Multi-Scenario Simulating the Impacts of Land Use Changes on Ecosystem Health in Urban Agglomerations on the Northern Slope of the Tianshan Mountain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Land Use Dynamics
2.4. Ecosystem Health Assessment (EHA)
2.4.1. Natural Health of Ecological Processes
2.4.2. Quantification of the Ecosystem Services
2.5. PLUS Model
2.5.1. Selection of Land-Use Change Drivers
2.5.2. Design of Policy Scenarios
2.5.3. Parameter Setting and Accuracy Check
2.6. Elasticity Analysis
3. Results
3.1. Land Use Change during 2000–2020
3.2. Analysis of Spatiotemporal Variations in Ecosystem Health
3.3. Formatting of Mathematical Components
3.4. Prediction of Changes in Ecosystem Health
3.5. Response of Ecosystem Health to Land Use Change
3.6. Correlation of Ecosystem Indicators
4. Discussion
4.1. Spatiotemporal Analysis of Ecosystem Health under Different Land Use Scenarios
4.2. Management Recommendations Based on Evaluation Results
4.3. Limitations
5. Conclusions
- (1)
- Land use on the NSTM from 2000 to 2020 was dominated by barren land and grassland. Due to irrational grazing, cropland protection policies, and other reasons, there was a discernible trend of grassland degradation and conversion to cropland and barren land, resulting in a reduction of approximately 10.4%. Concurrently, there was a substantial expansion of construction land by 188%, signaling a deepening urbanization process within the NSTM. While the overall EH status of the NSTM remains predominantly subpar, there is a gradual trend of improvement observed, in which the EH of forest is relatively well, the EH of cropland is ordinary, and the EH of grassland and barren land is relatively weak.
- (2)
- Under the four simulation scenarios, there is a notable decline in the area of grassland and water bodies, coupled with an increase in cropland, barren land, and construction land areas. The expansion rate of construction land surpasses all other land categories significantly. Due to its initial extensive coverage, the rate of grassland decline is gradual, but the magnitude remains the most substantial.
- (3)
- In 2020–2030, the trajectory of EH deterioration exhibits signs of improvement or mitigation under the FD and ED scenarios, yet a pronounced degradation is evident under the ND and UD scenarios. Negative ecosystem elasticity is observed across all scenarios, indicating the fragility of the NSTM’s ecological environment. Urgent measures are imperative to uphold the structural and functional stability of its ecosystem. The values of ecological elasticity varied among different land categories, with cropland, barren land, and grassland bearing a heightened susceptibility to the impacts of land use changes, while construction lands, forests, and water bodies demonstrate a lesser vulnerability to such alterations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d‘Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Wu, J.; Lv, H.; Hu, X. Linking ecosystem services and landscape patterns to assess urban ecosystem health: A case study in Shenzhen City, China. Landsc. Urban Plan. 2015, 143, 56–68. [Google Scholar] [CrossRef]
- Comberti, C.; Thornton, T.F.; De Echeverria, V.W.; Patterson, T. Ecosystem services or services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Glob. Environ. Change 2015, 34, 247–262. [Google Scholar] [CrossRef]
- Rao, Y.; Zhang, J.; Wang, K.; Jepsen, M.R. Understanding land use volatility and agglomeration in northern Southeast Asia. J. Environ. Manag. 2021, 278, 111536. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Liu, Y.; Li, T.; Wu, J. Regional ecosystem health response to rural land use change: A case study in Lijiang City, China. Ecol. Indic. 2017, 72, 399–410. [Google Scholar] [CrossRef]
- Wang, P.; Yu, P.; Lu, J.; Zhang, Y. The mediation effect of land surface temperature in the relationship between land use-cover change and energy consumption under seasonal variations. J. Clean. Prod. 2022, 340, 130804. [Google Scholar] [CrossRef]
- Dong, L.; Xiong, L.; Lall, U.; Wang, J. The effects of land use change and precipitation change on direct runoff in Wei River watershed, China. Water Sci. Technol. 2015, 71, 289–295. [Google Scholar] [CrossRef] [PubMed]
- De Chazal, J.; Rounsevell, M.D. Land-use and climate change within assessments of biodiversity change: A review. Glob. Environ. Chang. 2009, 19, 306–315. [Google Scholar] [CrossRef]
- Jin, G.; Deng, X.; Chu, X.; Li, Z.; Wang, Y. Optimization of land-use management for ecosystem service improvement: A review. Phys. Chem. Earth Parts A/B/C 2017, 101, 70–77. [Google Scholar] [CrossRef]
- Ellis, E.; Pontius, R. Land-use and land-cover change. Encycl. Earth 2007, 1, 4631. [Google Scholar]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- Costanza, R. Ecosystem health and ecological engineering. Ecol. Eng. 2012, 45, 24–29. [Google Scholar] [CrossRef]
- van Bruggen, A.H.; Goss, E.M.; Havelaar, A.; van Diepeningen, A.D.; Finckh, M.R.; Morris, J.G., Jr. One Health-Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Sci. Total Environ. 2019, 664, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Laliberte, E.; Wells, J.A.; DeClerck, F.; Metcalfe, D.J.; Catterall, C.P.; Queiroz, C.; Aubin, I.; Bonser, S.P.; Ding, Y.; Fraterrigo, J.M. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 2010, 13, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Change, M.B. Global Biodiversity Scenarios for the Year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Torres, R.; Gasparri, N.I.; Blendinger, P.G.; Grau, H.R. Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: A hierarchical integrative multi-taxa study. Reg. Environ. Chang. 2014, 14, 1549–1561. [Google Scholar] [CrossRef]
- Ma, K.; Kong, H.; Guan, W.; Fu, B. Ecosystem health assessment: Methods and directions. Acta Ecol. Sin. 2001, 21, 2106–2116. [Google Scholar]
- Peng, J.; Wang, Y.; Wu, J.; Zhang, Y. Evaluation for regional ecosystem health: Methodology and research progress. Acta Ecol. Sin. 2007, 27, 4877–4885. [Google Scholar] [CrossRef]
- Costanza, R. Toward and operational definition of ecosystem health. In Frontiers in Ecological Economics; Edward Elgar Publishing: Cheltenham, UK, 1997; pp. 75–92. [Google Scholar]
- Pan, Z.; He, J.; Liu, D.; Wang, J. Predicting the joint effects of future climate and land use change on ecosystem health in the Middle Reaches of the Yangtze River Economic Belt, China. Appl. Geogr. 2020, 124, 102293. [Google Scholar] [CrossRef]
- Xie, X.; Fang, B.; Xu, H.; He, S.; Li, X. Study on the coordinated relationship between Urban Land use efficiency and ecosystem health in China. Land Use Policy 2021, 102, 105235. [Google Scholar] [CrossRef]
- Yushanjiang, A.; Zhang, F.; Tan, M.L. Spatial-temporal characteristics of ecosystem health in Central Asia. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102635. [Google Scholar] [CrossRef]
- Samie, A.; Deng, X.; Jia, S.; Chen, D. Scenario-based simulation on dynamics of land-use-land-cover change in Punjab Province, Pakistan. Sustainability 2017, 9, 1285. [Google Scholar] [CrossRef]
- Krause, A.; Haverd, V.; Poulter, B.; Anthoni, P.; Quesada, B.; Rammig, A.; Arneth, A. Multimodel analysis of future land use and climate change impacts on ecosystem functioning. Earth’s Future 2019, 7, 833–851. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Xie, S.; Cheng, X. Spatiotemporal evolution scenarios and the coupling analysis of ecosystem health with land use change in Southwest China. Ecol. Eng. 2022, 179, 106607. [Google Scholar] [CrossRef]
- Kucsicsa, G.; Popovici, E.-A.; Bălteanu, D.; Grigorescu, I.; Dumitraşcu, M.; Mitrică, B. Future land use/cover changes in Romania: Regional simulations based on CLUE-S model and CORINE land cover database. Landsc. Ecol. Eng. 2019, 15, 75–90. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Z.; Zuo, Q.; Du, H. Simulating the impact of land use change on ecosystem services in agricultural production areas with multiple scenarios considering ecosystem service richness. J. Clean. Prod. 2023, 397, 136485. [Google Scholar] [CrossRef]
- Zhao, Y.; He, L.; Bai, W.; He, Z.; Luo, F.; Wang, Z. Prediction of ecological security patterns based on urban expansion: A case study of Chengdu. Ecol. Indic. 2024, 158, 111467. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.; Kung, H.-T. Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Yibo, Y.; Ziyuan, C.; Simayi, Z.; Shengtian, Y. The temporal and spatial changes of the ecological environment quality of the urban agglomeration on the northern slope of Tianshan Mountain and the influencing factors. Ecol. Indic. 2021, 133, 108380. [Google Scholar] [CrossRef]
- Fang, C.; Gao, Q.; Zhang, X.; Cheng, W. Spatiotemporal characteristics of the expansion of an urban agglomeration and its effect on the eco-environment: Case study on the northern slope of the Tianshan Mountains. Sci. China Earth Sci. 2019, 62, 1461–1472. [Google Scholar] [CrossRef]
- Tu, A.; Xie, S.; Li, Y.; Liu, Z.; Shen, F. Effect of fixed time interval of rainfall data on calculation of rainfall erosivity in the humid area of south China. Catena 2023, 220, 106714. [Google Scholar] [CrossRef]
- Efthimiou, N. The importance of soil data availability on erosion modeling. Catena 2018, 165, 551–566. [Google Scholar] [CrossRef]
- Yan, F.; Shangguan, W.; Zhang, J.; Hu, B. Depth-to-bedrock map of China at a spatial resolution of 100 m. Sci. Data 2020, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Chen, X.; He, L.; Luo, F.; He, Z.; Bai, W.; Xiao, Y.; Wang, Z. Dynamic characteristics and impacts of ecosystem service values under land use change: A case study on the Zoigê plateau, China. Ecol. Inform. 2023, 78, 102350. [Google Scholar] [CrossRef]
- Costanza, R.; Norton, B.G.; Haskell, B.D. Ecosystem Health: New Goals for Environmental Management; Island Press: Washington, DC, USA, 1992. [Google Scholar]
- Li, W.; Wang, Y.; Xie, S.; Cheng, X. Coupling coordination analysis and spatiotemporal heterogeneity between urbanization and ecosystem health in Chongqing municipality, China. Sci. Total Environ. 2021, 791, 148311. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Blanco, M.; Costanza, R.; Chen, H.; DeGroot, D.; Jarvis, D.; Kubiszewski, I.; Montoya, J.; Sangha, K.; Stoeckl, N.; Turner, K. Ecosystem health, ecosystem services, and the well-being of humans and the rest of nature. Glob. Chang. Biol. 2022, 28, 5027–5040. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.B.; Hansen, A.J.; Flather, C.H. Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production. Remote Sens. Environ. 2008, 112, 4381–4392. [Google Scholar] [CrossRef]
- He, J.; Pan, Z.; Liu, D.; Guo, X. Exploring the regional differences of ecosystem health and its driving factors in China. Sci. Total Environ. 2019, 673, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Liu, Y.; Fei, X.; Yu, W.; Zhang, Z.; Meng, Q. Ecosystem health assessment: A comprehensive and detailed analysis of the case study in coastal metropolitan region, eastern China. Ecol. Indic. 2019, 98, 363–376. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X. Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Reg. Environ. Chang. 2018, 18, 247–259. [Google Scholar] [CrossRef]
- Allan, A.; Soltani, A.; Abdi, M.H.; Zarei, M. Driving forces behind land use and land cover change: A systematic and bibliometric review. Land 2022, 11, 1222. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.-H.; Hertel, T.W. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Land use change and driving factors in rural China during the period 1995-2015. Land Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, F.; Cong, K.; Liu, X. Scenario simulation of land use and land cover change in mining area. Sci. Rep. 2021, 11, 12910. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Huang, J.; Liu, T. Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries. Land Use Policy 2019, 82, 422–435. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, M.; Zhang, D.; Chen, R.; Xi, C.; Yang, H. Coupling the Calibrated GlobalLand30 Data and Modified PLUS Model for Multi-Scenario Land Use Simulation and Landscape Ecological Risk Assessment. Remote Sens. 2023, 15, 5186. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.; Linnenluecke, M.K. Circular economy and resilience: A research agenda. Bus. Strategy Environ. 2022, 31, 2754–2765. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, C.; Wang, C.; Shan, P.; Zhang, Y.; Wu, G. Ecosystem health assessment of the Liao River Basin upstream region based on ecosystem services. Acta Ecol. Sin. 2016, 36, 294–300. [Google Scholar] [CrossRef]
- Ran, C.; Wang, S.; Bai, X.; Tan, Q.; Wu, L.; Luo, X.; Chen, H.; Xi, H.; Lu, Q. Evaluation of temporal and spatial changes of global ecosystem health. Land Degrad. Dev. 2021, 32, 1500–1512. [Google Scholar] [CrossRef]
- Tang, L.; Kasimu, A.; Ma, H.; Eziz, M. Monitoring multi-scale ecological change and its potential drivers in the economic zone of the tianshan mountains’ northern slopes, xinjiang, China. Int. J. Environ. Res. Public Health 2023, 20, 2844. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.; Fang, S.; Lin, L.; Qin, Z.; Wang, X. Methods and applications for ecological vulnerability evaluation in a hyper-arid oasis: A case study of the Turpan Oasis, China. Environ. Earth Sci. 2015, 74, 1449–1461. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Qin, K.; Li, J.; Yang, X. Trade-off and synergy among ecosystem services in the Guanzhong-Tianshui Economic Region of China. Int. J. Environ. Res. Public Health 2015, 12, 14094–14113. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, J.; Qin, K.; Zhou, Z.; Yang, X.; Li, T. Changes in land-uses and ecosystem services under multi-scenarios simulation. Sci. Total Environ. 2017, 586, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ding, X.; Shu, Y.; Abbas, Z. Spatio-temporal variations of ecosystem health in the Liuxi River Basin, Guangzhou, China. Ecol. Inform. 2022, 72, 101842. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, G.; Lu, S. Assessment of land ecosystem health with Monte Carlo simulation: A case study in Qiqihaer, China. J. Clean. Prod. 2020, 250, 119522. [Google Scholar] [CrossRef]
Scenario | Scenario Description |
---|---|
Natural Development (ND) | The ND scenario will exclude policy factors such as urban planning and protection, and only consider the land development status under original natural conditions. Based on the expansion rate of land use types from 2010 to 2020, this study set scales for each category in 2030 by Markov chains method [30]. |
Farmland Protection (FP) | Cropland protection is of great significance for ensuring the sustainable development of agriculture. Under the FP scenario, the conversion of cropland to other land types is strictly restricted [49], thereby controlling the loss of cropland. |
Ecological Protection (EP) | EP scenario means strictly controlling the conversion of land types in ecological protection areas [50]. Based on the Markov transfer matrix [51], the probability of transferring cropland to construction land is reduced by 30%, with the portion not converted to construction land being converted to forest; the probability of transferring forest and grassland to construction land is reduced by 50%; the probability of transferring forest to cropland is reduced by 50%; and the probability of transferring barren land to grassland is increased by 30%. |
Urban Development (UD) | As an important link on the Silk Road, the NSTM is experiencing rapid economic development and accelerated urbanization. In this scenario, the probability of the transfer of forest and grassland to construction land increases by 50%. |
Land Use Types | ND | FP | EP | UD | ||||
---|---|---|---|---|---|---|---|---|
Mean | Var | Mean | Var | Mean | Var | Mean | Var | |
Cropland | 0.2403 | 0.0459 | 0.2462 | 0.0435 | 0.2415 | 0.0464 | 0.2394 | 0.0459 |
Forest | 0.3817 | 0.1231 | 0.3881 | 0.1204 | 0.3868 | 0.1220 | 0.3816 | 0.1229 |
Grassland | 0.1636 | 0.1425 | 0.1710 | 0.1432 | 0.1625 | 0.1443 | 0.1634 | 0.1425 |
Waterbody | 0.2266 | 0.0834 | 0.2420 | 0.0940 | 0.2524 | 0.1046 | 0.2235 | 0.0804 |
Barren land | 0.0562 | 0.0865 | 0.0595 | 0.0907 | 0.0571 | 0.0915 | 0.0558 | 0.0858 |
Construction land | 0.1633 | 0.0591 | 0.1586 | 0.0603 | 0.1610 | 0.0603 | 0.1628 | 0.0598 |
Land Use Types | ND | FP | EP | UD |
---|---|---|---|---|
Cropland | −0.7927 | 0.0304 | −0.5409 | −1.0010 |
Forest | −0.2014 | −0.0019 | −0.0356 | −0.1969 |
Grassland | −0.3649 | −0.6409 | −0.3175 | −0.3402 |
Waterbody | 0.3041 | 0.0486 | 0.0693 | 0.5043 |
Barren land | −1.1552 | 0.2083 | −1.0567 | −1.3854 |
Construction land | −0.0734 | −0.1751 | −0.1456 | −0.0589 |
Mean | −0.3806 | −0.0884 | −0.3378 | −0.4130 |
R | EV | EO | ER | ES |
---|---|---|---|---|
2000 | 0.6080 * | 0.5135 * | 0.4076 * | 0.5793 * |
2010 | 0.6129 * | 0.5095 * | 0.4213 * | 0.5815 * |
2020 | 0.6184 * | 0.5104 * | 0.4301 * | 0.5887 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, Z.; Ma, J.; Sun, Y.; Yang, Y.; Zhu, X.; Chen, F. Multi-Scenario Simulating the Impacts of Land Use Changes on Ecosystem Health in Urban Agglomerations on the Northern Slope of the Tianshan Mountain, China. Land 2024, 13, 571. https://doi.org/10.3390/land13050571
Hua Z, Ma J, Sun Y, Yang Y, Zhu X, Chen F. Multi-Scenario Simulating the Impacts of Land Use Changes on Ecosystem Health in Urban Agglomerations on the Northern Slope of the Tianshan Mountain, China. Land. 2024; 13(5):571. https://doi.org/10.3390/land13050571
Chicago/Turabian StyleHua, Ziyi, Jing Ma, Yan Sun, Yongjun Yang, Xinhua Zhu, and Fu Chen. 2024. "Multi-Scenario Simulating the Impacts of Land Use Changes on Ecosystem Health in Urban Agglomerations on the Northern Slope of the Tianshan Mountain, China" Land 13, no. 5: 571. https://doi.org/10.3390/land13050571
APA StyleHua, Z., Ma, J., Sun, Y., Yang, Y., Zhu, X., & Chen, F. (2024). Multi-Scenario Simulating the Impacts of Land Use Changes on Ecosystem Health in Urban Agglomerations on the Northern Slope of the Tianshan Mountain, China. Land, 13(5), 571. https://doi.org/10.3390/land13050571