Spatial and Temporal Distribution Characteristics and Influential Mechanisms of China’s Industrial Landscape Based on Geodetector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Research Methodology
2.2.1. Nearest Neighbor Index
2.2.2. Geographic Concentration Index
2.2.3. Hot Spot Analysis
2.2.4. Kernel Density Analysis
2.2.5. Geodetector
3. Results
3.1. Spatial Distribution Characteristics
3.1.1. Spatial Typology Characteristics: Agglomerative Distribution
3.1.2. Spatial Distribution Characteristics: Uneven Distribution
3.1.3. Spatial Association Characteristics: Significant Spatial Autocorrelation
3.2. The Characteristics of Time and Type Distribution
3.2.1. Temporal Evolution Characteristics: East First, Then West
3.2.2. Characteristics of Type Distribution: Predominantly Manufacturing
4. Correlating Factors of the Spatial Distribution of CIL
4.1. Selection of Correlating Factors
4.2. Univariate Analysis
4.2.1. Economic Development Level
4.2.2. Social Demographic Conditions
4.2.3. Transportation Infrastructure
4.2.4. Cultural Environment
4.3. Factor Interaction Analysis
5. Discussion
6. Conclusions
- The spatial distribution of CIL exhibited a pronounced clustering pattern, with a significantly higher concentration of industrial landscape sites in the eastern region compared with the western region, indicating notable spatial disparities. Notably, hot spot areas dominated the spatial distribution of CIL, while cold spot regions were relatively scarce. Additionally, there was significant spatial autocorrelation between the cold and hot spot areas.
- 2.
- In the past two decades, there has been growing recognition and support from both the government and civil society in China for the conservation of the industrial landscape. In response to this growing awareness, comprehensive inventories of the industrial landscape have been compiled, accompanied by the establishment of a framework comprising policies and regulations aimed at preservation, interpretation, and public engagement with these sites. The industrial landscape serves not only as a repository of urban memory and a conduit for cultural transmission but also as a pivotal force in urban economic regeneration. Its conservation is instrumental in advancing sustainable development, refining industrial configurations, and enhancing the share of innovation-driven and creative pursuits. In view of this, the present study provided a comprehensive analysis of the spatial distribution characteristics of CIL and its influencing factors from a macroscopic perspective. The findings of this study can serve as a scientific basis for the protection, management, and tourism development of the industrial landscape, thereby enhancing urban resilience and promoting sustainable development in this field.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, P.F. A Life Cycle Model of Industrial Heritage Development. Ann. Tour. Res. 2015, 55, 141–154. [Google Scholar] [CrossRef]
- He, Q.; Xu, M.; Xu, Z.; Ye, Y.; Shu, X.; Xie, P.; Wu, J. Promotion Incentives, Infrastructure Construction, and Industrial Landscapes in China. Land Use Policy 2019, 87, 104101. [Google Scholar] [CrossRef]
- Szromek, A.R.; Herman, K.; Naramski, M. Sustainable Development of Industrial Heritage Tourism—A Case Study of the Industrial Monuments Route in Poland. Tour. Manag. 2021, 83, 104252. [Google Scholar] [CrossRef]
- Guo, P.; Li, Q.; Guo, H.; Li, H. Quantifying the Core Driving Force for the Sustainable Redevelopment of Industrial Heritage: Implications for Urban Renewal. Environ. Sci. Pollut. Res. 2021, 28, 48097–48111. [Google Scholar] [CrossRef]
- Chung, H.; Lee, J. Modern Industrial Heritage as Cultural Mediation in Urban Regeneration: A Case Study of Gunsan, Korea, and Taipei, Taiwan. Land 2023, 12, 792. [Google Scholar] [CrossRef]
- The Nizhny Tagil Charter for the Industrial Heritage. Available online: https://ticcih.org/about/charter/ (accessed on 26 October 2023).
- Landorf, C. A Framework for Sustainable Heritage Management: A Study of UK Industrial Heritage Sites. Int. J. Herit. Stud. 2009, 15, 494–510. [Google Scholar] [CrossRef]
- Oevermann, H.; Degenkolb, J.; Dießler, A.; Karge, S.; Peltz, U. Participation in the Reuse of Industrial Heritage Sites: The Case of Oberschöneweide, Berlin. Int. J. Herit. Stud. 2016, 22, 43–58. [Google Scholar] [CrossRef]
- Pintossi, N.; Ikiz Kaya, D.; van Wesemael, P.; Pereira Roders, A. Challenges of Cultural Heritage Adaptive Reuse: A Stakeholders-Based Comparative Study in Three European Cities. Habitat Int. 2023, 136, 102807. [Google Scholar] [CrossRef]
- Aydın, E.Ö.; Tepe, E.; Balcan, C. Identification of Determinants during the Registration Process of Industrial Heritage Using a Regression Analysis. J. Cult. Herit. 2022, 58, 23–32. [Google Scholar] [CrossRef]
- Castriota, B.; Marçal, H. Always Already Fragment: Integrity, Deferral, and Possibility in the Conservation of Cultural Heritage. In The Fragment in the Digital Age: Possibilites and Risks of New Conservation Techniques; Hornemann Institute: Hildesheim, Germany, 2021; pp. 63–78. [Google Scholar]
- Njuguna, M.B.; Wahome, E.W.; Deisser, A.M. Saving the Industry from Itself: A Case of the Railway Industrial Heritage in Kenya. Hist. Environ. Policy Pract. 2018, 9, 21–38. [Google Scholar] [CrossRef]
- Zhang, J.; Cenci, J.; Becue, V.; Koutra, S.; Liao, C. Stewardship of Industrial Heritage Protection in Typical Western European and Chinese Regions: Values and Dilemmas. Land 2022, 11, 772. [Google Scholar] [CrossRef]
- Dublin Principles. Available online: https://ticcih.org/about/about-ticcih/dublin-principles/ (accessed on 26 October 2023).
- Ertaş Beşir, Ş.; Çelebi Karakök, M.E. Determination of Conservation–Reuse Parameters for Industrial Heritage Sustainability and a Decision-Making Model Proposal. Sustainability 2023, 15, 6796. [Google Scholar] [CrossRef]
- Claver, J.; García-Domínguez, A.; Sebastián, M.A. Multicriteria Decision Tool for Sustainable Reuse of Industrial Heritage into Its Urban and Social Environment. Case Studies. Sustainability 2020, 12, 7430. [Google Scholar] [CrossRef]
- Huang, W.; Xiong, G.; Zhong, L.; Li, K.; Li, H.; Skitmore, M.; Talebian, N. Research into Satisfaction with Industrial Heritage Renewal Based on the SEM-IPA Model: A Case Study of the Dongguan Jianyuzhou Park. Land 2022, 11, 403. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, Q.; Yang, Y. An Approach to Assess the Value of Industrial Heritage Based on Dempster–Shafer Theory. J. Cult. Herit. 2018, 32, 210–220. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Li, W.; Li, Q.; Hu, X. Value Assessment for the Restoration of Industrial Relics Based on Analytic Hierarchy Process: A Case Study of Shaanxi Steel Factory in Xi’an, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 69129–69148. [Google Scholar] [CrossRef]
- Wu, Y.; Pottgiesser, U.; Quist, W.; Zhou, Q. The Guidance and Control of Urban Planning for Reuse of Industrial Heritage: A Study of Nanjing. Land 2022, 11, 852. [Google Scholar] [CrossRef]
- Vizzarri, C.; Sangiorgio, V.; Fatiguso, F.; Calderazzi, A. A Holistic Approach for the Adaptive Reuse Project Selection: The Case of the Former Enel Power Station in Bari. Land Use Policy 2021, 111, 105709. [Google Scholar] [CrossRef]
- De Gregorio, S.; De Vita, M.; De Berardinis, P.; Palmero, L.; Risdonne, A. Designing the Sustainable Adaptive Reuse of Industrial Heritage to Enhance the Local Context. Sustainability 2020, 12, 9059. [Google Scholar] [CrossRef]
- Wu, X.; Yu, L.; Fang, H.; Wu, J. Research on the Protection and Reuse of Industrial Heritage from the Perspective of Public Participation—A Case Study of Northern Mining Area of Pingdingshan, China. Land 2022, 11, 16. [Google Scholar] [CrossRef]
- Vukmirović, M.; Nikolić, M. Industrial Heritage Preservation and the Urban Revitalisation Process in Belgrade. J. Urban Aff. 2023, 45, 191–216. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, S.; Aoki, N. Contradictions of Indigenous Cognition and Heritage Evaluation under Political Transformations in a Working-Class Community in Tianjin, China. Cities 2023, 132, 104031. [Google Scholar] [CrossRef]
- Szromek, A.R.; Herman, K. A Business Creation in Post-Industrial Tourism Objects: Case of the Industrial Monuments Route. Sustainability 2019, 11, 1451. [Google Scholar] [CrossRef]
- Otgaar, A. Towards a Common Agenda for the Development of Industrial Tourism. Tour. Manag. Perspect. 2012, 4, 86–91. [Google Scholar] [CrossRef]
- Shin, M.; Pae, J.-H. Authenticity or Homogeneity? Contextualising the Urban Revitalisation of a Post-Industrial Landscape through the Red Brick Landscape Preservation Project in Seoul. Habitat Int. 2022, 124, 102574. [Google Scholar] [CrossRef]
- Heesche, J.; Braae, E.M.; Jørgensen, G. Landscape-Based Transformation of Young Industrial Landscapes. Land 2022, 11, 908. [Google Scholar] [CrossRef]
- Layuno Rosas, Á.; Magaz-Molina, J. Contributions of Social Media to the Recognition, Assessment, Conservation, and Communication of Spanish Post-Industrial Landscapes. Land 2023, 12, 374. [Google Scholar] [CrossRef]
- Huang, C.; Wei, F.; Qiu, S.; Cao, X.; Chen, L.; Xu, J.; Gao, J.; Lin, Q. Interpreting Regenerated Post-Industrial Lands as Green Spaces: Comparing Public Perceptions of Post-Industrial Landscapes Using Human Factor Design Framework. Ecol. Indic. 2023, 157, 111282. [Google Scholar] [CrossRef]
- Wei, F.; Huang, C.; Cao, X.; Zhao, S.; Xia, T.; Lin, Y.; Han, Q. “Restorative-Repressive” Perception on Post-Industrial Parks Based on Artificial and Natural Scenarios: Difference and Mediating Effect. Urban For. Urban Green. 2023, 84, 127946. [Google Scholar] [CrossRef]
- Meier, L.; Aytekin, E.A. Transformed Landscapes and a Transnational Identity of Class: Narratives on (Post-)Industrial Landscapes in Europe. Int. Sociol. 2019, 34, 99–116. [Google Scholar] [CrossRef]
- Zhang, J.; Cenci, J.; Becue, V.; Koutra, S. Analysis of Spatial Structure and Influencing Factors of the Distribution of National Industrial Heritage Sites in China Based on Mathematical Calculations. Environ. Sci. Pollut. Res. 2022, 29, 27124–27139. [Google Scholar] [CrossRef]
- Zhang, J.; Cenci, J.; Becue, V.; Koutra, S. Research of the Industrial Heritage Category and Spatial Density Distribution in the Walloon Region, Belgium, and Northeast China. In Structural Studies, Repairs and Maintenance of Heritage Architecture XVII & Earthquake Resistant Engineering Structures XIII; WIT Press: Billerica MA, USA, 2021; pp. 285–293. [Google Scholar]
- Sun, B.; Ikebe, K. Characteristics of Heritage of Industrial Modernization and Urban Spatial Distribution in Shenyang, China. J. Asian Archit. Build. Eng. 2023, 22, 1823–1840. [Google Scholar] [CrossRef]
- Zhang, J.; Cenci, J.; Becue, V. A Preliminary Study on Industrial Landscape Planning and Spatial Layout in Belgium. Heritage 2021, 4, 1375–1387. [Google Scholar] [CrossRef]
- Mo, C.; Wang, L.; Rao, F. Typology, Preservation, and Regeneration of the Post-1949 Industrial Heritage in China: A Case Study of Shanghai. Land 2022, 11, 1527. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, H.; Xu, S.; Aoki, N. Analysis of the Spatial and Temporal Distribution and Reuse of Urban Industrial Heritage: The Case of Tianjin, China. Land 2022, 11, 2273. [Google Scholar] [CrossRef]
- Fan, X.; Dai, S. Spatial-Temporal Distribution Characteristics of Industrial Heritage Protection and the Influencing Factors in a Chinese City: A Case Study of the Tiexi Old Industrial District in Shenyang. J. Herit. Tour. 2017, 12, 281–295. [Google Scholar] [CrossRef]
- He, J.; Liu, J.; Xu, S.; Wu, C.; Zhang, J. A GIS-Based Cultural Heritage Study Framework on Continuous Scales: A Case Study on 19th Century Military Industrial Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5-W7, 215–222. [Google Scholar] [CrossRef]
- Sun, Z. Analysis of the Systematic Conservation of China’s Petroleum Industrial Heritage: A Case Study and Analysis of the Petroleum Industrial Heritage in Daqing. Built Herit. 2023, 7, 10. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Y.; Pesoa-Marcilla, M.; Sabaté-Bel, J. Dependence on Mountains and Water: Local Characteristics and Regeneration Patterns of Rural Industrial Heritage in China. Land 2022, 11, 1341. [Google Scholar] [CrossRef]
- Ma, J.; Khromykh, V.; Wang, J.; Zhang, J.; Li, W.; Zhong, X. A Landscape-Based Ecological Hazard Evaluation and Characterization of Influencing Factors in Laos. Front. Ecol. Evol. 2023, 11, 1276239. [Google Scholar] [CrossRef]
- Xu, L.; Du, H.; Zhang, X. Driving Forces of Carbon Dioxide Emissions in China’s Cities: An Empirical Analysis Based on the Geodetector Method. J. Clean. Prod. 2021, 287, 125169. [Google Scholar] [CrossRef]
- Zheng, A.; Wang, T.; Li, X. Spatiotemporal Characteristics and Risk Factors of the COVID-19 Pandemic in New York State: Implication of Future Policies. ISPRS Int. J. Geo-Inf. 2021, 10, 627. [Google Scholar] [CrossRef]
- Song, L.; Zhang, A.; Hu, Z. Greenspace Exposure Is Conducive to the Resilience of Public Sentiment during the COVID-19 Pandemic. Health Place 2023, 83, 103096. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Chen, Y.; Fu, S.; Zhou, N. NDVI-Based Assessment of Land Degradation Trends in Balochistan, Pakistan, and Analysis of the Drivers. Remote Sens. 2023, 15, 2388. [Google Scholar] [CrossRef]
- Li, M.; Abuduwaili, J.; Liu, W.; Feng, S.; Saparov, G.; Ma, L. Application of Geographical Detector and Geographically Weighted Regression for Assessing Landscape Ecological Risk in the Irtysh River Basin, Central Asia. Ecol. Indic. 2024, 158, 111540. [Google Scholar] [CrossRef]
- Shrestha, A.; Luo, W. An Assessment of Groundwater Contamination in Central Valley Aquifer, California Using Geodetector Method. Ann. GIS 2017, 23, 149–166. [Google Scholar] [CrossRef]
- Tegegne, A.M.; Lohani, T.K.; Eshete, A.A. Proxy Modeling Approach to Evaluate Groundwater Recharge Potentiality Zones in the Data Scarce Area of Upper Blue Nile Basin, Ethiopia. Environ. Monit. Assess. 2023, 195, 726. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Wang, J.; Li, M.; Wang, S.; He, X.; Zhou, C. Evolution and Control of the COVID-19 Pandemic: A Global Perspective. Cities 2022, 130, 103907. [Google Scholar] [CrossRef]
- Liu, W.; Xue, Y.; Shang, C. Spatial Distribution Analysis and Driving Factors of Traditional Villages in Henan Province: A Comprehensive Approach via Geospatial Techniques and Statistical Models. Herit. Sci. 2023, 11, 185. [Google Scholar] [CrossRef]
- Qu, X.; Xu, G.; Qi, J.; Bao, H. Identifying the Spatial Patterns and Influencing Factors of Leisure and Tourism in Xi’an Based on Point of Interest (POI) Data. Land 2023, 12, 1805. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Jin, Y. Spatial Distribution Characteristics of Traditional Villages and Influence Factors Thereof in Hilly and Gully Areas of Northern Shaanxi. Sustainability 2022, 14, 15327. [Google Scholar] [CrossRef]
- Zou, J.; Deng, X. Spatial Differentiation and Driving Forces of Migrants’ Socio-Economic Integration in Urban China: Evidence from CMDS. Soc. Indic. Res. 2022, 159, 1035–1056. [Google Scholar] [CrossRef]
- Kowe, P.; Mutanga, O.; Odindi, J.; Dube, T. A Quantitative Framework for Analysing Long Term Spatial Clustering and Vegetation Fragmentation in an Urban Landscape Using Multi-Temporal Landsat Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102057. [Google Scholar] [CrossRef]
- Zeng, P.; Shang, L.; Xing, M. Spatial Correlation between Producer Services Agglomeration and Carbon Emissions in the Yangtze River Economic Belt Based on Point-of-Interest. Sci. Rep. 2023, 13, 5606. [Google Scholar] [CrossRef]
- Chang, B.; Ding, X.; Xi, J.; Zhang, R.; Lv, X. Spatial-Temporal Distribution Pattern and Tourism Utilization Potential of Intangible Cultural Heritage Resources in the Yellow River Basin. Sustainability 2023, 15, 2611. [Google Scholar] [CrossRef]
- Ding, A.; Cenci, J.; Zhang, J. Links between the Pandemic and Urban Green Spaces, a Perspective on Spatial Indices of Landscape Garden Cities in China. Sustain. Cities Soc. 2022, 85, 104046. [Google Scholar] [CrossRef]
- Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A Geographically Weighted Regression Model Augmented by Geodetector Analysis and Principal Component Analysis for the Spatial Distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
- Yan, M.; Li, Q.; Zhang, J. Rethinking Industrial Heritage Tourism Resources in the EU: A Spatial Perspective. Land 2023, 12, 1510. [Google Scholar] [CrossRef]
- Liu, L.; Chen, M.; Luo, P.; Hu, M.; Duan, W.; Elbeltagi, A. A Novel Integrated Spatiotemporal-Variable Model of Landscape Changes in Traditional Villages in the Jinshaan Gorge, Yellow River Basin. Land 2023, 12, 1666. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Q.; Hu, S. Intangible Cultural Heritage in the Yellow River Basin: Its Spatial–Temporal Distribution Characteristics and Differentiation Causes. Sustainability 2022, 14, 11073. [Google Scholar] [CrossRef]
- Li, S.; Song, Y.; Xu, H.; Li, Y.; Zhou, S. Spatial Distribution Characteristics and Driving Factors for Traditional Villages in Areas of China Based on GWR Modeling and Geodetector: A Case Study of the Awa Mountain Area. Sustainability 2023, 15, 3443. [Google Scholar] [CrossRef]
- Su, H.; Wang, Y.; Zhang, Z.; Dong, W. Characteristics and Influencing Factors of Traditional Village Distribution in China. Land 2022, 11, 1631. [Google Scholar] [CrossRef]
- Zhang, S.; Chi, L.; Zhang, T.; Ju, H. Spatial Pattern and Influencing Factors of Land Border Cultural Heritage in China. Herit. Sci. 2023, 11, 187. [Google Scholar] [CrossRef]
- Jia, Z.; Jiao, Y.; Zhang, W.; Chen, Z. Rural Tourism Competitiveness and Development Mode, a Case Study from Chinese Township Scale Using Integrated Multi-Source Data. Sustainability 2022, 14, 4147. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Bonazza, A.; Hughes, J.J. An Integrated Approach for Assessing the Vulnerability of World Heritage Sites to Climate Change Impacts. J. Cult. Herit. 2020, 41, 211–224. [Google Scholar] [CrossRef]
- Fusco Girard, L. Toward a Smart Sustainable Development of Port Cities/Areas: The Role of the “Historic Urban Landscape” Approach. Sustainability 2013, 5, 4329–4348. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, C.; Zhou, X.; Cao, R. Chinese Tourists’ Perceptions and Consumption of Cultural Heritage: A Generational Perspective. Asia Pac. J. Tour. Res. 2021, 26, 719–731. [Google Scholar] [CrossRef]
- Yang, C.; Qian, Z. “Art District without Artists”: Urban Redevelopment through Industrial Heritage Renovation and the Gentrification of Industrial Neighborhoods in China. Urban Geogr. 2023, 1–23. [Google Scholar] [CrossRef]
- Olya, H.G.T.; Alipour, H.; Gavilyan, Y. Different Voices from Community Groups to Support Sustainable Tourism Development at Iranian World Heritage Sites: Evidence from Bisotun. J. Sustain. Tour. 2018, 26, 1728–1748. [Google Scholar] [CrossRef]
- Jing-Zhang Railway Heritage Park. Available online: http://k.sina.cn/article_3065661785_pb6ba495902700n1h5.html?from=news&subch=photo (accessed on 22 February 2024).
- Wang, N.; Zhu, Y.; Yang, T. The Impact of Transportation Infrastructure and Industrial Agglomeration on Energy Efficiency: Evidence from China’s Industrial Sectors. J. Clean. Prod. 2020, 244, 118708. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, M.; Li, Z.; Li, W.; Lu, C.; Li, Z.; Li, H.; Zhai, F. Study on the Spatial Distribution Characteristics and Influencing Factors in the Reuse of National Industrial Heritage Sites in China. Sustainability 2023, 15, 16685. [Google Scholar] [CrossRef]
- China Railway Museum’s Zhengyangmen Branch. Available online: https://m.sohu.com/a/313622647_161623/ (accessed on 20 February 2024).
- Ng, W.-K.; Hsu, F.-T.; Chao, C.-F.; Chen, C.-L. Sustainable Competitive Advantage of Cultural Heritage Sites: Three Destinations in East Asia. Sustainability 2023, 15, 8593. [Google Scholar] [CrossRef]
- Liang, S.; Wang, Q. Cultural and Creative Industries and Urban (Re)Development in China. J. Plan. Lit. 2020, 35, 54–70. [Google Scholar] [CrossRef]
- Bertacchini, E.; Frontuto, V. Economic Valuation of Industrial Heritage: A Choice Experiment on Shanghai Baosteel Industrial Site. J. Cult. Herit. 2024, 66, 215–228. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, C.; Nie, L. Experiencing Authenticity to Environmentally Responsible Behavior: Assessing the Effects of Perceived Value, Tourist Emotion, and Recollection on Industrial Heritage Tourism. Front. Psychol. 2022, 13, 1081464. [Google Scholar] [CrossRef]
- Gharaati, F.; Mahdavinejad, M.; Nadolny, A.; Bazazzadeh, H. Sustainable Assessment of Built Heritage Adaptive Reuse Practice: Iranian Industrial Heritage in the Light of International Charters. Hist. Environ. Policy Pract. 2023, 14, 498–532. [Google Scholar] [CrossRef]
- Loures, L.; Vaz, E. Exploring Expert Perception towards Brownfield Redevelopment Benefits According to Their Typology. Habitat Int. 2018, 72, 66–76. [Google Scholar] [CrossRef]
- Tendero, M.; Bazart, C. “I Can’t Get No Satisfaction”: Soil Contaminated Brownfield Redevelopment in France. Cities 2024, 145, 104719. [Google Scholar] [CrossRef]
- Fernández-Braña, A.; Salgado, L.; Gallego, J.L.R.; Afif, E.; Boente, C.; Forján, R. Phytoremediation Potential Depends on the Degree of Soil Pollution: A Case Study in an Urban Brownfield. Environ. Sci. Pollut. Res. 2023, 30, 67708–67719. [Google Scholar] [CrossRef]
- Beer, M.; Rybár, R.; Kaľavský, M. Renewable Energy Sources as an Attractive Element of Industrial Tourism. Curr. Issues Tour. 2018, 21, 2139–2151. [Google Scholar] [CrossRef]
- Yan, Y.Q.; Shen, H.J.; Ye, B.H.; Zhou, L. From Axe to Awe: Assessing the Co-Effects of Awe and Authenticity on Industrial Heritage Tourism. Curr. Issues Tour. 2022, 25, 2821–2837. [Google Scholar] [CrossRef]
- Kolejka, J.; Krejčí, T.; Nováková, E. The Pre-Industrial Landscape in Moravia. The Case Study of Inventory and Analysis of the Ancient Land Use Structures in the Czech Republic). Land Use Policy 2020, 97, 104712. [Google Scholar] [CrossRef]
Geographic Region | Number of Industrial Landscape Sites | Proportion (%) | Cumulative Percentage (%) | NNI | Z-Value | p-Value | Type of Spatial Distribution |
---|---|---|---|---|---|---|---|
Eastern China | 142 | 29.34 | 29.34 | 0.593 | −0.9.181 | 0.000 | Aggregated–random |
Northern China | 85 | 17.56 | 46.90 | 0.512 | −8.615 | 0.000 | Aggregated–random |
Southwest China | 76 | 15.70 | 62.6 | 0.525 | −7.923 | 0.000 | Aggregated–random |
Northeast China | 58 | 11.98 | 74.58 | 0.406 | −8.427 | 0.000 | Aggregated |
Central China | 57 | 11.78 | 86.36 | 0.492 | −7.274 | 0.000 | Aggregated |
Northwest China | 44 | 9.09 | 95.45 | 0.541 | −5.821 | 0.000 | Aggregated–random |
Southern China | 22 | 4.55 | 100 | 0.967 | −0.284 | 0.000 | Random |
Hot Spot Classification | Provincial Administrative Regions | Number Of Industrial Landscape Sites | Proportion (%) |
---|---|---|---|
Hot spot areas | Anhui, Beijing, Chongqing, Hebei, Henan, Jiangsu, Shandong, Shanghai, Tianjin, Zhejiang | 206 | 42.56 |
Sub-hot spot areas | Guizhou, Hubei, Inner Mongolia, Jiangxi, Qinghai, Shaanxi, Shanxi, Sichuan, Tibet, Yunnan | 149 | 30.79 |
Sub-cold spot areas | Fujian, Gansu, Guangxi, Heilongjiang, Hunan, Jilin, Liaoning | 100 | 20.66 |
Cold spot areas | Guangdong, Hainan, Hong Kong, Macao, Ningxia, Taiwan, Xinjiang | 29 | 5.99 |
Period | Standard Deviation along the X-axis | Standard Deviation along the Y-axis | Turning Angle | Coordinates |
---|---|---|---|---|
The traditional handicrafts phase (before 1839) | 4.622 | 9.777 | 60.65 | 113°31′48″ E, 31°42′36″ N |
The emergence of modern industry (1840–1894) | 4.812 | 8.235 | 13.59 | 118°42′36″ E, 33°13′48″ N |
The expansion of modern industry (1895–1917) | 5.591 | 10.385 | 35.81 | 116°22′12″ E, 34°0′36″ N |
The zenith of modern industry (1918–1936) | 7.478 | 10.262 | 67.24 | 116°59′24″ E, 34°7′48″ N |
The decline of modern industry (1937–1949) | 6.047 | 14.304 | 54.65 | 113°32′24″ E, 33°27′36″ N |
The revival of modern industry (starting from 1950) | 7.853 | 13.298 | 71.60 | 111°21′36″ E, 34°32′24″ N |
Influencing Factors | Specific Indicators | q-Value | p-Value | q-Value |
---|---|---|---|---|
Economic development level | GDP (X1) | 0.639 | 0.000 | 0.435 |
Per capita disposable income of urban residents (X2) | 0.259 | 0.207 | ||
The number of large-scale industrial enterprises (X3) | 0.406 | 0.077 | ||
Social demographic conditions | Urbanization rate (X4) | 0.638 | 0.005 | 0.671 |
Population density (X5) | 0.611 | 0.009 | ||
The number of students in higher education institutions (X6) | 0.764 | 0.000 | ||
Transportation infrastructure | Road network density (X7) | 0.592 | 0.006 | 0.372 |
Railroad network density (X8) | 0.416 | 0.066 | ||
Freight volume (X9) | 0.255 | 0.184 | ||
Cultural environment | Budget for cultural heritage conservation (X10) | 0.521 | 0.003 | 0.443 |
The number of national key cultural heritage conservation units (X11) | 0.279 | 0.239 | ||
Museum visitation statistics (X12) | 0.528 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, M.; Li, Q.; Song, Y. Spatial and Temporal Distribution Characteristics and Influential Mechanisms of China’s Industrial Landscape Based on Geodetector. Land 2024, 13, 746. https://doi.org/10.3390/land13060746
Yan M, Li Q, Song Y. Spatial and Temporal Distribution Characteristics and Influential Mechanisms of China’s Industrial Landscape Based on Geodetector. Land. 2024; 13(6):746. https://doi.org/10.3390/land13060746
Chicago/Turabian StyleYan, Mi, Qingmiao Li, and Yan Song. 2024. "Spatial and Temporal Distribution Characteristics and Influential Mechanisms of China’s Industrial Landscape Based on Geodetector" Land 13, no. 6: 746. https://doi.org/10.3390/land13060746
APA StyleYan, M., Li, Q., & Song, Y. (2024). Spatial and Temporal Distribution Characteristics and Influential Mechanisms of China’s Industrial Landscape Based on Geodetector. Land, 13(6), 746. https://doi.org/10.3390/land13060746