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Abstract: The industrial landscape constitutes a crucial aspect of a region’s historical and cultural
identity, serving as a valuable asset in the development of industrial tourism. Exploring the industrial
landscape supports initiatives in industrial tourism, acts as a catalyst for community revitalization,
and contributes to sustainable urban progress. The primary objective of this research was to in-
vestigate the spatial distribution characteristics and underlying determinants of China’s industrial
landscape (CIL) to inform urban planning, cultural heritage preservation, and sustainable develop-
ment initiatives. This study utilized analytical tools, such as the nearest neighbor index, geographic
concentration index, and hot spot analysis, to comprehensively examine the spatial distribution of
CIL. Additionally, Geodetector was employed to explore the correlating factors behind this distri-
bution. The findings reveal the following: (1) CIL exhibited a pronounced agglomerative spatial
pattern characterized by a high degree of concentration, significant disparities, and substantial spatial
autocorrelation. (2) Over time, the agglomeration of CIL varied, intensifying initially and then dimin-
ishing, with the center of gravity of its distribution shifting eastward before subsequently moving
westward in a directional trend resembling “northeast–southwest”. (3) There was a diverse array
of industrial landscape types within China, with notable disparities in the prevalence of different
categories. The manufacturing and transportation sectors boasted the highest number of heritage
sites. (4) The distribution pattern of CIL was shaped by factors such as the level of economic develop-
ment, socio-demographic conditions, transportation infrastructure, and cultural milieu. The interplay
between these factors had a substantial impact on this distribution pattern.

Keywords: industrial landscape; influence mechanism; Geodetector; heritage protection; spatial–temporal
patterns

1. Introduction

The industrial landscape constitutes a significant facet of the urban landscape, encap-
sulating the technological advancements and industrial evolution that have profoundly
shaped human history, particularly during the epochal Industrial Revolution [1,2]. In the
context of post-industrial societies, the preservation and transmission of this landscape
have become a global issue [3]. Especially within the realm of sustainable urban devel-
opment, the preservation and reuse of the industrial landscape have emerged as pivotal
mechanisms for facilitating urban revitalization [4] and fostering economic growth [5]. The
industrial landscape encompasses the tangible remains of technological and industrial
history, including manufacturing and mining sites, as well as power and transportation
infrastructure. It records the social and material cultural activities of people in the construc-
tion of infrastructure, the collection of raw materials, the production of objects, and the
distribution of energy [6]. Recently, the practice of preserving and reutilizing the industrial
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landscape has undergone substantial expansion through the support of relevant policies,
with countries and cities actively exploring different approaches and models [7–9]. How-
ever, regional differences in the conservation of the industrial landscape are evident due to
various constraints, such as economic, cultural, and policy factors. Simultaneously, there
remains an overall insufficiency of knowledge about the industrial landscape [10], resulting
in the phenomena of “scattering” and “isolation” [11]. These challenges have emerged as
pivotal obstacles to the sustainable development of the industrial landscape, constituting
urgent issues that demand resolution through both historical and cultural heritage preser-
vation and the promotion of a sustainable industrial landscape. Therefore, scientifically
identifying and analyzing the spatial distribution characteristics of the industrial landscape,
as well as elucidating the underlying influential mechanisms, will facilitate more efficient
integration and utilization of industrial landscape resources. Moreover, these practices
will provide robust guidance for formulating strategies pertaining to the development of
industrial tourism.

Industrial archaeology, which aims to preserve and document the remains of the
Industrial Revolution, began exploring industrial landscape conservation in the mid-to-late
19th century [12]. When the International Consortium for the Conservation of Industrial
Heritage (TICCIH) was founded in 1978, a milestone was reached in the early develop-
ment of industrial landscape conservation [13]. Initially, the primary focus was on the
physical remnants of industrial activity, encompassing structures and machinery. How-
ever, crystallizing the concept of industrial landscape was not achieved until the adoption
of the Nizhny Tagil Charter for the Industrial Heritage by TICCIH [6] in 2003 and The
Dublin Principles [14] by the International Council on Monuments and Sites (ICOMOS)
in 2011. These charters established definitions and values that provide a comprehensive
framework for the field [15]. Subsequently, there has been a growing academic interest
in industrial landscapes, broadening the research scope to include heritage significance
evaluation [16–19], adaptive reuse strategies [20–22], community engagement [23–25], and
the exploration of the tourism potential of industrial landscapes [26,27]. This broader focus
represents a holistic approach to understanding and preserving the complex nature of
industrial landscapes. Research on industrial landscapes, which are critical to urban and
regional development, has spanned conservation design, public perception, and cultural
values. With the reduction in industrial activities, the preservation and assessment of
industrial landscapes have emerged as pivotal research areas [28,29]. Innovative research
into the role of social media in enhancing public engagement and awareness about con-
servation underscores the significant potential of digital platforms for the preservation
of industrial landscapes [30]. Moreover, public perceptions and preferences concerning
post-industrial landscapes critically influence landscape planning and management [31].
Advanced methodologies, such as deep learning techniques and multiple regression mod-
els, are employed to analyze public perceptions of restoration in post-industrial parks,
elucidating the distinct contributions of natural and man-made elements in boosting public
satisfaction and restorative experiences [32]. The transformation of industrial landscapes
involves not only physical changes but also significant shifts in social and cultural dimen-
sions. For instance, an ethnographic examination of the transition of industrial landscapes
across six European countries investigated the interplay between industry, industrial land-
scapes, and class identities, unveiling the extensive impact of industrial landscapes on
social memory and identity [33]. Nonetheless, investigations into the spatial distribution
and correlating factors of industrial landscape resources are relatively recent, having at-
tracted scholarly attention only in recent years. Recent studies revealed that industrial
landscapes predominantly cluster in regions characterized by abundant natural resources
and high population density [34]. These studies further investigated the spatial distribu-
tion features of the industrial landscape [35], considering factors such as the geographical
distribution [36,37], industry type [38], structural typology [39], and economic systems [40],
and presented comprehensive models for industrial landscape preservation.
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While the aforementioned studies provided comparative analyses of the spatial dis-
tribution of the industrial landscape and its determining factors, they exhibited certain
limitations. First, the majority of these investigations focused on exploring the industrial
landscape of specific cities or industry types, such as the military industrial landscape [41],
petroleum industrial landscape [42], and rural industrial landscape [43]. This limited scope
may restrict the breadth and representativeness of the samples, thereby posing challenges
in generalizing findings across a wider spectrum of the industrial landscape. Consequently,
it becomes difficult to provide a comprehensive portrayal of its overall characteristics.
Second, the research methodology employed was primarily rooted in traditional qualitative
analysis methods when examining the influential mechanisms of the spatial distribution.
These qualitative approaches may fall short of capturing the intricate interdependencies,
particularly the geographical relationships. Furthermore, in terms of research content,
the selection and measurement of relevant factors have predominantly remained within
the purview of qualitative analyses, with quantitative analytical methods not yet widely
employed to augment the explanatory capacity of these influential factors. A more balanced
integration of qualitative and quantitative methodologies has the potential to provide a
more nuanced and comprehensive understanding of the spatial dynamics associated with
the industrial landscape.

Geodetector, which is a powerful analytical tool, has been widely utilized for the com-
prehensive exploration of a broad range of geographic phenomena and their influencing fac-
tors. This tool has been applied across critical fields, such as environmental science [44,45],
public health [46,47], resource management [48], and ecological risk assessment [49]. For
instance, Geodetector facilitated assessments of nitrate contamination in the groundwater
in California’s Central Valley, identifying the principal factors contributing to this issue [50].
Furthermore, Geodetector was instrumental in evaluating the groundwater recharge po-
tential of the Upper Blue Nile Basin in Ethiopia through integration with the WetSpass-M
model [51]. Scholars also adeptly employed Geodetector to analyze from a global perspec-
tive the spatial and temporal clustering characteristics of the COVID-19 outbreak and its
related factors [52]. Despite these diverse applications, deploying Geodetector to exam-
ine the spatial distribution of heritage, particularly within industrial landscapes, remains
notably limited.

In view of this, this study utilized data from the National List of Industrial Heritage
(NIHL) and the China Industrial Heritage Protection List (CIHPL) as representative datasets
for China’s industrial landscape (CIL). It employed a combination of analytical techniques,
including the geographic concentration index, hot spot analysis, and kernel density analysis,
to comprehensively illustrate the spatial heterogeneity traits of CIL. Moreover, Geodetector
analysis was employed in this study to investigate the factors that influenced the spatial
distribution of CIL. The integration of these methodologies was designed to provide a
comprehensive depiction of the spatial dynamics and determinants of CIL. The findings
will provide strategic recommendations for urban planning, heritage conservation, and
sustainable development, and promote industrial tourism and urban revitalization.

2. Materials and Methods
2.1. Data Sources

The data utilized in this research were obtained from two primary sources: the CAST
database, which includes a total of 197 sites published by the MIIT in five separate batches,
and the CIHPL, which consists of three batches comprising 300 sites published by CAST.
After removing duplicate entries, our dataset comprised 484 unique sites. We obtained
geographic coordinates using the geographic coordinate picker in Google Maps. We
partitioned the industrial heritage elements characterized by linear features, such as railroad
heritage sites, into nodes based on provincial administrative boundaries and selected
representative coordinates to capture their geographical extent. For instance, the Jinpu
Railway, originating from Tianjin, which is a centrally governed municipality, traverses
four provinces (Hebei, Shandong, Anhui, and Jiangsu), as well as the municipality of
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Tianjin, before concluding in Nanjing within the province of Jiangsu. Consequently, we
selected coordinates from five key stations along its route: Tianjin North Railway Station,
Qingxian Railway Station in Hebei Province, Zaozhuang Railway Station in Shandong
Province, Bengbu East Railway Station in Anhui Province, and Nanjing Pukou Railway
Station in Jiangsu Province. These geographic coordinates were then imported into ArcGIS
10.2 software to generate a comprehensive map illustrating the spatial distribution of CIL
sites (Figure 1).
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Figure 1. Spatial distribution of CIL sites.

Map vector information was sourced from the Resource Environment and Data Cen-
ter of the Chinese Academy of Sciences (http://www.resdc.cn/ (accessed on 5 January
2024)). Our humanistic data, which encompassed various factors that affect the industrial
landscape distribution, were collected from authoritative sources, including the 2020 China
Statistical Yearbook, China Cultural Relics, and Tourism Statistical Yearbook, and the 2020
National Economic and Social Development Statistical Bulletin for each respective region.

2.2. Research Methodology

To conduct a comprehensive assessment of the spatial characteristics and the determi-
nants that affected CIL, this investigation incorporated a selection of widely recognized
indices and models within the field of geospatial research (Figure 2). Utilization of the
nearest neighbor index, for instance, facilitated the categorization of the spatial patterning
of CIL sites, enabling the distinction between tendencies toward clustering, dispersion, and
randomness. Subsequently, the imbalance index was employed to quantify the extent of
variability in the spatial distribution of CIL sites, thereby highlighting potential regions
of imbalance or concentration. Hot spot analysis served to identify clusters of high or
low values within CIL, providing insights into the spatial correlations and patterns of
concentration. Complementing this analysis, the standard deviation ellipse tool tracked
the temporal shifts and evolution of these clusters over time. Finally, Geodetector analysis

http://www.resdc.cn/
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quantitatively evaluated the impact of humanistic factors on the spatial distribution of CIL,
affording us a nuanced comprehension of the intricate interplay between human activities
and the environment in shaping the distinctive characteristics of industrial landscape sites.
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2.2.1. Nearest Neighbor Index

The nearest neighbor index (NNI) acts as a spatial measure of the closeness of point
elements in a geographic setting. It is calculated as the ratio of the observed mean distance of
the nearest neighbor to the expected mean distance under complete spatial randomness [53].
In this research, the NNI was utilized to characterize the spatial pattern of CIL. The formula
is as follows [54]:

NNI =
r1

re
=

r1

1
2

√
n
A

(1)

where NNI represents the nearest neighbor index, r1 represents the average value of the
Euclidean distance r1 between the nearest neighbors, re represents the theoretical nearest
neighbor distance, n represents the number of industrial heritage sites, and A represents the
study area. If NNI > 1, CIL sites tended to be evenly distributed; if NNI = 1, the sites were
randomly distributed; and if NNI < 1, there tended to be an agglomerative distribution [54].

2.2.2. Geographic Concentration Index

The geographic concentration index reflects the distribution of point elements in
geographic space [55]. In this study, the geographic concentration index was applied to
measure the degree of spatial balance in CIL at the national scale; the formula is

G =
√

∑n
i=1(Xi/ H) 2 (2)

where G represents the geographic concentration index, Xi denotes the distribution number
of CIL sites in the ith provincial administrative region, and H denotes the total number of
CIL sites. The larger the value of G, the more centralized the distribution of CIL sites was,
and the smaller the value of G, the more discrete the distribution of CIL sites was. If G > G0,
this indicates that CIL sites were characterized by a centralized distribution, where G0
represents the geographic concentration index when CIL sites were distributed on average.

2.2.3. Hot Spot Analysis

Hot spot analysis is used to analyze where the spatial clustering of high-value elements
or low-value elements occurs in a region [56]. In this study, hot spot analysis was used to
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analyze the differences in the degrees of similarity of CIL spatially distributed phenomena
in spatially neighboring regions. The hot spot analysis tool based on the Getis–Ord G*

i
statistical index was used in GIS 10.2 to reflect the clustering of spatial high-value areas (hot
spot areas) and low-value areas (cold spot areas) by calculating the Z-values and p-values
between the elements, as follows [57]:

G∗
i =

∑n
j=1 wi,jxj − X∑n

j=1 wi,j

S

√
n∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)
n−1

2
(3)

where i represents the central element, j denotes all elements in the domain, xj signifies
the attribute value of element j, wi,j indicates the spatial weight between elements i and j,
and n represents the total number of elements. A higher G*

i score implies a more compact
clustering of CIL, while a lower score suggests otherwise.

2.2.4. Kernel Density Analysis

Kernel density analysis represents a technique for assessing the density of points by
considering the effect of distance attenuation, thereby vividly illustrating the concentration
level of point features [58,59]. In this research, the method of kernel density analysis was
applied to examine the density characteristics of different CIL types using the following
formula [60]:

f f (x) =
1

nh∑n
i=1 k

(
x − xi

h

)
(4)

where k is the spatial weight function, where if the industrial landscape was closer to the
center point, the greater the weight, and vice versa; h (h > 0) is the bandwidth; (x − xi) is
the value of the distance from the estimated value point x to the industrial landscape xi;
and n is the number of CIL sites.

2.2.5. Geodetector

Geodetector serves as an effective tool for detecting spatial heterogeneity and elu-
cidating the underlying driving forces [61]. Factor detection in Geodetector enables the
identification of the individual influences that explain the target variable to a certain extent,
while interaction detection can determine whether the combined effect of these influences
enhances or diminishes the explanatory power of the target variable. This study analyzed
the influence of humanistic factors on the spatial differentiation of CIL sites with the help
of the factor detection and interaction detection tools in Geodetector [62].

q =
(

Nσ2 − ∑L
h=1 Nhσ2

h

)
/Nσ2 (5)

In this formula, L represents the number of strata of the influence factor X; Nh and
N denote the counts of industrial landscape sites within stratum h and the entire region,
respectively; and σ2

h and σ2 represent the variance in density of industrial landscape sites
within stratum h and across the entire region, respectively. The parameter q (0 ≤ q ≤ 1)
represents the measurement of the effect that an influencing factor has on the spatial distri-
bution of CIL sites. A greater q value reflects a more pronounced effect of the influencing
factor on spatial patterns, whereas a smaller q value indicates a less significant impact [63].

3. Results
3.1. Spatial Distribution Characteristics
3.1.1. Spatial Typology Characteristics: Agglomerative Distribution

CIL predominantly exhibited the characteristics of a clustered distribution. This distri-
bution pattern was quantitatively assessed using the NNI within ArcGIS 10.2, resulting in
a calculated NNI for CIL of 0.406. This value, which is significantly less than 1, indicates a
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high level of spatial clustering. Conventionally, an NNI value of ≤0.5 typically indicates an
aggregated distribution, while 0.5 < NNI ≤ 0.8 corresponds to an aggregated–random dis-
tribution. A value of 0.8 < NNI < 1.2 is interpreted as a random distribution; 1.2 ≤ NNI < 1.5
suggests a random–discrete distribution; whereas NNI ≥ 1.5 is indicative of a uniform
distribution across space [64]. This pronounced clustering not only reflects the spatial dy-
namics of CIL but also highlights the significant potential for promoting industrial tourism
within China.

An analysis of the spatial distribution of the industrial landscape across China’s
geographical divisions revealed a significant regional disparity. The majority of these sites
were concentrated in Eastern China, which, together with Northern China, accounted for
approximately 50% of the country’s total industrial landscape sites. Conversely, Southern
China contained the smallest proportion of these sites. By employing NNI to evaluate the
clustering within each geographical division, it became evident that a distinct pattern of
agglomeration characterized all regions. Northeast and Central China were particularly
notable for their pronounced clustering, which was indicative of a robust agglomeration
distribution. In contrast, Southern China displayed the lowest level of clustering, aligning
more closely with a random distribution. The remaining regions were characterized
by an agglomeration–random distribution pattern (Table 1). This uneven distribution
accentuated the regional particularities in the preservation and presentation of industrial
heritage, which could inform targeted approaches to industrial landscape management
and tourism development strategies.

Table 1. Nearest neighbor index and spatial type of industrial landscape in seven geographic regions
of China.

Geographic
Region

Number of
Industrial
Landscape

Sites

Proportion
(%)

Cumulative
Percentage

(%)
NNI Z-Value p-Value Type of Spatial

Distribution

Eastern
China 142 29.34 29.34 0.593 −0.9.181 0.000 Aggregated–random

Northern
China 85 17.56 46.90 0.512 −8.615 0.000 Aggregated–random

Southwest
China 76 15.70 62.6 0.525 −7.923 0.000 Aggregated–random

Northeast
China 58 11.98 74.58 0.406 −8.427 0.000 Aggregated

Central
China 57 11.78 86.36 0.492 −7.274 0.000 Aggregated

Northwest
China 44 9.09 95.45 0.541 −5.821 0.000 Aggregated–random

Southern
China 22 4.55 100 0.967 −0.284 0.000 Random

3.1.2. Spatial Distribution Characteristics: Uneven Distribution

The spatial distribution of CIL sites was quantitatively evaluated using the geographic
concentration index and the imbalance index to evaluate the distributional equity. The
findings indicate a pronounced disequilibrium in the distribution across the country. Specif-
ically, the geographic concentration index for CIL registered at 20.53. In the hypothetical
scenario of an equitable distribution, where 484 industrial landscape sites were uniformly
dispersed across China’s 34 provincial regions, the anticipated average would be approxi-
mately 14 sites per region, resulting in a geographic concentration index (G0) of 17.15 for
a uniform distribution. The observed index (G) surpassed G0 (G > G0), which substanti-
ated the fact that the provincial-level distribution of CIL sites exhibited a higher level of
concentration than what would be anticipated in a scenario of uniform distribution.
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The degree of distributional equity of CIL sites across provincial regions was assessed
using the imbalance index. As calculated by Equation (2), it was evident that the imbalance
index S = 0.38 (0 < S < 1) indicated an unbalanced spatial distribution of CIL sites. This
finding of disequilibrium was supported by the convex shape exhibited in the Lorenz curve
(Figure 3), which provided further empirical evidence of the spatial disproportionality of
CIL sites across the provincial regions.
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3.1.3. Spatial Association Characteristics: Significant Spatial Autocorrelation

Using the 34 provincial-level administrative divisions of China as the fundamental
spatial units, this research employed the Getis–Ord Gi* index to analyze statistically signifi-
cant spatial clustering within each province. The results were classified into four distinct
categories: hot spot, sub-hot spot, sub-cold spot, and cold spot (Figure 4). The hot spot
and sub-hot spot areas accounted for 73.35%, and the cold spot and sub-cold spot areas
accounted for 26.65% (Table 2).

Table 2. List of cold and hot zones of CIL.

Hot Spot Classification Provincial Administrative Regions Number Of Industrial
Landscape Sites Proportion (%)

Hot spot areas
Anhui, Beijing, Chongqing, Hebei,

Henan, Jiangsu, Shandong, Shanghai,
Tianjin, Zhejiang

206 42.56

Sub-hot spot areas
Guizhou, Hubei, Inner Mongolia,
Jiangxi, Qinghai, Shaanxi, Shanxi,

Sichuan, Tibet, Yunnan
149 30.79

Sub-cold spot areas Fujian, Gansu, Guangxi, Heilongjiang,
Hunan, Jilin, Liaoning 100 20.66

Cold spot areas Guangdong, Hainan, Hong Kong,
Macao, Ningxia, Taiwan, Xinjiang 29 5.99

This analysis revealed that the spatial distribution of CIL sites was predominantly
characterized by the presence of hot spots, with a comparatively lesser incidence of cold
spots and sub-cold spots, indicating a generally dynamic pattern. Typically, the hot spots
were concentrated in the eastern coastal regions, forming extensive clusters, while the cold
spots exhibited more scattered distributions resembling peripheral points in the western
and southern regions of China. The presence of distinct transitional zones between the hot
and cold spots further indicates that CIL exhibited significant spatial autocorrelation.
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3.2. The Characteristics of Time and Type Distribution
3.2.1. Temporal Evolution Characteristics: East First, Then West

Revisiting previous research [34,39] and considering the distinctive characteristics of
CIL, this study tracked its progression through six successive developmental stages: the
traditional handicrafts phase (before 1839); the emergence of modern industry (1840–1894);
the expansion of modern industry (1895–1917); the zenith of modern industrial develop-
ment (1918–1936); the decline of modern industry (1937–1949); and finally, the revival of
modern industry (starting from 1950). By utilizing standard deviation ellipse analysis and
center of gravity analysis, we revealed a distinct “northeast–southwest” orientation in the
spatial distribution of CIL sites, with minor temporal shifts in directionality (Figure 5). The
centroid of the standard deviation ellipse was positioned within the range of 111◦21′36′′ E
to 118◦42′36′′ E and 31◦42′36′′ N to 34◦7′48′′ N, indicating a skew toward the southeast
of China’s geometric center and signifying a higher concentration of industrial landscape
sites in the eastern and southern regions. The trajectory of the centroid exhibited a distinct
eastward and then westward movement pattern. The azimuthal shift demonstrated an
initial increase, followed by a subsequent decrease, indicating that the spatial distribution
of CIL sites transitioned from “northwest–southeast” to “north–south”, and eventually
returned to “northwest–southeast”. Moreover, the standard deviations along the X- and
Y-axes consistently increased, indicating a clear trend toward dispersion, which suggests
that the level of CIL site agglomeration gradually diminished over time (Table 3).
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Table 3. Parameters related to the standard deviation ellipse of CIL.

Period Standard Deviation
along the X-axis

Standard Deviation
along the Y-axis Turning Angle Coordinates

The traditional
handicrafts phase

(before 1839)
4.622 9.777 60.65 113◦31′48′′ E, 31◦42′36′′ N

The emergence of
modern industry

(1840–1894)
4.812 8.235 13.59 118◦42′36′′ E, 33◦13′48′′ N

The expansion of
modern industry

(1895–1917)
5.591 10.385 35.81 116◦22′12′′ E, 34◦0′36′′ N

The zenith of modern
industry (1918–1936) 7.478 10.262 67.24 116◦59′24′′ E, 34◦7′48′′ N

The decline of modern
industry (1937–1949) 6.047 14.304 54.65 113◦32′24′′ E, 33◦27′36′′ N

The revival of modern
industry (starting

from 1950)
7.853 13.298 71.60 111◦21′36′′ E, 34◦32′24′′ N

3.2.2. Characteristics of Type Distribution: Predominantly Manufacturing

Utilizing the established framework for industrial landscape classification [34,62] and
adapting it to reflect the distinctive industrial features of China, this study categorized
CIL into 12 primary categories and 38 sub-categories. The distribution of industrial land-
scape sites across these categories demonstrated significant disparity. Manufacturing and
transportation sites were the most abundant, amounting to 152 and 143 sites, respectively,
which together comprised 60% of the total number of industrial landscape sites. The
industrial landscape associated with the energy and mineral sectors was also noteworthy,
with more than four sites in each sub-category, collectively accounting for 18% of the total.
In stark contrast, the housing and paper industrial landscape categories were the least
represented, featuring only three sites each, demonstrating the uneven distribution of
industrial landscape types (Figure 6).
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The spatial distribution of CIL sites exemplified the heterogeneity that arose from
divergent geographical features, resource allocation complexity, and varied historical de-
velopment trajectories. Specifically, the production and manufacturing industrial heritage
formed two principal high-density zones situated in the Beijing–Tianjin–Hebei region and
the Yangtze River Delta. This distribution extended inland following the courses of the
Yellow and Yangtze Rivers and was complemented by secondary density zones in Sichuan
Province in the southwest and the three northeastern provinces, and collectively formed a
spatial pattern of “four cores and two belts” (Figure 7a). The spatial distribution pattern
depicted herein delineated the historical trajectory of China’s industrial development,
where the Beijing–Tianjin–Hebei and Yangtze River Delta regions emerged as pioneer-
ing hubs. Following its foundation, the People’s Republic of China played a crucial role
in promoting the expansion of its manufacturing sector. The manufacturing industrial
heritage concentrated in Sichuan and the northeastern provinces reflects two significant
industrial epochs—the relocation of industry inward during wartime and the establishment
of the northeastern industrial base. In contrast, the transportation industrial heritage,
which was primarily situated in the coastal areas of Beijing–Tianjin–Hebei, the Yangtze
River Delta, and the Pearl River Delta, reflected the early modernization of China with the
opening of ports and the pioneering of modern transportation networks to establish vital
transportation hubs (Figure 7b).

The energy industrial landscape, which was closely linked to resource reserves and
geographic attributes, formed two high-density clusters centered on Gansu and Sichuan,
and extended along the Yellow and Yangtze Rivers, regions which were home to a majority
of China’s hydroelectric power stations. The northeast and northwest, which served as
key energy extraction bases, exhibited a spatial pattern of “two cores and multiple points”
(Figure 7c). The mineral industrial landscape was a significant indicator of mineral resource
distribution, with two prominent high-density core areas emerging: one characterized by
abundant coal resources in North China and the other by rich metal resources in Central
China. Additionally, a sub-density core area associated with metal mines existed in Yunnan.
Notably, the northeast region was characterized by a concentration of iron ore and coal
mines (Figure 7d). On the other hand, the textile industrial landscape dominated in the
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Jiangsu and Zhejiang regions, and created a high-density core area. The excavation of
silk fabrics at the Liangzhu Site traces back China’s traditional silk-weaving industry to
ancient times. However, the industrial landscape of modern textile technology, which was
introduced during the Industrial Revolution, was dispersed throughout Central China
(Figure 7e).
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The chemical industrial landscape featured two core areas in Beijing–Tianjin–Hebei
and the Yangtze River Delta, which were influenced by the region’s abundant sea salt
resources, and exhibited additional distributions in Central China and the Pearl River Delta
(Figure 7f). The iron and steel industrial landscape, which was predominantly located in
the central region and linked to iron ore resources, was also present in scattered distribu-
tions in the northeast, southwest, and north, creating a “one nucleus and three patches”
pattern (Figure 7g). The communication industrial landscape was densely clustered in
Beijing, which reflected its historical significance as a political center and a hub for modern
communication (Figure 7h). The water industrial landscape was primarily located along
the Yangtze River, where the Yangtze Delta acted as its focal point, and it was influenced
by the history of hydrological project construction (Figure 7i). The salt industrial landscape
formed a notable core in Sichuan (Figure 7j), which is renowned for China’s well-known
salt production base in Zigong. The number of housing and paper industrial landscape
projects was limited, displaying a dispersed distribution pattern that resembled scattered
points (Figure 7k,l).
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4. Correlating Factors of the Spatial Distribution of CIL
4.1. Selection of Correlating Factors

The industrial landscape plays a pivotal role as a spatial repository of urban cul-
ture, holding significant historical importance for city development and the process of
industrialization. The emergence and geographical distribution of the industrial land-
scape are influenced by a combination of economic, social, and cultural factors. Given
the predominant location of the industrial landscape within urban areas, the influence of
natural environmental variables, such as topography, elevation, and climate, on its spatial
distribution appears to be relatively limited. As a result, this study did not take into account
the effects of natural factors on the industrial landscape distribution. Instead, it integrated
existing research findings by considering the inherent attributes of the industrial landscape
and its contemporary developmental context while incorporating insights from the spa-
tial distribution of traditional villages [65,66], cultural heritage sites [67], and intangible
cultural heritage sites [64]. With meticulous consideration of data availability, 12 specific
indicators were carefully selected from the dimensions of the economic development level,
social demographic conditions, transportation infrastructure, and cultural environment
(Table 4). These indicators were used to analyze the multifaceted determinants that shaped
the spatial patterns of CIL.

Table 4. The results of the univariate detection of correlating factors in the spatial distribution of
CIL sites.

Influencing Factors Specific Indicators q-Value p-Value q-Value

Economic development level

GDP (X1) 0.639 0.000

0.435
Per capita disposable income of

urban residents (X2) 0.259 0.207

The number of large-scale industrial
enterprises (X3) 0.406 0.077

Social demographic conditions

Urbanization rate (X4) 0.638 0.005

0.671
Population density (X5) 0.611 0.009

The number of students in higher
education institutions (X6) 0.764 0.000

Transportation infrastructure

Road network density (X7) 0.592 0.006

0.372Railroad network density (X8) 0.416 0.066

Freight volume (X9) 0.255 0.184

Cultural environment

Budget for cultural heritage
conservation (X10) 0.521 0.003

0.443The number of national key cultural
heritage conservation units (X11) 0.279 0.239

Museum visitation statistics (X12) 0.528 0.003

4.2. Univariate Analysis

There was considerable variation in the relative influence of various factors on the
spatial differentiation of CIL. This study utilized Geodetector analysis to quantify the
impacts of these factors on the spatial distribution of CIL sites. According to the findings,
these factors were ranked accordingly based on their influence: X6 > X1 > X4 > X5 > X7 >
X12 > X10 > X8 > X3 > X11 > X9 (Table 4).

4.2.1. Economic Development Level

The economic status exerted a considerable impact on the spatial distribution of
CIL sites. Both the GDP and the number of large-scale industrial enterprises reflect the



Land 2024, 13, 746 14 of 22

intensity of urban economic activity [68], with the industrial landscape typically more
prevalent in areas where urban economic activity is more intense. For example, provincial
administrative regions with high GDPs, including Sichuan Province, Shanghai Municipality,
Shandong Province, and Jiangsu Province, were characterized by a rich distribution of
industrial landscapes.

This distribution pattern can be attributed to various factors. The primary one is the
need for considerable financial resources for the sustainable management of the industrial
landscape, including preservation and modification to meet contemporary needs [69].
Therefore, regions characterized by higher GDPs, which serve as indicators of vigorous
economic activities and investments, are more inclined to endorse preserving and reusing
the industrial landscape [70]. Additionally, economically prosperous regions typically
invest in enhancing the quality of life and cultural facilities for their citizens, including
the maintenance of historical and industrial sites, thereby creating a conducive milieu
for landscape preservation. Furthermore, regions characterized by a higher number of
industrial enterprises typically indicate a more advanced level of industrialization, and
consequently, a more substantial industrial landscape. For instance, cities such as Shanghai,
Tianjin, and Ningbo in Jiangsu Province, which emerged as commercial ports in the 1840s
following the Opium Wars, attracted foreign investments and factory establishments that
solidified their industrial base. The rapid industrialization that followed has led to a rich
repository of industrial landscape in these regions.

In addition, there is a direct correlation between urban residents’ per capita disposable
incomes and their cultural landscape consumption patterns. With the improvement in
economic conditions, there is an increasing demand for cultural landscape experiences [71],
which, in turn, influenced the spatial distribution of CIL sites due to the disposable income
of urban residents.

4.2.2. Social Demographic Conditions

Social demographic conditions were fundamental in shaping the spatial distribution
of CIL sites. Urbanization drives the transformation of the industrial structure, often
leading to the displacement or obsolescence of industrial facilities, thereby potentially
expanding the inventory of industrial landscape sites [72]. Concurrently, urbanization
catalyzes economic growth, attracting investments and fostering conditions conducive
to the restoration and reinvigoration of the industrial landscape, thereby generating a
beneficial cycle. Furthermore, urban population density has an important impact on CIL
distribution. Regions with denser populations tend to be more actively engaged in land-
scape preservation efforts. Local communities in such areas often show greater initiative
and enthusiasm for advocating and participating in the conservation and adaptive reuse of
cultural landscapes. This community-driven engagement is crucial to the sustainability of
industrial landscape conservation efforts [73].

Regions with higher educational attainment often exhibit a deeper awareness regard-
ing cultural landscape preservation. For example, the Beijing–Zhangjiakou Railway, which
is significant in the history of China’s industrial development, was designated as a heritage
park in 2019 (Figure 8) [74]. Local universities have leveraged their academic specialties
and expertise in landscape protection and revitalization by conducting field research, orga-
nizing work camps, and developing programs. This active participation accentuates the
significant role that academic institutions play in safeguarding the industrial landscape.
Such initiatives are vital in perpetuating its legacy, reflecting the public’s engagement and
concern for landscape conservation, and strengthening the preservation of historical and
cultural assets.
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4.2.3. Transportation Infrastructure

The transportation infrastructure foundation is a critical factor in the spatial distribu-
tion of the industrial landscape. Well-developed transport systems, including roadways,
railways, ports, and airports, are essential in fostering industrial advancement [75]. The
establishment of such networks facilitates the efficient transit of raw materials, merchan-
dise, and labor, thereby catalyzing industrial proliferation and engendering a legacy of the
rich industrial landscape. Concurrently, transportation infrastructures themselves often
constitute a significant category of industrial landscape, with railway sites alone accounting
for 15.3% of the total landscape inventory. Furthermore, the accessibility provided by these
transportation networks enhances the appeal of sites for investors engaged in adaptive
reuse initiatives targeting the industrial landscape. Through these ventures, industrial sites
are transformed into museums, cultural hubs, and retail spaces that contribute to industrial
landscape conservation and revitalization [76]. This metamorphosis not only safeguards
critical historical assets but also creates economic value and repurposes cultural resources.

The China Railway Museum, which is a prime example of the railroad industrial land-
scape, occupies the historic grounds of the Zhengyangmen Station on the Beijing–Fengtian
Railway (Figure 9) [77]. Established in 1903, the station has witnessed over a century of
history and was repurposed in 2008 as the China Railway Museum. This institution is
dedicated to documenting the inception and evolution of China’s railroads. The museum
serves not only as a testament to the Beijing–Fengtian Railway but also symbolizes the
broader development of Chinese railroad infrastructure. It highlights the integral role of
the railroad in China’s industrial landscape and its enduring cultural significance.
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4.2.4. Cultural Environment

The spatial distribution of the industrial landscape is significantly influenced by the
cultural context, as reflected in the allocation of funds for the protection of cultural relics
by local governments. This financial commitment demonstrates the importance attributed
to the cultural and historical landscape, and a greater emphasis on this valuation not only
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motivates local authorities to actively safeguard and promote industrial heritage but also
guarantees that adequate resources are available for its effectiveness. Museums, serving
as vital institutions for public engagement with cultural and historical narratives, provide
direct metrics of public interest through visitor numbers. High visitation rates play a
crucial role in propagating the narratives of the industrial landscape, further supporting its
preservation and innovative repurposing.

Moreover, areas with a concentration of national key cultural heritage conservation
units often serve as historical repositories, creating a favorable atmosphere for the expan-
sion of creative and cultural industries [78]. It deserves special mention that the spatial
distribution of industrial landscapes benefits significantly from a rich cultural heritage
given that industrial buildings are highly suitable for transformation into cultural and
creative centers, thanks to their spatial characteristics and historical value [79]. These
elements have a multifaceted influence on the spatial patterning of the industrial landscape,
while simultaneously fostering new pathways for regional economic rejuvenation.

4.3. Factor Interaction Analysis

The determinants of spatial variation in CIL were examined through the Geodetector
analysis, which assessed the capacity of different correlating factors to interact and exert
composite effects. Building upon the investigation of the 12 individual factors and the
subsequent analysis of their interactions, this study’s results demonstrate that the spatial
distribution of CIL sites was influenced by interdependent factors characterized by two-
factor interactions or nonlinear enhancement (Figure 10). This indicates that the interaction
between any two factors played a crucial role in shaping the geographical arrangement of
CIL, and the intricate interplay of multiple factors exerted a more profound influence on its
spatial distribution.
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Drawing from the analysis of these interactions, the five most notable interaction com-
binations identified were denoted as X8∩X10 (0.945), X6∩X8 (0.928), X8∩X12 (0.914), X6∩X5
(0.907), and X6∩X10 (0.892). These findings collectively highlight the prominence of inter-
actions that involved the transportation infrastructure as a fundamental factor, especially
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when combined with social demographic conditions, indicating a clear and dominant trend.
This underscores that the interplay between the transportation infrastructure and social
demographic conditions was the primary determinant in shaping the spatial distribution of
CIL. Within these interactions, the number of students in higher education institutions and
railroad network density emerged as the most influential factors. This phenomenon can be
explained by the close relationship between the development of railroad networks and the
formation and evolution of the industrial landscape. Furthermore, the number of students
in higher education institutions played a crucial role in conserving and spreading the
culture of the industrial landscape, ultimately promoting its sustainable development [80].

5. Discussion

So far, several authoritative listings of industrial heritage landscapes have been intro-
duced by national government agencies and academic departments in China. This initiative
has not only facilitated the protection and reuse of industrial landscapes in China but has
also provided policy guidelines for industrial tourism and urban revitalization. However,
the challenges of preserving the unique value of industrial landscapes [10,81], promoting
their transformation and development [82,83], and mitigating residual pollution remain
urgent issues to be addressed [84,85]. In the digital age, the transformation of industrial
landscapes is intricately connected to the growth of industrial tourism. By boosting the
economic vitality of cities, industrial tourism attracts new industries and investments [86],
which are crucial for the protection and utilization of industrial landscapes [87]. This, in
turn, fosters the optimization of urban space and functional enhancement. Therefore, a
thorough study of the spatial distribution of industrial landscapes and their influencing
factors not only provides crucial insights for the planning and development of industrial
tourism routes but also significantly advances the fields of industrial tourism, economic
growth, and cultural heritage preservation.

Relevant studies show that the spatial distribution of industrial landscapes in Europe
is influenced by multiple factors, such as altitude, topography, socio-economic level, cul-
tural tourism potential, and infrastructure level, with the socio-economic level playing a
dominant role [37,62,88]. For the spatial distribution of industrial heritage in China, natural
resources, population density and transportation conditions are closely related [34,39].
Through single-factor analysis and interaction analysis, this study identified key factors
that affected the spatial distribution of CIL, including the number of students in higher ed-
ucation institutions, GDP, urbanization rate, population density, and road network density.
These findings are basically consistent with existing research conclusions. To be specific,
it was evident that the spatial layout of CIL exhibited a symbiotic relationship that was
primarily involved with “population, culture, economy, and transportation” under the
combined influence of several factors (Figure 11). Specifically, socio-demographic con-
ditions emerged as the foundational factors that shaped the spatial distribution of CIL
sites. These conditions, which encompassed population size and educational attainment,
played a pivotal role in determining the extent of CIL preservation. Regions characterized
by larger populations and higher levels of education tended to demonstrate heightened
engagement in the preservation of industrial heritage. Moreover, the cultural and en-
vironmental contexts were identified as catalysts that impacted the distribution of CIL
sites. Cultural context and societal atmosphere significantly contributed to the genesis
and safeguarding of the industrial landscape. Regions rooted in diverse cultural traditions
and fostering a positive cultural environment tended to prioritize the conservation of the
industrial landscape. The level of local economic development served as the foundation for
the spatial distribution of industrial landscapes, as relatively prosperous regions tended to
possess a greater capacity for preserving and repurposing industrial landscapes. Lastly,
the transportation infrastructure was considered a fundamental factor that significantly
influenced the spatial distribution of CIL. Enhanced transportation networks were posi-
tively correlated with increased industrial activities, leading to a higher concentration of
industrial landscape sites in such areas. These findings not only provide crucial insights
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into the intricate spatial distribution of China’s industrial landscape but also underscore
the significance of multifaceted interactions.
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However, this study had some shortcomings:
This research primarily focused on the static spatial distribution characteristics of CIL,

lacking a dynamic analysis. Considering the ongoing evolution of CIL, it is anticipated
that various levels and categories of industrial landscape lists will emerge in the future.
Therefore, further research is needed to track the evolutionary development of the CIL
spatial layout.

This study encountered challenges in obtaining relevant data and information, as well
as quantifying certain correlating factors. Consequently, the exploration of the impacts
on the CIL spatial distribution may not be exhaustive. Factors such as historical context
and policy orientation remain incompletely identified and analyzed. To address these
gaps, future research should employ interdisciplinary methods to enhance the analysis of
these factors.

Although the spatial analysis tools employed in this study, such as Geodetector,
demonstrated efficacy in analyzing spatial patterns and influencing factors, they possess
inherent limitations. To enhance our understanding of CILs, future research will leverage
more sophisticated analytical methods or embrace a multidisciplinary approach. Potential
advancements may include applying machine learning techniques to spatial analysis or
integrating socio-economic data more intricately to elucidate the complex interplay of
factors influencing the distribution of CIL sites.

6. Conclusions

This research included a comprehensive examination of CIL by utilizing ArcGIS
software and employing quantitative analysis techniques, including the nearest neighbor
index, geographic concentration index, and standard deviation ellipse, Additionally, in
conjunction with the Geodetector method, this study explored the factors that affected
the spatial distribution of CILs. The key findings of this investigation are summarized
as follows:

1. The spatial distribution of CIL exhibited a pronounced clustering pattern, with a
significantly higher concentration of industrial landscape sites in the eastern region
compared with the western region, indicating notable spatial disparities. Notably, hot
spot areas dominated the spatial distribution of CIL, while cold spot regions were
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relatively scarce. Additionally, there was significant spatial autocorrelation between
the cold and hot spot areas.

In terms of the temporal evolution, CIL exhibited a northeast–southwest trajectory,
with the epicenter initially shifting toward the east and gradually moving westward,
accompanied by a diminishing level of agglomeration. Additionally, China exhibited
a diverse array of industrial landscape types that could be classified into 12 primary
categories and 38 subcategories. Relevantly, the manufacturing and transportation sectors
exhibited dominance in terms of abundance. These diverse industrial landscape types
exhibited significant spatial disparities in both density and geographical dispersion.

Multiple factors along cultural and environmental contexts, including economic
growth, social and demographic circumstances, and transportation infrastructure, intri-
cately affected the spatial distribution of CIL sites. Among these factors, the number of
students in higher education institutions, GDP, urbanization rate, and population den-
sity exhibited more pronounced influences and were crucial in determining the pattern
of CIL distribution. Furthermore, a detailed analysis of how these elements interacted
demonstrated that the combined effect of two factors played a more pivotal role in influ-
encing the geographical spread of CIL than any single factor. Particularly, it is important
to emphasize that the dominant factor identified as having a significant impact on the
spatial pattern of CIL was the interaction between the transportation location and socio-
demographic conditions.

2. In the past two decades, there has been growing recognition and support from both
the government and civil society in China for the conservation of the industrial
landscape. In response to this growing awareness, comprehensive inventories of the
industrial landscape have been compiled, accompanied by the establishment of a
framework comprising policies and regulations aimed at preservation, interpretation,
and public engagement with these sites. The industrial landscape serves not only
as a repository of urban memory and a conduit for cultural transmission but also as
a pivotal force in urban economic regeneration. Its conservation is instrumental in
advancing sustainable development, refining industrial configurations, and enhancing
the share of innovation-driven and creative pursuits. In view of this, the present study
provided a comprehensive analysis of the spatial distribution characteristics of CIL
and its influencing factors from a macroscopic perspective. The findings of this
study can serve as a scientific basis for the protection, management, and tourism
development of the industrial landscape, thereby enhancing urban resilience and
promoting sustainable development in this field.

Author Contributions: Conceptualization, Y.S. and M.Y.; methodology, Y.S.; software, Q.L.; in-
vestigation, M.Y.; resources, Q.L.; data curation, Q.L.; writing—original draft preparation, M.Y.;
writing—review and editing, Y.S.; visualization, M.Y.; project administration, Y.S.; funding acquisi-
tion, Q.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Beijing Municipal Office of Philosophy and Social Science
Planning [grant number: 16JDYJB025].

Data Availability Statement: The data is contained within the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Xie, P.F. A Life Cycle Model of Industrial Heritage Development. Ann. Tour. Res. 2015, 55, 141–154. [CrossRef]
2. He, Q.; Xu, M.; Xu, Z.; Ye, Y.; Shu, X.; Xie, P.; Wu, J. Promotion Incentives, Infrastructure Construction, and Industrial Landscapes

in China. Land Use Policy 2019, 87, 104101. [CrossRef]
3. Szromek, A.R.; Herman, K.; Naramski, M. Sustainable Development of Industrial Heritage Tourism—A Case Study of the

Industrial Monuments Route in Poland. Tour. Manag. 2021, 83, 104252. [CrossRef]
4. Guo, P.; Li, Q.; Guo, H.; Li, H. Quantifying the Core Driving Force for the Sustainable Redevelopment of Industrial Heritage:

Implications for Urban Renewal. Environ. Sci. Pollut. Res. 2021, 28, 48097–48111. [CrossRef]

https://doi.org/10.1016/j.annals.2015.09.012
https://doi.org/10.1016/j.landusepol.2019.104101
https://doi.org/10.1016/j.tourman.2020.104252
https://doi.org/10.1007/s11356-021-14054-7


Land 2024, 13, 746 20 of 22

5. Chung, H.; Lee, J. Modern Industrial Heritage as Cultural Mediation in Urban Regeneration: A Case Study of Gunsan, Korea,
and Taipei, Taiwan. Land 2023, 12, 792. [CrossRef]

6. The Nizhny Tagil Charter for the Industrial Heritage. Available online: https://ticcih.org/about/charter/ (accessed on 26
October 2023).

7. Landorf, C. A Framework for Sustainable Heritage Management: A Study of UK Industrial Heritage Sites. Int. J. Herit. Stud. 2009,
15, 494–510. [CrossRef]

8. Oevermann, H.; Degenkolb, J.; Dießler, A.; Karge, S.; Peltz, U. Participation in the Reuse of Industrial Heritage Sites: The Case of
Oberschöneweide, Berlin. Int. J. Herit. Stud. 2016, 22, 43–58. [CrossRef]

9. Pintossi, N.; Ikiz Kaya, D.; van Wesemael, P.; Pereira Roders, A. Challenges of Cultural Heritage Adaptive Reuse: A Stakeholders-
Based Comparative Study in Three European Cities. Habitat Int. 2023, 136, 102807. [CrossRef]

10. Aydın, E.Ö.; Tepe, E.; Balcan, C. Identification of Determinants during the Registration Process of Industrial Heritage Using a
Regression Analysis. J. Cult. Herit. 2022, 58, 23–32. [CrossRef]

11. Castriota, B.; Marçal, H. Always Already Fragment: Integrity, Deferral, and Possibility in the Conservation of Cultural Heritage.
In The Fragment in the Digital Age: Possibilites and Risks of New Conservation Techniques; Hornemann Institute: Hildesheim, Germany,
2021; pp. 63–78.

12. Njuguna, M.B.; Wahome, E.W.; Deisser, A.M. Saving the Industry from Itself: A Case of the Railway Industrial Heritage in Kenya.
Hist. Environ. Policy Pract. 2018, 9, 21–38. [CrossRef]

13. Zhang, J.; Cenci, J.; Becue, V.; Koutra, S.; Liao, C. Stewardship of Industrial Heritage Protection in Typical Western European and
Chinese Regions: Values and Dilemmas. Land 2022, 11, 772. [CrossRef]

14. Dublin Principles. Available online: https://ticcih.org/about/about-ticcih/dublin-principles/ (accessed on 26 October 2023).
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