
Citation: Zhang, Z.; Wei, Y.; Li, X.;

Wan, D.; Shi, Z. Study on Tianjin

Land-Cover Dynamic Changes,

Driving Factor Analysis, and

Forecasting. Land 2024, 13, 726.

https://doi.org/10.3390/

land13060726

Academic Editors: Kathryn Sheffield,

Mohammad Abuzar and Alison

L. Cowood

Received: 30 March 2024

Revised: 12 May 2024

Accepted: 15 May 2024

Published: 22 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Study on Tianjin Land-Cover Dynamic Changes, Driving Factor
Analysis, and Forecasting
Zhaoxu Zhang 1,2,* , Yuzhao Wei 1, Xutong Li 1, Dan Wan 3,4 and Zhenwei Shi 5

1 School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China;
2213620128@tiangong.edu.cn (Y.W.); 2331040670@tiangong.edu.cn (X.L.)

2 The Eighth Geological Brigade, Hebei Bureau of Geology and Mineral Resources Exploration,
Qinhuangdao 066000, China

3 Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University,
Tianjin 300072, China; wandan@tju.edu.cn

4 Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University,
Tianjin 300072, China

5 Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese
Academy of Sciences, Beijing 100190, China; shizw@aircas.ac.cn

* Correspondence: zhangzhaoxu@tiangong.edu.cn

Abstract: Land-use and land-cover changes constitute pivotal components in global environmental
change research. Through an examination of spatiotemporal variations in land cover, we can deepen
our understanding of land-cover change dynamics, shape appropriate policy frameworks, and
implement targeted environmental conservation strategies. The judicious management of land is a
critical determinant in fostering the sustainable growth of urban economies and enhancing quality
of life for residents. This study harnessed remote sensing data to analyze land-cover patterns in
Tianjin over five distinct time points: 2000, 2005, 2010, 2015, and 2020. It focused on evaluating the
evolving dynamics, transition velocities, and transformation processes across various land categories
within the region. Utilizing dynamic analysis and a transition matrix, the study traced shifts among
different land-use classes. The center-of-gravity migration model was employed to elucidate land-
cover pattern evolution. This research also integrated pertinent land-cover statistics to offer a holistic
perspective on Tianjin’s land-cover transformations. Employing the CA–Markov model, we projected
the prospective spatial layout of land cover for the area. Our findings revealed the following.
(1) From 2000 to 2020, Tianjin experienced a significant reduction in cropland, forest, grassland, and
water areas, alongside a substantial increase in impervious. (2) The impervious surface’s center of
gravity, initially in Beichen District, shifted 4.20 km northwestward at an average rate of 0.84 km per
year. (3) Principal component analysis indicated that the growth in the output value of the secondary
and forestry industries is a key driver in expanding Tianjin’s impervious-surface area. (4) Predictions
for 2025 suggest an increase in Tianjin’s impervious-surface area to 4659.78 km2, with a concurrent
reduction in cropland to 5656.18 km2. The insights gleaned from this study provide a solid theoretical
foundation and empirical evidence, aiding in the formulation of informed land-use strategies, the
preservation of urban land resources, and guiding principles for sustainable urban development.

Keywords: land cover; change analysis; center-of-gravity shift; prediction; Tianjin city

1. Introduction

Land use involves a process wherein humans analyze the natural characteristics of
land, utilizing biological, technological, and legal policies, modify socio-economic activi-
ties [1,2]. Land-use and -cover change (LUCC) can directly affect the diversity of biological
species [3], contribute to climate change and ecosystem transformations [4], and increase
human–environment interactions [5]. Additionally, land use significantly shapes social, eco-
nomic, and political landscapes [6]. Conducting land-use analysis is vital for understanding
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the intricate relationship between humans and nature, offering insights into current land-
use patterns and guiding the implementation of appropriate interventions. This analysis
helps to discern the interplay between human activities and the natural world and evaluate
their impact on living environments. Based on current land-use scenarios, tailored mea-
sures can be devised to enhance and improve these environments [7,8]. Land-use analysis
is instrumental in understanding the interconnectedness of human and natural systems,
potentially influencing the quality of human habitats.

LUCC is a critical subject in the realms of global climate change and sustainable
development, emerging as a key factor in human–land relationship studies [9]. In recent
years, numerous scholars have applied remote sensing technology to investigate land-
use changes, simulating future alterations under various scenarios based on differing
land-use demands and policies [10]. This research typically encompasses the driving
forces behind LUCC, spatial and temporal dynamic analysis, and regional and global
land-use/-cover change models [11,12]. Furthermore, a variety of models are used, such as
cellular automata (CA) [13], grey prediction models [14], system dynamics (SD) models [15],
and Markov models [16]. The CA–Markov model integrates the strengths of cellular
automata and Markov chain models to simultaneously predict spatial patterns and temporal
trends, making it well suited for simulating complex changes in multiple land-use types.
Consequently, this approach has gained widespread application in analyzing LUCC [17,18],
and CA–Markov models have been developed to enhance the understanding, assessment,
and prediction of land-cover changes. The diverse simulation mechanisms of these LUCC
models have unique strengths and limitations, impacting the accuracy of simulations and
forecasts. Notably, the CA–Markov model, which effectively merges the spatial prediction
capabilities of the CA model with the long-term predictive simulation of the Markov model,
significantly enhances accuracy. This model has gained widespread application in urban
research [19,20].

Recently, there has been significant progress in the integration of multi-source data
for land-cover research. For instance, Haghigh et al. conducted an assessment of land-use
changes during three periods (1994–2002, 2002–2009, and 2009–2015) and made predictions
for 2009, 2015, and 2023 by using the CA–Markov model to predict land-use change [21].
Han et al. combined CLUES and Markov models to simulate development and protection
scenarios for Beijing from 2010 to 2020 and identified a major feature of conversion from
arable land to built-up land [22]. Yang et al. utilized the CA–Markov model to predict
land-cover changes to support development planning and formulate land-use policies in
the Guangdong–Hong Kong–Macao Greater Bay Area [23]. Zhang et al. integrated the
CA–Markov model into the random forest algorithm to comprehend dynamics in LUCC
under specific scenarios, assessing the impacts of multiple variables on regional-scale land-
use evaluation, and applied this coupled model to Southeast China’s largest watershed:
Minjiang River Watershed [24].

Effective land use has recently become a focal point of research [8,25], with LUCC
being a central theme in global change studies [26]. However, the current research pre-
dominantly targets ecologically sensitive areas, focusing on land-use types and change
drivers [27]. Most present-day simulations and predictions of land-use changes concentrate
on large-scale, two-phase predictions or examine data from a broad regional planning per-
spective, often resulting in less precise outcomes [28]. This paper explores the spatial and
temporal LUCC and its driving forces in Tianjin from 2000 to 2020. It extracts land-cover-
type information across multiple periods to uncover the characteristics of spatiotemporal
dynamic changes in land use, analyzing both the trajectory of land-use shifts and urban
center transformations. Influencing factors are examined using principal component and
multiple linear regression analyses. Finally, the CA–Markov coupling model is employed
to forecast the dynamic changes in Tianjin’s land use by 2025. This research provides a
scientific and theoretical foundation for the sustainable development of land use in Tianjin.
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2. Study Area and Data
2.1. Study Area

As a vital provincial administrative region and municipality, Tianjin serves as a key
gateway for international openness in Northern China. It is recognized as a prominent
shipping and logistics hub, as well as a center for modern manufacturing (Figure 1).
Geographically situated at 38◦33′ to 40◦15′ N latitude and 116◦42′ to 118◦03′ E longitude,
Tianjin is located in the northern segment of the North China Plain [29]. As of 2022, the
city encompasses 16 districts, covering a total area of 11,966.45 km2. It boasts a resident
population of 13.63 million, of which 11.6 million people live in urban areas, leading to an
urbanization rate of 85.11%. Figure 1 illustrates the geographical location of the study area.
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2.2. Study Data
2.2.1. Remote Sensing Data

The data employed in this study were sourced from the 2000-to-2020 land-cover
dataset of Tianjin, available on the Google Earth Engine (GEE) platform. This dataset was
derived from Landsat satellite imagery processed on GEE, with annual land-cover products
constructed using the random forest algorithm. The classification of land cover within this
dataset segregates the land in Tianjin into seven primary categories, in accordance with
first-level classification standards. These categories predominantly encompass cropland,
forest, shrubland, grassland, water, barren land, and impervious surfaces [30]. For the
purpose of this study, 30 m resolution land-cover remote sensing imagery data for Tianjin
for the years 2000, 2005, 2010, 2015, and 2020 were meticulously selected as the foundational
data. The land types in this study are categorized into seven major groups without further
refinement. Meanwhile, the remote sensing data used have a resolution of 30 m. For Tianjin,
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employing higher precision remote sensing data for analysis and research would enable
better extraction of the land-cover change issues reflected in the dataset.

2.2.2. Statistical Data

The statistics used in this study were obtained from the National Statistical Yearbook,
Tianjin Statistical Yearbook, and additional information from the Tianjin Municipal Bureau
of Statistics, spanning from 2000 to 2020. These statistics include the resident population,
urban and rural per capita disposable incomes, the city’s GDP, and the output values
of the primary, secondary, and tertiary industries. Furthermore, they encompass data
from agriculture, forestry, animal husbandry, fisheries, and the gross output value of
the construction industry. Other key indicators are the general public budget income
and expenditure, completed real estate investment, total grain production, total retail
sales of consumer goods, and the urban and village populations, amounting to a total of
19 driving indicators.

3. Methods

The flowchart is shown in Figure 2, and the specific methods used are introduced
below. The remote sensing data and statistical data were initially preprocessed in this study,
encompassing radiometric calibration, atmospheric correction, etc. Subsequently, an analy-
sis was conducted to examine the changes in land cover within Tianjin, including variations
in area, frequency, intensity, etc. Following this analysis, 19 driving force indicators were
selected for further investigation. Finally, a prediction model was employed to investigate
the land-use patterns in Tianjin.
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3.1. Land-Use Change Studies
3.1.1. Attitudes towards Land-Use Change

Land-use dynamics serve as an indicator reflecting the rate of change in land use.
They are primarily utilized to compare the historical differences in the rates of various
types of land changes and to forecast future trends in land-use alterations. In this study, a
singular approach to land-use dynamics was employed. The calculation formula utilized is
as follows:

k =
u2− u1

u1
× 1

t2− t1
× 100% (1)

where k represents a single land-use dynamic attitude, t2, and t1 is the time interval during
the study period. u1 is the initial area of the class during the study period, and u2 is the
area of the class at the end of the study period.

3.1.2. Contribution Rate of Land-Use Change

The contribution rate of land-use change is defined as the proportion of the area of a
specific type of land use that has undergone change, relative to the total area of all land-use
types that have changed within the same period. The formula for calculating this rate is
as follows:

Fi =

∣∣Ubi −Uai

∣∣
∑
∣∣Ubi −Uai

∣∣ (2)

where Fi represents the contribution rate of changes in a certain land-use type (i) during
the research period.

Fi denotes the contribution of a land-use type i to the change in the study period,
and Uai and Ubi represent the area of the land-use type i at the beginning and end of the
study, respectively.

3.1.3. Intensity of Land-Use Change

The intensity index for land-use change quantifies the extent of change in a specific
land-use type, expressed as the percentage of the area that has changed relative to the
total area at both the beginning and end of the research period. This index is calculated
to determine the magnitude or trend of land-use changes over a given time frame. The
formula for this calculation is as follows:

Si =

∣∣Ubi −Uai

∣∣
D

× 100% (3)

where Si represents the intensity of changes in a certain land-use type i during the research
period. Uai and Ubi represent the area of land-use type i at the beginning and end of the
study, respectively, D is the total area of the study area.

3.2. Methods of Spatial Analysis

The land-use transfer matrix is a tool that illustrates the changes, inflows, and outflows
of different land types over the course of the research period. It enables the observation
and analysis of changes in various land types in both a directional and quantitative manner.
This matrix effectively reflects the evolving characteristics of the land-use structure. By
superimposing spatial maps representing two different phases of land-use status in Tianjin,
the transformation between various land types was identified and subsequently analyzed.
The formulation of the land-use transfer matrix is as follows:
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k = Sij =

S11 . . . S1n
. . . . . . . . .
Sn1 . . . Snn

 (4)

where Sij represents the area where the i type of land was converted into the j type of land
during the studied time period, i is the land-use type at the beginning of the research period,
j is the type of land used at the end of the research period, n is the number of land-use
types, and n is 7 in this paper.

3.3. Center-of-Gravity Transfer Model

The concept of the center of gravity, originally derived from physics, is applied to
study the shifts and transitions in variables like population and economy. In the con-
text of land-use and -cover change (LUCC) research, the center-of-gravity transfer model
is utilized to simulate temporal changes in the center of gravity for specific land-use
types. This approach effectively reveals the spatial dynamics of LUCC pattern transfor-
mations. The formula for calculating the center-of-gravity coordinates in this model is
as follows:

X(j,t) =
n

∑
i=1

[LA (i,t) × X(i,t)

]
/

n

∑
i=1

LA(i,t) (5)

Y(j,t) =
n

∑
i=1

[LA (i,t) × Y(i,t)

]
/

n

∑
i=1

LA(i,t) (6)

where X(j,t) and Y(j,t) are the latitude and longitude coordinates of the land-use type in pe-
riod t, respectively, n is the number of patches of land-use type in period t, LA(i,t) is the area
of the i patch of land-use type j, X(i,t) and Y(i,t) are the latitude and longitude coordinates.

The formula for the distance and velocity between the centers of gravity of the same
land type at different periods is as follows:

D(i,m−n) =

{[
X(i,m) − X(i,n)

]2
}
+

{[
Y(i,m) − Y(i,n)

]2
}1/2

(7)

V(i,m−n)= D(i,m−n)/(t m − tn

)
(8)

where D(i,m−n) is the centroid distance of land-use type i from period m to n,
[
X(i,m) − Y(i,m)

]
and

[
X(i,n), Y(i,n)

]
are the centroid coordinates of land-use type i in periods m and n, re-

spectively. V(i,m−n) is the migration rate of the center of gravity for land-use type i, tm and
tn are the beginning and end of the study period, respectively.

3.4. Principal Component Analysis

Principal component analysis (PCA) is a widely employed method in data analysis,
which focuses on reducing the dimensionality of data [31]. This approach transforms
multiple indicators into a smaller number of comprehensive indicators. The main steps
involved in PCA are as follows: (1) calculate the correlation coefficient matrix, (2) determine
eigenvalues and eigenvectors, (3) compute the principal component contribution rate and
cumulative contribution rate, and (4) calculate the principal component load. In this study,
data from the period 2000 to 2020 were selected as the sample for PCA to examine the
driving forces behind land-use change in Tianjin [32,33].

3.5. CA–Markov Predictive Modeling

The cellular automaton (CA) model is a spatial computational tool, notable for
its discrete nature in time, space, and state [13]. It is adept at modeling spatial inter-
actions and temporal causality. On the other hand, the Markov model is grounded
in Markov process theory and is used for predicting the likelihood of events occur-
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ring [34]. The CA–Markov model synergistically combines the strengths of both the CA and
Markov approaches [35]. This coupled model harnesses CA’s capability to address spatial
changes in complex systems and integrates it with Markov’s proficiency in predicting
quantitative aspects of land use. Consequently, the CA–Markov model effectively mines
and utilizes dynamic evolution information on land use, capturing both its spatial and
quantitative dimensions.

4. Results
4.1. Analysis of Changes in Land-Use Quantities
4.1.1. Analysis of Changes in Land-Use Area

Utilizing the classification outcomes of remote sensing images, this study quantified
the areas of different land-cover types in Tianjin for the years 2000, 2005, 2010, 2015, and
2020, as depicted in Figure 3 and detailed in Table 1. Additionally, the percentage of each
land-cover area is presented in Table 2. According to these tables, the land-cover types in
Tianjin, ranked from the largest to smallest areas, are cropland, impervious surfaces, water,
forest, grassland, barren land, and shrubland. These types have an average proportion of
58.45%, 28.38%, 9.79%, 2.98%, 0.2485%, 0.16%, and 0.0005%, respectively. It is evident that
cropland is the predominant land-use type in Tianjin, followed by impervious surfaces,
while the areas of other land types are relatively small, each constituting less than 10% of
the total land use.

Table 1. Area of land-cover types in Tianjin (km2).

Land Type 2000 2005 2010 2015 2020

cropland 7503.3131 7078.396 6845.64 6427.219 6293.696
forest 352.0106 341.6787 346.4433 359.7318 339.75

grassland 34.1619 33.2928 34.3305 24.6456 18.7767
impervious surfaces 2522.4270 2832.445 3328.213 3832.058 4069.163

shrubland 0.0148 0.0333 0.0477 0.0342 0.162
water 1249.9277 1378.772 1106.328 1025.737 958.8105

barren land 23.5114 21.0618 24.6771 16.254 5.3208

Table 2. Statistics on the percentage area of land-cover types in Tianjin.

Land Type 2000 2005 2010 2015 2020 Average

cropland 64.2112% 60.5733% 58.5814% 55.0008% 53.8582% 58.4450%
forest 3.0124% 2.9239% 2.9647% 3.0784% 2.9074% 2.9774%

grassland 0.2923% 0.2849% 0.2938% 0.2109% 0.1607% 0.2485%
impervious surfaces 21.5862% 24.2386% 28.4811% 32.7928% 34.8218% 28.3841%

shrubland 0.0001% 0.0003% 0.0004% 0.0003% 0.0014% 0.0005%
water 10.6965% 11.7988% 9.4674% 8.7777% 8.2050% 9.7891%

barren land 0.2012% 0.1802% 0.2112% 0.1391% 0.0455% 0.1554%

Figure 4 shows a line chart depicting the changes in land-cover area in Tianjin from
2000 to 2020. During this period, there was a marked decrease in the area of cropland, while
impervious surfaces exhibited a consistent upward trend. The areas of other land types,
such as water, experienced fluctuations. Notably, from 2000 to 2020, the area of impervious
surfaces in Tianjin expanded significantly by 1546.74 km2, whereas the area of cropland
decreased by 1209.62 km2. These changes underscore the rapid urbanization that Tianjin
has undergone over the past two decades.
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4.1.2. Analysis of Changes in the Rate of Land Cover

The ‘attitude’ of a single land-cover type refers to the rate of change in a particular
land-cover category over a specific time period within the study area. The larger the
absolute value of the attitude, the more rapid the increase or decrease in land area, making
it a useful tool for monitoring land-area changes. Table 3 illustrates the annual change rates
in single land-cover types in Tianjin from 2000 to 2020.

Table 3. Annual rate of change in single land-cover types in Tianjin.

Land Type 2000~2005 2005~2010 2010~2015 2015~2020

cropland −1.13% −0.66% −1.22% −0.42%
forest −0.59% 0.28% 0.77% −1.11%

grassland −0.51% 0.62% −5.64% −4.76%
impervious surfaces 2.46% 3.50% 3.03% 1.24%

shrubland 24.88% 8.65% −5.66% 74.74%
water 2.06% −3.95% −1.46% −1.30%

barren land −2.08% 3.43% −6.83% −13.45%
Note: due to the limited spatial extent of the shrubland, any increase in its area would result in a substantial
alteration in the rate of area expansion.

According to Table 3, the annual change rate of the impervious-surface area in Tianjin
was consistently above zero, indicating an ongoing annual increase. Notably, the fastest
annual growth in the impervious-surface area occurred between 2005 and 2010, at a rate of
3.5%. The slowest growth was recorded from 2015 to 2020, at 1.24%. Conversely, the annual
change rate for cropland in Tianjin was below zero, signaling a year-by-year decrease. The
most rapid decline happened from 2015 to 2020, with an annual rate of −0.42%, while
the slowest decrease was from 2010 to 2015, at −1.22%. Over the past two decades, the
increase in impervious-surface areas and the decrease in cropland in Tianjin have been
closely linked to the ongoing urbanization and construction policies in the region.
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4.2. Land-Use Transfer Analysis

To more effectively examine the transformations in land-use types, this study utilized
land-use data spanning from 2000 to 2020. It involved comparing different time periods
to analyze the dynamic processes of inflow and outflow for each land-use category across
these periods. By calculating the specific amounts of area transformation, we constructed
the land-use transfer matrix and developed corresponding land-use transfer matrix dia-
grams (as shown in Figure 5). This approach allowed for a comprehensive and in-depth
understanding of the changes in land-cover types over the two decades.
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4.2.1. Analysis of the Transformation Status of Land Use from 2000 to 2005

In Figure 5a, it is illustrated that the total area of impervious surfaces in Tianjin was
initially 2522.05 km2 in 2000, which increased to 2831.95 km2 by 2005. During this period,
the unconverted impervious-surface area remained at 2370.37 km2. The outflow area from
impervious surfaces totaled 151.68 km2, with conversions to various land types: barren
land (1.04 km2), cropland (84.21 km2), forest (0.06 km2), grassland (0.10 km2), and water
(66.27 km2). On the other hand, the inflow into impervious-surface areas amounted to
461.58 km2, primarily sourced from barren land (2.08 km2), cropland (361.67 km2), forest
(0.78 km2), grassland (0.76 km2), and water (96.29 km2).

4.2.2. Analysis the Transformation Status of Land Use from 2005 to 2010

The total area of impervious surfaces in Tianjin was 2832.44 km2 in 2005, which
had increased to 3328.21 km2 by 2010 (Figure 5b). During this interval, the area that
remained unconverted constituted 2784.69 km2. The outflow from impervious surfaces
accounted for 47.75 km2, with transitions to different land types: barren land (0.12 km2),
cropland (0.94 km2), grassland (0.0018 km2), and water (46.69 km2). The total inflow
into the impervious-surface areas was 543.52 km2, primarily coming from barren land
(5.33 km2), cropland (343.90 km2), forest (0.96 km2), grassland (0.78 km2), and water
(192.55 km2).

4.2.3. Analysis of the Transformation Status of Land Use from 2010 to 2015

Between 2010 and 2015, the total area of impervious surfaces in Tianjin increased
from 3328.21 km2 to 3832.06 km2 (Figure 5c). The area that remained unchanged in this
period constituted 3289.79 km2. The outflow from impervious surfaces during this time
was 38.46 km2, which included transitions to various land types: barren land (0.19 km2),
cropland (0.24 km2), forest (0.0027 km2), and water (38.02 km2). The inflow into the
impervious-surface area totaled 542.30 km2, predominantly sourced from barren land
(9.36 km2), cropland (390.22 km2), forest (0.45 km2), grassland (2.18 km2), and water
(140.09 km2).

4.2.4. Analysis of the Transformation Status of Land Use from 2015 to 2020

From 2015 to 2020, the total area of impervious surfaces in Tianjin rose from 3832.06 km2

to 4069.16 km2. The unconverted area during this period constituted 3794.23 km2

(Figure 5d). The outflow from impervious surfaces amounted to 37.82 km2, comprising
conversions to cropland (0.51 km2) and water (37.31 km2). The inflow into the impervious-
surface area totaled 274.93 km2, with significant contributions from various land types:
barren land (7.25 km2), cropland (204.69 km2), forest (0.42 km2), grassland (0.63 km2), and
water (61.93 km2).

Synthesizing the analysis presented earlier, Figure 6 delineates the principal directions
of land-cover-type transfers in Tianjin, elucidating the underlying patterns in these changes.
The predominant transfer trends in Tianjin’s land-cover types are as follows: (1) water
predominantly transitioned to cropland and impervious surfaces; (2) barren land mainly
transformed into water and impervious surfaces; (3) cropland was primarily converted
into impervious surfaces and water; (4) forest areas were largely transferred to cropland;
(5) grassland mainly transitioned to cropland and forests; (6) shrubland was primarily
converted into grassland; (7) impervious surfaces predominantly changed into water. These
trends are closely aligned with the urban development and land-management policies
implemented in Tianjin in recent years.
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4.3. Analysis of the Extent of Land Use
4.3.1. Classification of Land-Use Levels

The degree of land use varies depending on the level of land use. Classifying land-use
types could provide a basis for evaluating land use. In this study, land use in Tianjin was
divided into four levels, namely: (1) barren land, (2) land for forests, grass, and water,
(3) agricultural land, and (4) urban settlement land (Table 4).

Table 4. Classification of land cover in Tianjin.

Barren Land Land for Forests,
Grass, and Water

Agricultural
Land

Urban
Settlement

Land

land-use type barren land
shrubland,

grassland, forest,
water

cropland impervious
surfaces

graded index level 1 level 2 level 3 level 4

4.3.2. Calculation of the Land-Cover Index

The composite land-cover index is a measure of the degree of influence of human
factors on land cover, and its calculation formula is as follows:

L = 100×
n

∑
i=1

(A i ×Ci) (9)

where L is the comprehensive land-use index; Ai is the grading index of land-use type i;
and Ci is the area share of land-use type i.

In this study, a comprehensive index of land use in Tianjin in 2000, 2005, 2010, 2015
and 2020 was calculated (Figure 7). We found that from 2000 to 2020, the comprehensive
index of land use in Tianjin showed an increasing state, indicating that land use in Tianjin
still has potential in terms of utilization and development.
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4.4. Analysis of Changes in Land-Cover Urban Expansion

In this study, the center-of-gravity migration model is utilized to calculate both the
distance and rate of center-of-gravity migration for impervious surfaces in Tianjin. This
approach reflects the changes in urban spatial patterns and the speed of these changes,
thereby illustrating the pace and pattern of the urbanization construction process in Tianjin
in recent years. Based on land-type maps of Tianjin for the years 2000, 2005, 2010, 2015, and
2020, this study calculates the latitude and longitude coordinates of the center of gravity
for impervious surfaces over the past 20 years (Table 5), along with the distance and rate of
center-of-gravity migration (Table 6), and the trajectory of this migration (Figure 8).

Table 5. Latitude and longitude coordinates of the center of gravity of Tianjin.

Year 2000 2005 2010 2015 2020

longitude 117.3353 117.3333 117.3313 117.3238 117.3192
latitude 39.2431 39.2526 39.2567 39.2674 39.2782

Table 6. Distance and rate of change for impervious surfaces in Tianjin.

Year 2000~2005 2005~2010 2010~2015 2015~2020

distance (km) 1.0971 0.4889 1.3693 1.2759
speed (km/year) 0.2194 0.0978 0.2739 0.2552

The results indicate that from 2000 to 2020, the center of gravity of Tianjin’s impervious
surfaces, located in the Beichen District, shifted northwestward. Specifically, from 2000
to 2005, the center of gravity moved 1.0971 km northwest, at a rate of 0.2194 km/year.
Between 2005 and 2010, it moved 0.4889 km northwest, at a rate of 0.0978 km/year. From
2010 to 2015, the movement was 1.3693 km northwest, at a rate of 0.2739 km/year. Finally,
from 2015 to 2020, it shifted 1.2759 km northwest, at a rate of 0.2552 km/year. Overall, this
indicates a consistent northwestward shift of the center of gravity of impervious surfaces in
Tianjin, with a total distance of 4.1992 km and an average movement rate of 0.8398 km/year.
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4.5. Analysis of Factors Influencing Land-Cover Change

In this study, 19 relevant variable indicators encompassing aspects of population,
economy, and the agricultural situation from 2000 to 2020 in Tianjin were selected. Principal
component analysis was employed to identify the main components, thereby eliminating
secondary variables and data redundancy to enhance the scientific validity of the results.
Based on this, a stepwise regression model was established to analyze the linear relationship
between influencing factors and land-use changes.

For this analysis, 19 variables were chosen (Table 7), taking into account various
demographic, economic, technological, and agricultural development drivers.

Table 7. Variables driving land-use change in Tianjin.

Driving Factor Unit Variant

resident population ten thousand people X1
urban and rural per capita disposable incomes CNY X2

country per capita disposable incomes CNY X3
GDP billions X4

the output values for primary industries billions X5
the output values for secondary industries billions X6

the output values for tertiary industries billions X7
agriculture billions X8

forestry billions X9
animal husbandry billions X10

fisheries billions X11
gross construction output billions X12

general public budget income billions X13
general public budget expenditure billions X14
completed real estate investment billions X15

total grain production tons X16
total retail sales of consumer goods billions X17

urban population ten thousand people X18
village population ten thousand people X19
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Principal component analysis of impervious surfaces in Tianjin, along with 19 explana-
tory variables, revealed that the variables significantly impacting impervious surfaces were
the output value of secondary industries and forestry. The regression equation representing
the change in impervious-surface area in Tianjin is as follows:

Yimpervious= 0.323× X6+14.623× X9+2256.987 (10)

where Yimpervious is the area of impervious surfaces (km2), X6 is the output values for
secondary industries (CNY billion), and X9 is forestry (CNY billion).

The regression model for the change in impervious surfaces in Tianjin, with an R2

value of 0.99, demonstrated a significant positive correlation following stepwise regression,
validating the effectiveness of the regression equation. The increase in the output value
of secondary industries and forestry positively influences the expansion of impervious
surfaces in Tianjin. This rise in output value reflects an overall improvement in Tianjin’s
economic conditions, leading to a heightened demand for urban construction. This in-
creased demand subsequently results in a rise in supply, culminating in an expansion of
impervious surfaces.

Upon substituting the 2020 data (X6 = 4911.77 and X9 = 15.73) into the model, the result,
Y = 4073.5085, aligns closely with the recorded impervious surfaces of 4069.1628 km2 in 2020.
The deviation is merely 0.1077%, indicating a high reliability of this regression equation.

4.6. Simulation Prediction of Land-Cover Types in Tianjin City
4.6.1. Simulation of Land-Cover Change in Tianjin in 2021

In this study, utilizing the CA–Markov model, the land-use data for Tianjin from
the years 2011 and 2016 were employed as baseline maps. These were combined with a
suitability atlas for prediction purposes, and the number of metric iterations was set at 10
to generate the simulated land-use map for 2021. An accuracy test was then conducted to
compare the predicted land-use results with the actual land-use data of 2021. The results re-
vealed a kappa coefficient as high as 0.89, indicating a high level of consistency between the
simulated land-use outcomes for Tianjin in 2021 and the actual land use. This demonstrates
that the prediction results are sufficiently reliable for use in subsequent forecasts.

4.6.2. Forecast of Tianjin Land-Cover Pattern in 2025

This study employs the CA–Markov model to derive the land-cover-type map
(Figure 9) and to quantify the land-use area and proportion of each category within the
study area for the year 2025 (Table 8). Spatially, in Tianjin, impervious surfaces are mainly
concentrated in six central districts (Heping, Hedong, Hexi, Nankai, Hebei, and Hongqiao)
and the Binhai New Area. In contrast, cropland is predominantly found in the four districts
surrounding the Ring Road (Dongli, Jinnan, Xiqing, and Beichen), as well as in the Jinghai,
Wuqing, Baodi, Ninghe, and Jizhou districts. Grassland is primarily concentrated in Tian-
jin’s northern area. As indicated in Table 8, the most extensive land-use types in Tianjin are
cropland and impervious surfaces, accounting for 48.4% and 39.9%, respectively.

Table 8. Land use and mobility in Tianjin, 2025.

Land Type Area (km2) Percentage Land-Use
Dynamics Change in Area 2020~2025

barren land 13.698 0.1172% 31.49% 8.3772
cropland 5656.1823 48.4027% −2.03% −637.5141

forest 305.4654 2.6140% −2.02% −34.2846
grassland 23.8752 0.2043% 5.43% 5.0985

impervious
surfaces 4659.7806 39.8760% 2.90% 590.6178

shrubland 0.3528 0.0030% 23.56% 0.1908
water 1026.3249 8.7828% 1.41% 67.5144
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5. Discussion
5.1. Development Trend for Impervious Surfaces in Tianjin

The LUCC maps of Tianjin for the years 2000, 2005, 2010, 2015, and 2020 demonstrate
a steady increase in the impervious-surface cover of the region, growing from 2522.427 km2

to 4069.163 km2. Over the past 20 years, Tianjin’s impervious-surface cover expanded
by 1546.74 km2 (Figure 4). Spatially, as depicted in the land-use distribution map for
Tianjin (Figure 3), impervious surfaces in 2000 were primarily concentrated in six districts
(Heping, Hexi, Nankai, Hedong, Hebei, and Hongqiao) and a portion of the Binhai New
Area. By 2005, this expansion had extended into the city’s port and coastal areas. The
impervious-surface cover further increased in 2010 and 2015, incorporating developments
in the four surrounding districts. By 2020, the impervious-surface cover of the six central
districts and the Binhai New Area had merged, with rapid growth particularly noted in the
peripheral districts (Dongli, Jinnan, Xiqing, and Beichen). The development of the Binhai
New Area in Tianjin from 2000 to 2020 has been aligned with the objective of establishing a
model area comparable to the Pudong New Area and the Xiongan New Area. However, to
meet the developmental needs of the Binhai New Area and address the increased demand
for impervious surfaces in Tianjin, cropland and a portion of Bohai Bay water have been
repurposed for impervious-surface development. This strategic approach is consistent with
Tianjin’s economic development requirements during this period.

The analysis indicates that the Binhai New Area, a sub-center of Tianjin, has developed
alongside the expansion of the port area. The Ninth Plenary Session of the 11th Munici-
pal Party Committee emphasized the goal of creating a dual-city development pattern in
‘Jincheng’ and ‘Bincheng’, integrating this into Tianjin’s future economic and social devel-
opment objectives. The Binhai New Area, covering 2270 km2, is envisioned to develop and
connect with the central urban area, forming a large urban zone. This development pattern
drives multiple districts, shaping Tianjin’s urban landscape. Additionally, the shallowness
of Bohai Bay and the annual sediment influx from rivers result in the coastline expanding
oceanward each year. The demand for deep-water ports in the Bohai Sea’s coastal areas has
led to significant land reclamation in Bohai Bay. This strategy not only supports Tianjin’s
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construction and developmental needs but also mitigates the issue of extensive arable land
being covered by impervious surfaces.

5.2. Simulation of Land-Cover Change in Tianjin

Utilizing the CA–Markov model, the projected land-use-type map for the study area
in 2025 (Figure 9) and the corresponding land-use area and proportions of different cate-
gories (Table 8) indicate that the construction-land area in Tianjin is set to increase further.
Conversely, the cultivated-land area is on a declining trend, gradually transforming into
construction land. These changes are predominantly expected to occur in the southeast
of Tianjin city. This trend aligns with Tianjin’s status as a major port city in northern
China, where the expansion and strengthening of the port, along with the high-quality
development of its port economy, are pivotal. Modern port construction in Tianjin ne-
cessitates enhancements in port facility platforms, industry support, spatial layout, and
business environment.

While the CA–Markov model employed in this study offers unique advantages, its
limitations cannot be overlooked. In simulating LUCC using the CA model, both short-
term and long-term data are reliant on actual data from 2005 and 2015. The past 20 years
have been a period of rapid urbanization and development in Tianjin. However, every
developmental phase has its limitations, and such high-efficiency changes are unlikely
to continue indefinitely. Nevertheless, the CA–Markov model remains one of the most
effective methods for simulating LUCC. Its predictive results are vital for formulating
land-use and urban development policies in Tianjin. The results of this study can provide
valuable references for land use, policy analysis, and policy formulation in Tianjin.

5.3. Analysis of the Influencing Factors of Land Cover

The land-cover change in Tianjin can be observed through remote sensing data, which
reflects our land category information. Additionally, the accuracy of the simulation model
has been verified to meet the required standards. However, it is crucial to acknowledge that
both natural and anthropogenic factors significantly influence land-cover dynamics. There-
fore, further investigation using additional data is warranted to explore underlying causes.

In terms of its natural factors, the northern part of Tianjin is predominantly mountain-
ous. As per national regulations, land with a slope greater than 25◦ cannot be converted
into cropland. Moreover, due to Tianjin’s predominantly flat terrain and in consideration of
practical circumstances, it is unsuitable for converting land into forests or bodies of water.
The eastern region of Tianjin, which borders the Bohai Sea and encompasses the Binhai
New Area—a key development zone—is more suitable for impervious surfaces and water
features. These factors contribute to the spatial distribution pattern of land cover in Tianjin,
characterized by a higher proportion of impervious surfaces and cropland in its central and
western parts, and an increased presence of forests in the north, as well as a larger extent of
impervious surfaces and bodies of water in the east.

In terms of anthropogenic factors, the land-cover changes in the region are primarily
influenced by state policies and regional development plans. The 19 selected influencing
factors were sourced from the Tianjin Statistical Yearbook. The results obtained from
principal component analysis indicate a significant correlation between impervious surfaces
and secondary industries, as well as forestry. Given Tianjin’s modern industrial background,
it is reasonable to assume that industry plays a substantial role in its annual economic gain,
with the Binhai New Area actively promoting industrial development alongside scientific
and technological high-tech enterprises. Furthermore, considering national environmental
policy objectives, it is also logical for Jinghai District in southwest Tianjin to prioritize
protective forest construction.

5.4. Limitations and Expectations of This Research

This study selected 19 relevant variable indicators in Tianjin from 2000 to 2020, encom-
passing aspects like population, economy, and agricultural conditions. Principal component
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analysis was employed to extract the main components and establish the impact relation-
ships of explanatory variables on construction land. However, the range and correlation of
the chosen variables in this article are somewhat limited. In the conclusions drawn, the
output values for secondary industries and forestry hold significant importance.

Furthermore, the CA–Markov method used in this study predicts Tianjin’s land cover
in 2025 but does not foresee future expansion of land reclamation along the Bohai Sea coast.
Additionally, in creating suitability atlases, there is room for more detailed planning in
the selection of influencing factors for each land type. Factors that are difficult to quantify,
such as human influences, policy factors (like the rural revitalization strategy and the three-
child policy), and farmland protection policies, have not been incorporated. Therefore,
future work should consider the impacts of these elements on land change and predictions
in Tianjin.

The CA–Markov method was employed in this study to predict land cover in Tianjin,
and the methodology utilized is applicable for land analysis and prediction at the city
level. In future research we recommend expanding the scope of investigation to include the
provincial and national levels. It should be noted that economic factors were not considered
in predicting future land cover in Tianjin; thus, the predicted results pertain solely to
natural land cover. To enhance accuracy, future research could incorporate multiple factors
into the prediction process.

6. Conclusions

In this study, five-phase remote sensing images of Tianjin from 2000 to 2020 were
selected and analyzed in conjunction with current land-cover data and statistical infor-
mation. This approach determined the mobility rates of various land types and allowed
the construction of a transfer matrix to ascertain the interrelationships among them. The
center-of-gravity migration model was employed to analyze the shifts in the urban center
of gravity of Tianjin. Principal component analysis identified three main types of driving
factors for land-cover change: socio-economic development, population growth, and agri-
cultural inputs. The impact of these factors on land cover was then analyzed. Finally, the
CA–Markov coupling model was utilized to predict the dynamic changes in land cover
that might occur in Tianjin by 2025.

The main conclusions of this study are as follows. (1) In Tianjin, the areas of dif-
ferent land-cover types, in descending order, are cropland, impervious surfaces, water,
forest, grassland, barren land, and shrubland. From 2000 to 2020, cropland areas exhibited
a decreasing trend (from 7503.31 km2 to 6293.70 km2), while impervious-surface areas
showed an increasing trend (from 2522.43 km2 to 4069.16 km2). (2) The center of gravity
for the city of Tianjin is in the Beichen district, and the migration of the center of grav-
ity for impervious-surface areas indicates a northwestward shift, totaling 4.20 km at a
rate of 0.84 km/year. (3) Principal component analysis of impervious surfaces in Tian-
jin and 19 explanatory variables indicates that the output value for secondary industries
and the forestry output value significantly influence Tianjin’s impervious-surface areas.
(4) Utilizing the CA–Markov model, the study obtained the land-cover-type maps and the
land cover and proportions of each category in the study area for 2025. It was found that
the largest proportions in Tianjin are cropland (48.4%) and impervious surfaces (39.9%).
The findings of this study offer valuable insights that can assist with land-cover planning,
policy analysis, and policy formulation in Tianjin.
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