorded in 2005, followed by 2000, 2020,
and 2010. Conversely, the smallest association was observed in 2015. Examining the geographical
connection between NPP and urbanization offers theoretical and practical insights for urban planning
that prioritizes human needs and promotes sustainable development. It also aids in the development
of reasonable methods for organizing ecological functional systems.

Keywords: NPP; urbanization; spatial dependence; spillover effects; urban agglomeration

1. Introduction

Urban agglomerations have caused the conversion of natural ecosystems into ecosys-
tems that are either dominated by humans or closely connected to human activities [1].
The process of urbanization is primarily driven by population concentration, economic
growth, and urban expansion. These factors are recognized as the key drivers of changes in
NPP within urban agglomerations [2]. Urbanization often leads to transformations in land
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use and land cover (LULC), affecting not just metropolitan areas but also their surround-
ing regions. For instance, the substitution of vegetation areas and the implementation of
urban greening may directly change the composition of local terrestrial ecosystems [3,4].
Furthermore, urbanization has significantly impacted the environment for plant growth,
including factors such as temperature, soil texture, and atmospheric conditions. Net pri-
mary production (NPP) is a common consequence of urbanization and has always been a
subject of significant study interest [5]. Vegetation NPP refers to the total amount of organic
matter produced by photosynthesis, minus the organic matter consumed by respiration; it
represents the total amount of organic matter accumulated by vegetation per unit area and
per unit time [6]. The dynamic changes in NPP, as a key parameter of terrestrial ecological
processes and an important indicator reflecting the regional ecological conditions, can
reflect the impact of climate change and human activities on ecosystems [7]. Studying the
spatial–temporal patterns and driving factors of vegetation NPP is of great significance
for the protection of regional ecological environments and sustainable development [8].
Human activities have a significant role in ecological management, since actions such as
irrigation, pruning, and tree cutting may have substantial impacts [9]. In addition, urban-
ization may significantly alter terrestrial ecosystems, particularly the carbon cycle systems
within them, due to the aforementioned effects [10]. Over the last several decades, there
has been a significant increase in urbanization worldwide, making it a crucial aspect of
global transformation [11]. Gaining a deeper understanding of how urbanization affects
NPP of terrestrial ecosystems is crucial in this specific context [12].

Ecosystem services refer to all the benefits that humans derive from ecosystems, which
are categorized into four distinct groups: supply services (such as providing food and
pure water), regulatory services (such as controlling floods and diseases), cultural services
(such as entertainment and cultural benefits), and support services (such as maintaining
nutrient cycling) [13,14]. The regulatory services act as a conduit that links the NPP of the
environment with the welfare of humans. It mostly pertains to the functions of climate
control, such as carbon fixation, oxygen release, and cooling impacts. The global NPP relies
on regulatory services as a crucial component and essential connection, which contribute
significantly to the overall global carbon equilibrium [15]. Hence, within the framework of
global climate change, investigating alterations in vegetation NPP has immense importance
in comprehending the interplay between variations in plant productivity and climate [16,17].
Historically, the study of NPP has mostly relied on quantitative methods, such as biometric
assessments including sample surveys and field measurements [18]. Nevertheless, these
conventional measures conducted in the field often require a significant amount of time and
effort, making them challenging to implement on a large scale to estimate NPP. Models have
been extensively used in recent decades to obtain more precise NPP estimates on broader
temporal and spatial scales; these models include statistical [19], process-based [20], and
light energy utilization [21] models. Researchers have used NPP simulation models to study
the effects of urbanization and LULC changes on NPP. Imhoff et al. used the Carnegie
Ames Stanford Approach (CASA) model to examine the consequences of urban land
conversion in the United States. Their findings indicate that urbanization has significantly
and detrimentally affected NPP [22]. Paz-Kagan et al. used NPP as a measure to evaluate
the impact of land-use changes on the ecosystems in semi-arid regions of Israel [23]. In
China, many scholars have used the CASA model to assess the temporal and geographical
NPP patterns and the influence of urban growth on NPP [24–26].

The changes in NPP in terrestrial ecosystems are a clear indicator of the impact of
both human activities and global climate change on vegetation. These changes have a
significant effect on the global carbon cycle and climate change. The capacity of the earth
to support life and the sustainable evolution of terrestrial ecosystems can be evaluated by
using this indicator [27]. Zhao et al. utilized the Moderate Resolution Imaging Spectrometer
MOD13A2 Enhanced Vegetation Index (EVI) product to quantify the changes in NPP and
found that plant growth in most Chinese cities saw substantial improvements as a result of
indirect factors [28]. This improvement offset approximately 40% of the losses resulting
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from direct effects. Peng et al. used spatial regression to quantify the linear correlation
between NPP changes and the three indicators of urbanization. They also identified the
threshold at which NPP changes respond to these indicators [29]. Su et al. used the spatial
lag model (SLM) to enhance the visualization of the non-stationary correlation between
environmental services and urbanization [30]. While these studies attempted to examine
the correlation between NPP and urbanization, several elements remain unexplored. There
is a lack of consideration for the spatial relationship between NPP and urbanization,
particularly at the regional level. Hence, other statistical methods must be used to address
spatial autocorrelations. Furthermore, the previous research mostly concentrated on a
single urban area, often using administrative districts to represent spatial entities. This
level of study is insufficient to capture the spatial phenomena occurring at the meso or
macro level, such as those occurring in towns, counties, and cities. This might restrict the
practical feasibility of incorporating the NPP impact into comprehensive regional landscape
design and the industrial arrangements of urban agglomerations.

The YRDUA is one of China’s three main urban agglomerations and has the greatest
economic growth rate and population density in the country. Over the last several decades,
urbanization has caused significant changes in the land-cover conditions in the YRDUA,
altering the structure and function of its terrestrial ecosystems. This process has significantly
impacted the carbon budget of the area [31]. Hence, it is crucial to conduct more research
on the impact of urbanization in the YRDUA on its NPP. The MOD17A3HGF V061 data
products obtained from the data distribution system of the National Aeronautics and
Space Administration (NASA) website offer NPP datasets with a resolution of 500 m. These
datasets cover the period from 2000 to 2020 and fulfill the requisite criteria for both temporal
duration and spatial precision.

The purpose of this study was to (1) use various models and multi-source data to quan-
tify and map the degree of comprehensive urbanization, and analyze its
spatial–temporal evolution pattern; (2) examine the relationship between urbanization and
NPP using bivariate global and local Moran’s I approaches; and (3) investigate the geo-
graphical relationship between urbanization and NPP, as well as other relevant parameters,
using spatial regression models such as ordinary least squares (OLS) regression models
and geographic weighted regression (GWR) models.

2. Materials and Methods
2.1. Study Area

Our study chose 16 prefecture-level cities as the research object, which are the core
area of the YRDUA (Figure 1). The Lower Yangtze River, which borders both the East
China Sea and Yellow Sea, is home to the central region of the YRDUA, which is located at
118◦ E–123◦ E, 28◦ N–33◦ N, and has an area of 167 thousand km2, accounting for 1.74%
of the total national land area. It is a segment of the alluvial plain near the point where
the Yangtze River flows into the ocean, with an altitude of more than 10 m and low hills
scattered between 200 and 300 m. The gross domestic product (GDP) of the 16 cities in the
YRDUA’s central area reached CNY 9.47 trillion in 2020 or 11.43% of the country’s GDP.
At this time, there were 119 million people living there, making up 9.68% of the entire
population of the country. According to statistics data, the energy consumption of the
16 prefecture-level cities in the YRDUA core region surpassed 6869 Mt in 2020, constituting
15.92% of the overall energy usage in China.

2.2. Data Sources

We combined a variety of data sources that were diverse in nature, including both
geographical and statistical feature data, into our analysis. More precisely, the datasets used
were (1) yearly net primary production (NPP) data from the MOD17A3HGF V061 products
with a spatial resolution of 500 m, obtained from the National Aeronautics and Space
Administration (NASA) (https://lpdaac.usgs.gov/, accessed on 10 February 2021) [32];
(2) Land-use/land-cover (LULC) data from 1990 to 2020, compiled using a conventional

https://lpdaac.usgs.gov/
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interpretation method that analyzed Landsat Thematic Mapper (TM) and Landsat 8 OLI
remote-sensing imagery with a 30 m resolution. The LULC data were derived from
Landsat scenes covering path/row designations 118–120 and 37–40, and they achieved
a classification accuracy of over 95% based on confusion matrix and Kappa coefficient
testing [33,34]; (3) Gridded datasets of GDP and population at a 1 km spatial resolution,
obtained from the Resource and Environment Science and Data Center (RESDC) of the
Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 12 June 2021) [35];
(4) Meteorological datasets including annual air temperature and annual rainfall from
1990 to 2020, interpolated to a 1 km grid from observations at 83 weather stations situated
across and around the Yangtze River Delta Urban Agglomeration (YRDUA) region. These
meteorological data were acquired from the China Meteorological Data Service Center
(http://data.cma.cn, accessed on 18 August 2021) [36]; (5) Digital elevation model (DEM)
data at 90 m resolution, resampled to 1 km resolution, obtained from the Geospatial
Data Cloud platform of the Computer Network Information Center, Chinese Academy of
Sciences (https://www.gscloud.cn/, accessed on 18 April 2021) [37].
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trative boundary of the YRDUA (administrative districts); and top right panel: a representative city
(Shanghai) in the YRDUA.

2.3. Data Analyses and Methods

The process of determining the NPP response to urbanization mainly included the
following three steps: (1) quantitative characterization of the degree of comprehensive
urbanization; (2) spatial correlation analysis between the changes in NPP and urbanization;
and (3) spatial regression analysis of NPP and urbanization. A flow chart of the procedure
is shown in Figure 2.

https://www.resdc.cn/
http://data.cma.cn
https://www.gscloud.cn/
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2.3.1. Urbanization Assessment

The urbanization process can be generally characterized by the growth of the popu-
lation, increase in the total economy, continuous improvement in the quality of life, and
rapid growth of urban construction areas. In view of the fact that social urbanization data
are not easy to collect and the indicators are relatively complex, we did not consider these
data here; thus, the degree of urbanization was measured through the three other aspects.
More precisely, population density (PD) was used as a metric to quantify the degree of
urbanization in terms of population, gross domestic product density (GDPD) was selected
to reflect the economic development level, and urban land percentage (ULP) was utilized
to gauge the extent of urbanization in terms of land usage. Due of the high similarity in the
geographical patterns of PD, GDPD, and ULP, these three variables were combined into a
single indicator known as comprehensive urbanization level (CUL). The various indices
were subjected to range standardization in order to convert their values into a uniform
range of 0 to 1. These standardized values were then averaged to obtain the CUL value.
The range standardization method (Equation (1)) and CUL calculation (Equation (2)) are
as follows:

U‘
i,j =

Ui,j − Ui,min

Ui,max − Ui,min
(1)

CULj =
(

PDj +GDPDj +ULPj
)
/3 (2)

where U‘
i,j represents the normalized value of Ui,j; Ui,j is the i-th urbanization indicator (PD,

GDPD, or ULP) in the j-th raster, relative to the original value; Ui,max and Ui,min represent
the highest and lowest values, respectively, of the i-th urbanization indicator over all
grids; CULj represents the urbanization level of the i-th grid; and PDj, GDPDj, and ULPj
represent the population density, GDP density, and urban land proportion, respectively, of
the j-th grid after standardization. The rationale for using Equation (2) to calculate the CUL
is that it provides a balanced and holistic measure of urbanization by equally weighting
the three key aspects [38].

2.3.2. Spatial Correlation Measure

The bivariate Moran’s I statistic was utilized to identify any geographical cluster-
ing or discontinuous link between the comprehensive urbanization level (CUL) and
vegetation net primary production (NPP). Global and local bivariate Moran’s I are two
strategies that can be used for this purpose. The formulae that were used are as follows
(Equations (3a) and (3b)):
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Icu =
N∑N

i ∑N
j ̸=i Wijzc

i zu
j

(N − 1)∑N
i ∑N

j ̸=i Wij
, (3a)

I′cu = zc∑N
j=i Wijzu

j , (3b)

Here, Icu and I′cu are the global and local bivariate Moran’s I of NPP and CUL, re-
spectively, and N represents the aggregate number of spatial grid cells. In the model,
the parameters obtained are Wij, which represents an N × N weighted matrix that was
used to detect the correlation between the i-th and j-th grids. The spatial unit is a 4 × 4
matrix generated based on the first-order neighborhood in the weight adjacent to the
queen [39]. The input data were zc

i and zu
j ; zc

i represents the i-th standardized NPP grid
value obtained by using Equation (1), and zu

j represents the j-th standardized CUL unit
value calculated using Equation (1) [40,41]. The output result is Icu/I′cu, where the range of
values for Icu/I′cu is −1 to 1. The computed p-value for the regional connection between
the NPP impact and CUL was below 0.05, indicating statistical significance [42]. NPP
and CUL were readjusted to a 1 × 1 km raster map using the mean value approach in
ArcGIS 10.5. Next, the NPP and CUL data of all grids were entered into GeoDa 1.12
(https://geodacenter.github.io/, accessed on 16 August 2021) for execution, and spatial
correlation analyses were conducted [43].

Bivariate spatial autocorrelation can determine whether two variables are spatially
correlated and evaluate the strength and direction of the correlation. It can help us in
exploring the laws of geographical phenomena and spatial distributions, providing a
scientific basis for decision making [44]. However, bivariate spatial autocorrelation analysis
also has some limitations, since it is sensitive to data distribution biases, spatial scale effects,
spatial connections, and causal relationships. Therefore, we should take these limitations
into consideration when interpreting the results [45,46].

2.3.3. Spatial Regression Test

1. Analysis of global spatial regression

Ordinary least squares (OLS) can generate predictions when performing global linear
regression, or model a dependent variable and a set of explanatory variables to detect the
influence relationship. Anselin provides the general form of the spatial regression equation
for raster data, taking into account the spatial correlation between independent variables
and dependent variables [47] (Equations (4) and (5)):

Y = ρW1Y + Xβ+ ε, (4)

ε = λW2 + µ,µ ∼ N(0, Ω), Ωii = hi(za), (5)

where ρ represents the coefficient of the geographical lag variable W1Y; β represents the
k × 1 parameter vector associated with the independent variable X; ε is the vector represent-
ing the random error term; the weight matrix W1 represents the geographical pattern of the
variable; the order weight matrix W2 represents an n × n matrix; the normal distribution is
denoted by N; the exogenous variable is represented by z, while Ω denotes the variance
matrix, its diagonal elements are Ωii, hi is the functional relationship, and the constant
term is represented by a; and the spatial autonomy is denoted by λ. The coefficients of the
regression structure W2 should generally be 0 ≤ ρ < 1, 0 ≤ λ < 1, and µ is a random error
vector of a normal distribution. The regression equation of the whole grid data space is
subject to 3 parameters: ρ, λ, and a.

2. Analysis of local spatial regression

Spatial regression technology was used to study the spatial dependence of the effect of
urbanization on NPP (that is, how NPP changes in response to the process of urbanization).
Geographically weighted regression (GWR) is a type of regression that adds regional

https://geodacenter.github.io/
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ordinary least squares (OLS) to improve the model [48]; the expression of the model is as
follows (Equation (6)):

ZFJGi = βo(ui, vi) + ∑T
i=1 xuβi(ui, vi) + εi, (6)

where βo(ui, vi) is a constant term; βi(ui, vi) is the characteristic elastic coefficient of the
i-th sample point. The elastic coefficient of every point (ui, vi) in the sample region is
determined using a weighted least square multiplication method; the calculation formula
is as follows (Equation (7)):

β̂(ui, vi) =
(

β̂ρ(ui, vi), β̂τ(ui, vi)···, β̂γ(ui, vi)
)T

= (XγW(ui, vi)X)−1XγW(ui, vi)ZFJGi (7)

where X represents the matrix of independent variables and W(ui, vi) represents the spatial
weight matrix. The spatial weight matrix is constructed using a monotonically decreasing
function that calculates the geographical distance between the location to be estimated and
the surrounding observation sites. Different function forms can be used. Our study used
the Gauss kernel function; its expression is as follows (Equations (8) and (9)):

W(ui, vi) = diag
(
K(dio/h), K(diτ/h)···, K

(
diγ/h

))
, (8)

K(t)
1√
2π

exp(−1
2

t2), (9)

where di is the Euclidean distance between each sample point and h is the optimal band-
width, which can be determined using the cross-determination method to minimize h
(Equation (10)).

CV(h) =
1
n∑n

i=1

(
ZFJGi − ZF̂JG(−i) (h))

2
, (10)

where ZF̂JG(−i)(h) is the simulated predicted value of the NPP at point i obtained by
simulation after the i-th observation value is discarded under h, and ZFJGi is the actual
observed value of the NPP at point i.

3. Results
3.1. Spatial CUL Patterns in the YRDUA

According to the analysis of Figures 3 and 4 and Supplementary Materials, from
1990 to 2000, the comprehensive urbanization level of the YRDUA showed a predominant
pattern of circular expansion around the major cities. During the two five-year periods
from 1990 to 1995 and 1995 to 2000, Shanghai, as the main city in the urban agglomera-
tion, saw significant urbanization development. The comprehensive urbanization level
increased from 67.37 to 105.75, with growth rates of 6.05% and 12.22%, respectively. The
comprehensive urbanization level developed slowly in the YRDUA.

After 2000, the YRDUA achieved axial expansion, i.e., expansion of the circle around
core cities. The urbanization level of the growth poles and key cities on the Nanjing–
Hangzhou Expressway increased significantly. The growth pole city Hangzhou had an
added value of urbanization of 130.86, with a growth rate of 67.11%. The comprehensive
urbanization growth values of key cities such as Ningbo, Huzhou and Shaoxing were 66.21,
21.55, and 51.73, and the growth rates were 120.32%, 41.66%, and 87.43%, respectively. The
process of urbanization developed rapidly.

After 2010, as the development of urban agglomerations continued to increase, cities
within urban agglomerations gradually obtained their own independent development
space. The linear connection mode was gradually replaced by the expand-around mode,
and the evolution of urban agglomerations was transformed into a network mode. Due
to the changes in macro policy and concept aspects, such as adjusting industry structures
and promoting upgrades, Shanghai and Hangzhou have maintained a steady growth rate
due to the development of their emerging high-tech industries [49]. The added values of
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urbanization were 104.78 and 73.93, respectively, with growth rates of 9.35% and 17.39%;
thus, the urbanization process has grown steadily.
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3.2. Geographical Links between Urbanization and NPP

Moran’s I analysis revealed a notable negative geographical association between the
NPP and urbanization, irrespective of the year (Figure 5). It is known that the growth
of built-up land led to a decline in NPP at the global level. Nevertheless, the extent of
the negative association varies depending on the various phases of urban agglomeration
growth. Here, the association between NPP and urbanization was the strongest in 2010
(Moran’s I: −0.2492), followed by 2020 (Moran’s I: −0.1937), 2015 (Moran’s I: −0.1841),
1990 (Moran’s I: −0.1685), 2000 (Moran’s I: −0.1685), and 2005 (Moran’s I: −0.1470). The
weakest correlation was in 1995 (Moran’s I: −0.1234). The results of the global spatial
autocorrelation analysis, to some extent, showed a spatial correlation between NPP and
CUL, and overall, the negative correlation increased over time.
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Local bivariate spatial autocorrelation is a statistical method used to analyze the
spatial correlation between two variables at the local level; it introduces the spatial concept
into the autocorrelation analysis, allowing us to determine whether two variables are
spatially correlated and the strength and direction of the correlation, which are usually
represented by the local indicators of spatial association (LISA) [50]. The LISA diagram
shows the four possible geographical correlations that exist between urbanization and NPP
(Figure 6): the high–high (HH) type represents the clustering of high NPP and high CUL
values; the low–low (LL) type represents the clustering of low NPP and low CUL values;
the low–high (LH) clustering represents the clustering of low NPP and high CUL values;
and the high–low (HL) clustering represents the clustering of high NPP and low CUL
values [51]. Using a seven-year sample, we saw distinct similarities in the way NPP and
urbanization were clustered in different regions. The places with the highest elevation are
mostly located in the central regions of the urban land of the YRDUA. With the expansion
of urban land, HH areas also increased. The LH regions were mostly dispersed over the
whole HH region and concentrated around the HH areas. The low–high regions were
mostly concentrated in the northern region of the urban agglomeration, whereas low–high
regions were absent from the southern region. The HL area occupied a large area in the
south, concentrated in the mountains in southwest Hangzhou and the lush vegetation areas
in the southern mountainous areas of Taizhou, Ningbo, and Shaoxing, which had relatively
low levels of urbanization due to being restricted by natural conditions such as topography
and landforms. The LL area did not show any changes in its spatial pattern over time. In
2005, 2015, and 2020, the LL areas appeared in the coastal areas of Hangzhou, Shaoxing,
and Ningbo, while in the other four years, the LL areas did not show any obvious spatial
characteristics or LL areas did not appear.
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3.3. Spatial NPP Pattern Dependence on Urbanization

Changes in the ecosystem are fundamental impacts of climate change; therefore,
climatic factors (including temperature, precipitation, and digital elevation models (DEM))
were analyzed in order to reveal the driving factors affecting the regional NPP. The results
simulated by the OLS model showed that the regression coefficients of precipitation in all
years were positive, indicating that precipitation and the NPP were positively correlated
(Table 1). Except for the regression coefficients of PD in 2000 and ULP in 2005 that showed
positive correlations, all factors from 1990 to 2020 were negatively correlated with NPP.
From 1990 to 2010, the absolute value of the regression coefficient of the CUL was always
greater than that of the other factors (PD: −0.48; GDPD: −0.61; ULP: −0.53; TEM: −0.86;
PRE and DEM: −0.56). GDPD ranked second in 1990 and 2000, with coefficients of −0.55
and −0.48, and PD in 1995 and 2005 ranked second with coefficients of 0.27 and −0.61,
respectively. As the pace of urbanization stabilized, the population and economic growth in
the YRDUA reached a state of relative saturation, and the influence of urbanization factors
on the NPP diminished. In 2010, the coefficients of temperature and precipitation were
relatively large at −0.56 and 0.36. In 2020, the regression coefficients of PD, GDPD, ULP,
and CUL continued to decrease compared with 2015 and 2010, and they were still smaller
than the meteorological factors, showing a relatively weak degree of influence.

Table 2 shows the R2, adjusted R2, AIC, and Moran’s I values from the OLS and
GWR models. The R2 (adjusted R2) values for the GWR model ranged from 0.42 to 0.53,
surpassing those of the OLS model. Meanwhile, Moran’s I and AIC from the GWR model
surpassed those from the OLS model, suggesting that the GWR model is superior to the
OLS model in examining the variables influencing the NPP. GWR is more appropriate for
spatial regression analyses than OLS. Since the CUL regression coefficient is the largest, we
analyzed the regional differences and evolution trend of the CUL regression coefficients
and residual and explored whether CUL increasingly affects the spatial pattern of the NPP.
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Table 1. OLS model analysis results of NPP-influencing factors from 1990 to 2020.

Year Variable Coefficient Standard
Deviation t/z Value p-Value (>|t|)

1990

(Intercept) 0.23 0.03 19.79 0.00 **
PD 0.02 0.17 0.09 0.93 *

GDPD −0.55 0.14 −3.93 0.00
ULP 0.35 0.12 2.83 0.01 **
CUL −0.48 0.34 −3.16 0.01 ***
TEM −0.37 0.04 −10.23 0.00 **
PRE 0.36 0.02 22.05 0.05 **
DEM 0.35 0.06 14.20 0.00 **

1995

(Intercept) 0.27 0.03 19.08 0.00 ***
PD 0.27 0.12 2.26 0.02 *

GDPD −0.05 0.17 −6.03 0.00
ULP 0.10 0.10 1.10 0.27
CUL −0.61 0.21 −2.82 0.01 ***
TEM −0.37 0.04 −9.78 0.00 ***
PRE 0.32 0.02 18.37 0.05 ***
DEM 0.25 0.03 9.42 0.00 ***

2000

(Intercept) 0.24 0.03 21.00 0.00 ***
PD 0.22 0.13 1.73 0.08 *

GDPD −0.48 0.15 −3.22 0.00
ULP 0.12 0.09 0.02 0.98
CUL −0.53 0.22 −2.47 0.01 ***
TEM −0.43 0.04 −12.08 0.00 ***
PRE 0.33 0.02 20.20 0.00 ***
DEM 0.41 0.05 11.02 0.00 ***

2005

(Intercept) 0.38 0.03 24.73 0.00 ***
PD −0.61 0.24 −2.55 0.01 ***

GDPD −0.36 0.07 −5.28 0.00 ***
ULP 0.17 0.08 2.09 0.04 **
CUL −0.86 0.17 −5.19 0.00 ***
TEM −0.42 0.04 −11.77 0.00 ***
PRE 0.22 0.02 14.07 0.00 ***
DEM 0.51 0.06 10.28 0.00 ***

2010

(Intercept) 0.29 0.02 25.28 0.00 ***
PD −0.15 0.10 −1.48 0.14 *

GDPD −0.32 0.17 −2.42 0.02 ***
ULP −0.20 0.15 −1.33 0.08 *
CUL −0.46 0.25 −0.66 0.11 *
TEM −0.56 0.03 −13.91 0.00 ***
PRE 0.36 0.02 23.02 0.00 ***
DEM 0.42 0.01 16.35 0.00 ***

2015

(Intercept) 0.25 0.02 25.25 0.00 ***
PD −0.13 0.13 −1.00 0.32

GDPD −0.13 0.05 −2.71 0.01 ***
ULP −0.09 0.05 −1.72 0.08 *
CUL −0.29 0.13 −1.40 0.16 *
TEM −0.41 0.03 −12.83 0.00 ***
PRE 0.23 0.02 10.51 0.00 ***
DEM 0.49 0.05 9.24 0.00 ***

2020

(Intercept) 0.31 0.01 22.13 0.00 ***
PD −0.11 0.25 −1.03 0.28

GDPD −0.15 0.08 −2.34 0.01 ***
ULP −0.16 0.06 −1.65 0.059 *
CUL −0.32 0.11 −1.58 0.14 *
TEM −0.52 0.04 −11.54 0.01 **
PRE 0.31 0.01 10.36 0.00 ***
DEM 0.52 0.06 8.87 0.00 ***

Note: *, **, and *** indicate significance at 90%, 95%, and 99% confidence levels, respectively. Abbreviations:
population density (PD); GDP density (GDPD); urban land percent (ULP); comprehensive urbanization level
(CUL); temperature (TEM); precipitation (PRE); digital elevation model (DEM).

Figure 7 shows the spatial impact (regression coefficients and residual) of CUL on NPP
from 1990 to 2015. In 2000, the regression coefficient of CUL was roughly centered on the
western part of Hangzhou, the regression coefficient becomes smaller as it goes outward,
and the influence of comprehensive urbanization level (CUL) on NPP gradually decreases.
In 1995, the regression coefficient for both the high-value area and low-value area shifted
slightly northward towards the traffic line connecting Shanghai and Nanjing, compared to
1990. This indicates that Hangzhou’s e-commerce, Internet development, and other tertiary
industries gradually influenced the surrounding areas such as Shanghai and Nanjing [52].
The spatial pattern of the regression coefficients in 2000 was basically the same as that in
2005. The areas of Taizhou and Wenling in the southeast corner changed from median
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regression coefficients to high values. This is because the degree of urbanization in Taizhou
and Wenling was strengthened and it had begun to have a greater impact on the spatial
NPP pattern.

Table 2. OLS and GWR model results of NPP-influencing factors from 1990 to 2020.

Parameter Model 1990 1995 2000 2005 2010 2015 2020

AIC
OLS −1794.51 −1499.15 −1892.90 −1484.85 −1220.41 −1592.63 −1975.63

GWR −1880.94 −1619.63 −2063.51 −1648.74 −1311.01 −1687.76 −1653.41

R2 OLS 0.46 0.43 0.48 0.47 0.50 0.42 0.46
GWR 0.30 0.48 0.55 0.54 0.55 0.46 0.43

Adjusted R2 OLS 0.45 0.42 0.47 0.47 0.50 0.42 0.44
GWR 0.49 0.47 0.53 0.52 0.53 0.45 0.50

Moran’s I
OLS −0.04 −0.06 −0.03 −0.05 −0.01 −0.03 −0.02

GWR −0.16 −0.17 −0.15 −0.17 −0.18 −0.17 −0.14
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4. Discussion
4.1. Geographical Spillover Consequences in the Correlation between Urbanization and NPP

Geographical spillovers occur when the proximity of one unit to its nearby units influ-
ences its benefits or costs [53]. Statistically significant bivariate global Moran’s I values were
observed in all cases (Figure 5). This suggests that there was a significant spillover effect on
the geographical correlation between urbanization and NPP in the YRDUA. Additionally,
all bivariate global Moran’s I values were negative, indicating that urbanization resulted
in negative externalities for NPP. The findings of the bivariate LISA analysis (Figure 6)
indicate that the spatial spillover process was not spatially independent. Furthermore,
the transmission of the spatial spillover impact across grid cells was severely limited by
the regional context [54]. In other words, when a grid is next to a highly urbanized grid,
there is a higher likelihood of its NPP dropping. Conversely, when it is next to a grid
with low urbanization, the reverse scenario occurs. The bivariate LISA analysis revealed
distinct clustering patterns of high–high and low–low associations, indicating the need for
more investigation into the relationship between NPP and urbanization. It is important to
include other characteristics such as plant cover, water cover, terrain, and soil, since these
may also have an impact. These variables, in conjunction with urbanization, influenced the
alterations in the regional NPP [55].

The bivariate LISA diagram displays many conspicuous characteristics (Figure 6).

1. Examining the correlation between NPP and urbanization, it was evident that from
1990 to 2020, the geographical arrangement of regions deemed as not significant
remained consistent. These areas are mostly located on the outskirts of metropolitan
agglomerations. This is due to the fact that, compared to the Shanghai, Suzhou–Wuxi–
Changzhou, and Nanjing metropolitan areas, these places exhibited a lower level of
urbanization activities, such as population concentration, economic investment, and
land development. Hence, urbanization is not the primary influence on NPP on the
outskirts of metropolitan agglomerations;

2. In 2010, the geographical correlations of NPP and urbanization were highest in the
high–high and low–high areas. The regions at the highest elevations are mostly
located in the inner region, while the regions at lower elevations are found around the
urban built-up areas. Prior to 2010, the rate of urban expansion exhibited a consistent
and steady increase. Since 2010, there has been a growing awareness at both the
national and regional levels of the rapid expansion of urban agglomerations and
the environmental pollution issues associated with economic development and high-
energy-consuming industries. These factors have significantly contributed to global
climate change and the degradation of the ecological environment. Consequently,
regulations have been implemented to regulate the unrestricted expansion of urban
areas and reconfigure energy-intensive businesses in order to transition and enhance
the use of clean energy sources. Hence, starting in 2015, the association between NPP
and urbanization seemed to diminish;

3. The geographical distribution patterns of NPP and urbanization in 2000 and 2010
exhibited a significant degree of similarity. This outcome aligns with the findings
of Qiu’s study. He discovered that the decade spanning from 2000 to 2010 had the
highest rate of urbanization and the greatest stability for the urban agglomeration
of the Yangtze River Delta. During this time, the urban agglomeration underwent a
phase of creation and development, with a consistent and continuous increase in the
level of urbanization [56]. Simultaneously, the decline in NPP failed to attract attention
and recognition for its effect and repercussions. The decline in NPP and the rise in
anthropogenic carbon emissions are not being effectively managed and regulated. NPP
and urbanization exhibited a strong geographical correlation, indicating a consistent
pattern of spatial clustering.
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4.2. NPP and CUL Spatial Link Implications for Urban Agglomeration Development Programs

Using an OLS model, our research quantitatively analyzed the influence mechanism
of the spatial–temporal evolution of NPP in the YRDUA. The findings indicate that the
impact of different variables on the spatial–temporal development of NPP varied across
different time periods, and the influence of CUL on NPP showed an inverted “U” pattern.
Coordinating regional development, adapting measures to local conditions, maximizing
the benefits of regional development, and achieving a balanced, coordinated, and sus-
tainable urban agglomeration regional development model are important goals for the
progress of the YRDUA region. Prioritizing the low-NPP areas that are most vulnerable
to urbanization is crucial when embarking on urban development projects. Any region
exhibiting a substantial NPP should be designated as an ecological reserve to prevent or
limit urban expansion [57,58].

The regression analysis of the CUL in 2015 revealed that the regions with high regres-
sion coefficients were concentrated in the western border region of the urban agglomeration,
as seen from the distribution patterns of Shanghai and Hangzhou. This is mostly due to the
urbanization growth of the urban agglomeration, which has started expanding towards the
west. As a result, it has begun to link with and influence the urbanization process of the
western strip region of the urban agglomeration [59]. As far as the actual situation is con-
cerned, in the “Yangtze River Delta Urban Agglomeration Development Plan (2015–2030)”,
10 prefecture-level cities under the jurisdiction of Anhui Province, which is close to Jiangsu,
have also been assigned to the YRDUA, so that the YRDUA has a more solid development
foundation and geographical space, which can better realize the improvement of quality
and efficiency and the integrated development of large regions [60].

The study findings can more accurately align with the current state of development
in the YRDUA. Additionally, the research conclusions may serve as a foundation for the
creation of regional development policies for the YRDUA. The analytical framework not
only emphasizes the application of new methods but also pays attention to the dynamic
space of regional cooperation and its interconnections [61]. It aims to provide support for
further coordinating regional balanced development and strengthening regional exchanges
and cooperation by identifying and quantifying the spillover effect between regions. This
research approach can also provide new research ideas and methods for other domestic
regional economic development research [62].

4.3. Limitations of the Applied Method

However, there are still some limitations in this study. One problem is that the
R2 values are relatively low for both the OLS and GWR models, suggesting that other
factors affecting NPP were not fully explored. Further research should develop improved
models based on the characteristics of the study area to analyze the spatial–temporal
evolution of NPP, such as spatiotemporal weighted regression (STWR) models. The STWR
model is characterized by using a novel “time distance” for weighting to capture fine
spatiotemporal heterogeneity, as opposed to the traditional geographically and temporally
weighted regression (GTWR) approach [63]. These advanced spatiotemporal modeling
techniques could help to better elucidate the relationship between NPP and its driving
factors, including the role of past carbon storage data to determine the relationship between
social behavior and natural resources. Another issue is that the geospatial data layer
should be further refined in future research. It is worth noting that the assessment of
ecosystem services depends on the choice of proxy indicators. In our study, the NPP
indicator, which characterizes carbon fixation and oxygen release, was selected to reflect
the regulatory function of ecosystem services. If the NPP data based on MODIS data cannot
be accurately spatially predicted, or the collected data do not have sufficiently high spatial
and temporal resolutions, there may be errors in the results of the correlation analyses and
regression fittings. This issue also arises in proxies used for evaluating urbanization, and
all three levels have inherent issues concerning the quality and accuracy that may impact
the study’s findings.
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The findings indicate that GWR outperforms the standard regression method (OLS)
in explaining the relationship between urbanization and the responsiveness of ecosystem
services, especially for NPP. The results derived from the methodologies used in this
investigation are very reliable and satisfactory, indicating that spatially explicit modeling
approaches could be valuable for decision making and policy formulation. If the data used
in this investigation can be gathered for other geographical areas, the technique could
be applied in those areas to evaluate indicators of urbanization and NPP and perform a
geographical examination of the interconnections between these two aspects. The purpose
of this research is to assist governments in making informed choices that will contribute
to the long-term sustainability of urban agglomeration areas, including the economic,
environmental, and sociocultural aspects.

5. Conclusions

Our research investigated the relationship between ecosystem services (with NPP
representing regulatory functions) and urbanization from a geographical standpoint, taking
into account the spatial correlations and dependencies. The findings of our investigation
led to the following conclusions: (1) The bivariate global Moran’s I of urbanization and
NPP from 1990 to 2020 exhibited negative values, suggesting a global negative connection
between the two variables. From a local standpoint, there was a geographic disparity
in the correlations between CUL and NPP. The bivariate LISA approach identified and
presented four different types of local correlations (namely, high–high, high–low, low–high,
and low–low) between NPP and urbanization. (2) The spatial regression analysis revealed
that urbanization and other influencing variables have varying effects on NPP. Due to the
growing urbanization, NPP reached its peak in 2005, with 1995 and 2010 following closely
after. The correlation was lowest in 2015. (3) Aside from urbanization, environmental
services are also influenced by other variables such as climate and geography. When
accounting for spillover effects in the regression analysis, the influence of urbanization
on ecosystem services showed a steady increase from 1990, followed by a gradual decline
after 2010, in contrast to the findings obtained using the OLS method. However, our study
has certain limitations. First, we used NPP as a proxy for ecosystem services, which may
not fully capture all aspects of regulatory functions. Second, the spatial regression models
employed may not account for all potential confounding factors and complex interactions.
Third, our analysis focused on the national scale, and finer-scale local variations may exist.
Despite these limitations, our findings offer practical implications for urban planning and
industrial site selection, highlighting the importance of considering spatial dependencies
and trade-offs between urbanization and ecosystem services. Future research could explore
alternative measures of ecosystem services, incorporate additional explanatory variables,
and conduct multi-scale analyses to further refine our understanding of this complex
relationship. We recommend that urban planners and policymakers consider the spatial
patterns and correlations identified in our study when developing urbanization strategies
and industrial zoning plans. Balancing economic growth with ecosystem conservation
requires a holistic approach that accounts for geographic variations and spatial spillover
effects. Integrating these considerations into decision-making processes can promote
sustainable urban development and environmental stewardship.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/land13040562/s1, Figure S1: (a) Spatial pattern of popula-
tion (POP) in the YRDUA from 1990 to 2020. (b) Spatial pattern of gross domestic product (GDP) in
the YRDUA from 1990 to 2020. (c) Spatial pattern of urban land percentage (ULP) in the YRDUA
from 1990 to 2020.
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