Quantifying Urban Spatial Morphology Indicators on the Green Areas Cooling Effect: The Case of Changsha, China, a Subtropical City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing for Remote Sensing
2.3. Green City Areas Sample Selection
2.4. Urban Spatial Morphology Indicators
3. Results
3.1. Explanation of the Scope for Green City Area Cooling
3.2. Analysis of the Influencing Factors of Urban Spatial Morphology on the Cooling Effect of Green City Areas
3.2.1. The Effect of the Building Density on the Cooling Impact of Green Areas
3.2.2. The Effect of the Building Floor Area Ratio on the Cooling Impact of Green Areas
3.2.3. The Effect of The Average Height of Buildings on the Cooling Impact of Green Areas
3.2.4. The Effect of The Building Height Standard Deviation on the Cooling Impact of Green Areas
3.3. Analysis of the Influencing Magnitude of Urban Spatial Morphology on the Cooling Effect of Green City Areas
3.4. The Effect of Relative Position of Buildings on Cooling Impacts around Green Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Balany, F.; Ng, A.W.M.; Muttil, N.; Muthukumaran, S.; Wong, M.S. Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water 2020, 12, 3577. [Google Scholar] [CrossRef]
- Du, S.H.; Zhang, X.K.; Jin, X.; Zhou, X.; Shi, X. A review of multi-scale modelling, assessment, and improvement methods of the urban thermal and wind environment. Build. Environ. 2022, 213, 108860. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, K.S.; Jin, W.C.; Song, H.K. Effect of an urban park on air temperature differences in a central business district area. Landsc. Ecol. Eng. 2009, 5, 183–191. [Google Scholar] [CrossRef]
- Iping, A.; Kidston-Lattari, J.; Simpson-Young, A.; Duncan, E.; McManus, P. (Re)presenting urban heat islands in Australian cities: A study of media reporting and implications for urban heat and climate change debates. Urban Clim. 2019, 27, 420–429. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.Y.; Yue, W.Z.; Li, X.C.; Liu, Y.; Lu, D.B. Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature. J. Clean. Prod. 2020, 257, 120529. [Google Scholar] [CrossRef]
- Yang, F.; Lau, S.S.Y.; Qian, F. Summertime heat island intensities in three high-rise housing quarters in inner-city Shanghai China: Building layout, density and greenery. Build. Environ. 2010, 45, 115–134. [Google Scholar] [CrossRef]
- He, B.J.; Wang, J.S.; Liu, H.M.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environ. Res. 2021, 193, 110584. [Google Scholar] [CrossRef] [PubMed]
- Li, H.D.; Zhou, Y.Y.; Jia, G.S.; Zhao, K.G.; Dong, J.W. Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model. Geosci. Front. 2022, 13, 101141. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Lin, B.S.; Lin, C.T. Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban For. Urban Green. 2016, 20, 348–357. [Google Scholar] [CrossRef]
- Ren, Z.B.; Fu, Y.; Dong, Y.L.; Zhang, P.; He, X.Y. Rapid urbanization and climate change significantly contribute to worsening urban human thermal comfort: A national 183-city, 26-year study in China. Urban Clim. 2022, 43, 101154. [Google Scholar] [CrossRef]
- Kim, K.; Yi, C.; Lee, S. Impact of urban characteristics on cooling energy consumption before and after construction of an urban park: The case of Gyeongui line forest in Seoul. Energy Build. 2019, 191, 42–51. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Chen, L. Mitigating urban heat island effects in high-density cities based on sky view factor and urban morphological understanding: A study of Hong Kong. Archit. Sci. Rev. 2011, 54, 305–315. [Google Scholar] [CrossRef]
- Khare, V.R.; Vajpai, A.; Gupta, D. A big picture of urban heat island mitigation strategies and recommendation for India. Urban Clim. 2021, 37, 100845. [Google Scholar] [CrossRef]
- Sheng, S.; Xiao, H.B.; Wang, Y.C. The cooling effects of hybrid landscapes at the district scale in mega-cities: A case study of Shanghai. J. Clean. Prod. 2022, 366, 132942. [Google Scholar] [CrossRef]
- Yin, S.; Shen, Z.M.; Zhou, P.S.; Zou, X.D.; Che, S.Q.; Wang, W.H. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 2011, 159, 2155–2163. [Google Scholar] [CrossRef] [PubMed]
- Vailshery, L.S.; Jaganmohan, M.; Nagendra, H. Effect of street trees on microclimate and air pollution in a tropical city. Urban For. Urban Green. 2013, 12, 408–415. [Google Scholar] [CrossRef]
- Hermy, M.; Cornelis, J. Towards a monitoring method and a number of multifaceted and hierarchical biodiversity indicators for urban and suburban parks. Landsc. Urban Plan. 2000, 49, 149–162. [Google Scholar] [CrossRef]
- Huang, M.; Cui, P.; He, X. Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect. Sustainability 2018, 10, 1101. [Google Scholar] [CrossRef]
- Wang, X.Y.; Miao, S.G.; Liu, H.N.; Sun, J.N.; Zhang, N.; Zou, J. Assessing the Impact of Urban Hydrological Processes on the Summertime Urban Climate in Nanjing Using the WRF Model. J. Geophys. Res. -Atmos. 2019, 124, 12683–12707. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Algretawee, H.; Rayburg, S.; Neave, M. Estimating the effect of park proximity to the central of Melbourne city on Urban Heat Island (UHI) relative to Land Surface Temperature (LST). Ecol. Eng. 2019, 138, 374–390. [Google Scholar] [CrossRef]
- Yu, Z.W.; Guo, X.Y.; Zeng, Y.X.; Koga, M.; Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban For. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Chen, X.T.; Wang, Z.T.; Bao, Y. Cool island effects of urban remnant natural mountains for cooling communities: A case study of Guiyang, China. Sustain. Cities Soc. 2021, 71, 102983. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build. Environ. 2012, 51, 285–295. [Google Scholar] [CrossRef]
- Skoulika, F.; Santamouris, M.; Kolokotsa, D.; Boemi, N. On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece. Landsc. Urban Plan. 2014, 123, 73–86. [Google Scholar] [CrossRef]
- Doick, K.J.; Peace, A.; Hutchings, T.R. The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef] [PubMed]
- Murtinova, V.; Gallay, I.; Olah, B. Mitigating Effect of Urban Green Spaces on Surface Urban Heat Island during Summer Period on an Example of a Medium Size Town of Zvolen, Slovakia. Remote Sens. 2022, 14, 4492. [Google Scholar] [CrossRef]
- Park, J.H.; Cho, G.H. Examining the Association between Physical Characteristics of Green Space and Land Surface Temperature: A Case Study of Ulsan, Korea. Sustainability 2016, 8, 777. [Google Scholar] [CrossRef]
- Han, X.Y.; Zhang, J.J.; Rao, Y.H.; Jing, G.L. Hindering the impact of building characteristics on greenbelt cooling effects: A perspective of quantitative simulation with in situ measurements. Sci. Total Environ. 2019, 670, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Odindi, J.; Mutanga, O. Land surface temperature and emissivity estimation for Urban Heat Island assessment using medium- and low-resolution space-borne sensors: A review. Geocarto Int. 2017, 32, 455–470. [Google Scholar] [CrossRef]
- Pramanik, S.; Punia, M. Assessment of green space cooling effects in dense urban landscape: A case study of Delhi, India. Model. Earth Syst. Environ. 2019, 5, 867–884. [Google Scholar] [CrossRef]
- Blachowski, J.; Hajnrych, M. Assessing the Cooling Effect of Four Urban Parks of Different Sizes in a Temperate Continental Climate Zone: Wroclaw (Poland). Forests 2021, 12, 1136. [Google Scholar] [CrossRef]
- Song, Y.; Song, X.D.; Shao, G.F. Effects of Green Space Patterns on Urban Thermal Environment at Multiple Spatial-Temporal Scales. Sustainability 2020, 12, 6850. [Google Scholar] [CrossRef]
- Xiao, Y.; Dai, S.Z.; Zhao, B. Mitigation of urban heat island effect with small-scale parks—An empirical study on community parks in Nanjing, Jiangsu province. Landsc. Archit. Front. 2020, 8, 26–43. [Google Scholar] [CrossRef]
- Bao, T.L.G.; Li, X.M.; Zhang, J.; Zhang, Y.J.; Tian, S.Z. Assessing the Distribution of Urban Green Spaces and its Anisotropic Cooling Distance on Urban Heat Island Pattern in Baotou, China. ISPRS Int. Geo-Inf. 2016, 5, 12. [Google Scholar] [CrossRef]
- Xiao, X.D.; Dong, L.; Yan, H.N.; Yang, N.; Xiong, Y.M. The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustain. Cities Soc. 2018, 40, 428–439. [Google Scholar] [CrossRef]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Wang, X.J.; Cheng, H.M.; Xi, J.; Yang, G.Y.; Zhao, Y.W. Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect. Sustainability 2018, 10, 587. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.L.; Ren, C.; Ng, E. Evaluating the local climate zone classification in high-density heterogeneous urban environment using mobile measurement. Urban Clim. 2018, 25, 167–186. [Google Scholar] [CrossRef]
- Chang, C.R.; Li, M.H.; Chang, S.D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Yan, H.; Wu, F.; Dong, L. Influence of a large urban park on the local urban thermal environment. Sci. Total Environ. 2018, 622, 882–891. [Google Scholar] [CrossRef]
- Hami, A.; Abdi, B.; Zarehaghi, D.; Bin Maulan, S. Assessing the thermal comfort effects of green spaces: A systematic review of methods, parameters, and plants’ attributes. Sustain. Cities Soc. 2019, 49, 101634. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F. Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Mitterboeck, M.; Korjenic, A. Analysis for improving the passive cooling of building’s surroundings through the creation of green spaces in the urban built-up area. Energy Build. 2017, 148, 166–181. [Google Scholar] [CrossRef]
- Shih, W.Y. The cooling effect of green infrastructure on surrounding built environments in a sub-tropical climate: A case study in Taipei metropolis. Landsc. Res. 2017, 42, 558–573. [Google Scholar] [CrossRef]
- Chen, N.; Tsay, Y.; Chiu, W.J. Influence of vertical greening design of building opening on indoor cooling and ventilation. Int. J. Green Energy 2017, 14, 24–32. [Google Scholar] [CrossRef]
- He, Y.; Yu, H.; Dong, N.N.; Ye, H. Thermal and energy performance assessment of extensive green roof in summer: A case study of a lightweight building in Shanghai. Energy Build. 2016, 127, 762–773. [Google Scholar] [CrossRef]
- Fu, J.W.; Dupre, K.; Tavares, S.; King, D.; Banhalmi-Zakar, Z. Optimized greenery configuration to mitigate urban heat: A decade systematic review. Front. Archit. Res. 2022, 11, 466–491. [Google Scholar] [CrossRef]
- Nejatian, A.; Makian, M.; Gheibi, M.; Fathollahi-Fard, A.M. A novel viewpoint to the green city concept based on vegetation area changes and contributions to healthy days: A case study of Mashhad, Iran. Environ. Sci. Pollut. Res. 2022, 29, 702–710. [Google Scholar] [CrossRef]
- Ekwe, M.C.; Adamu, F.; Gana, J.; Nwafor, G.C.; Usman, R.; Nom, J.; Onu, O.D.; Adedeji, O.I.; Halilu, S.A.; Aderoju, O.M. The effect of green spaces on the urban thermal environment during a hot-dry season: A case study of Port Harcourt, Nigeria. Environ. Dev. Sustain. 2021, 23, 10056–10079. [Google Scholar] [CrossRef]
- Sun, X.; Tan, X.Y.; Chen, K.L.; Song, S.; Zhu, X.D.; Hou, D.L. Quantifying landscape-metrics impacts on urban green-spaces and water-bodies cooling effect: The study of Nanjing, China. Urban For. Urban Green. 2020, 55, 126838. [Google Scholar] [CrossRef]
- Qiu, X.; Kil, S.-H.; Jo, H.-K.; Park, C.; Song, W.; Choi, Y.E. Cooling Effect of Urban Blue and Green Spaces: A Case Study of Changsha, China. Int. J. Environ. Res. Public Health 2023, 20, 2613. [Google Scholar] [CrossRef]
- Santos, T.; Deus, R.; Rocha, J.; Tenedório, J.A. Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators. Energies 2021, 14, 5044. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Fan, Y.G.; Shan, B.Y. Impact of Urban Building Spatial Distribution Pattern on Thermal Environment Based on Remote Sensing Images: A Case of Jinan City Center. Laser Optoelectron. Prog. 2023, 60, 0228006. [Google Scholar] [CrossRef]
- Wu, B.; Huang, H.L.; Wang, Y.; Shi, S.X.; Wu, J.P.; Yu, B.L. Global spatial patterns between nighttime light intensity and urban building morphology. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103495. [Google Scholar] [CrossRef]
- Tan, X.Y.; Sun, X.; Huang, C.D.; Yuan, Y.; Hou, D.L. Comparison of cooling effect between green space and water body. Sustain. Cities Soc. 2021, 67, 11. [Google Scholar] [CrossRef]
- Feng, X.J.; Yu, J.H.; Xin, C.L.; Ye, T.H.; Wang, T.A.; Chen, H.L.; Zhang, X.M.; Zhang, L.L. Quantifying and Comparing the Cooling Effects of Three Different Morphologies of Urban Parks in Chengdu. Land 2023, 12, 451. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.W.; Wen, D.; Wu, L.X. How urban parks and their surrounding buildings affect seasonal land surface temperature: A case study in Beijing, China. Urban For. Urban Green. 2023, 87, 128047. [Google Scholar] [CrossRef]
- Zhang, N.H.; Zhen, W.A.; Shi, D.H.; Zhong, C.Y.; Li, Y. Quantification and mapping of the cooling effect of urban parks on the temperate monsoon climate zone. Sustain. Cities Soc. 2024, 101, 105111. [Google Scholar] [CrossRef]
- Yan, L.; Jia, W.X.; Zhao, S.Q. The Cooling Effect of Urban Green Spaces in Metacities: A Case Study of Beijing, China’s Capital. Remote Sens. 2021, 13, 4601. [Google Scholar] [CrossRef]
- Du, H.Y.; Cai, W.B.; Xu, Y.Q.; Wang, Z.B.; Wang, Y.Y.; Cai, Y.L. Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban For. Urban Green. 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Yu, C.; Hien, W.N. Thermal benefits of city parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.T.; Ji, C.; Huang, L. Positivity and difference of influence of built environment around urban park on building energy consumption. Sustain. Cities Soc. 2023, 89, 104321. [Google Scholar] [CrossRef]
- Han, Q.; Nan, X.G.; Wang, H.; Hu, Y.J.; Bao, Z.Y.; Yan, H. Optimizing the Surrounding Building Configuration to Improve the Cooling Ability of Urban Parks on Surrounding Neighborhoods. Atmosphere 2023, 14, 914. [Google Scholar] [CrossRef]
- Chan, S.Y.; Chau, C.K. On the study of the effects of microclimate and park and surrounding building configuration on thermal comfort in urban parks. Sustain. Cities Soc. 2021, 64, 102512. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.L.; Yuan, C.; Ng, E. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Yang, J.Y.; Hu, X.Y.; Feng, H.Y.; Marvin, S. Verifying an ENVI-met simulation of the thermal environment of Yanzhong Square Park in Shanghai. Urban For. Urban Green. 2021, 66, 127384. [Google Scholar] [CrossRef]
- Wang, H.H.; Cai, Y.; Deng, W.F.; Li, C.; Dong, Y.; Zhou, L.; Sun, J.Y.; Li, C.; Song, B.Z.; Zhang, F.F.; et al. The Effects of Tree Canopy Structure and Tree Coverage Ratios on Urban Air Temperature Based on ENVI-Met. Forests 2023, 14, 80. [Google Scholar] [CrossRef]
Spatial Morphology Indicators | Definition | Thermal Environmental Significance |
---|---|---|
Building Density (BD) | The ratio of building base area to surface area per unit in a spatial unit Ratio | Affects surface radiation Heat gain, local airflow, and heat dissipation |
Building Floor Area Ratio (BFR) | The ratio of gross floor area to building land area in a spatial unit | Affects surface radiation Heat gain, local airflow, and heat dissipation |
Building Volume Density (BVD) | The ratio of building volume to the total volume within a space unit | Affects surface radiation surface radiation, localized Convective heat dissipation in localized areas |
Building Evenness Index (BEI) | The ratio of standard deviation of building volume to site area within a space unit | Affects surface radiation surface radiation, localized Convective heat dissipation in localized areas |
Building Average Height (BH) | The average height of a building within a space unit | Affects localized Convective heat dissipation in localized areas |
Building Height Standard Deviation (BSD) | Height of all buildings in the space unit Standard deviation | Affects localized Convective heat dissipation in localized areas |
BD | BFR | BVD | BEI | BH | BSD | ||
---|---|---|---|---|---|---|---|
Temperature drop range | Pearson correlation | −0.458 ** | −0.327 * | −0.225 | −0.145 | 0.426 ** | 0.341 * |
Significance (2 tailed) | 0.003 | 0.039 | 0.163 | 0.373 | 0.006 | 0.031 | |
Number of cases | 40 | 40 | 40 | 40 | 40 | 40 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Significance | ||
---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||
1 | (Constant) | 0.031 | 0.595 | 0.053 | 0.958 | |
BD | 1.084 | 3.885 | 0.155 | 0.279 | 0.782 | |
BFR | −0.730 | 0.498 | −0.665 | −1.464 | 0.153 | |
BH | 0.035 | 0.022 | 0.696 | 1.602 | 0.119 | |
BSD | −0.003 | 0.019 | −0.053 | −0.171 | 0.865 |
Name | Average Temperature (°C) | |||
---|---|---|---|---|
East | West | South | North | |
Lujing Road green areas | 40.81 | 41.97 | 39.79 | 40.93 |
Hunan Industrial Vocational Technical College green areas | 39.03 | 41.64 | 40.99 | 38.97 |
Shahuqiao Road green areas | 41.54 | 40.75 | 40.75 | 41.08 |
Gongyuanli community green areas | 41.59 | 40.19 | 39.45 | 40.33 |
Changsha Furong District people’s government green areas | 40.87 | 40.26 | 40.87 | 42.19 |
Hunan Province Water Resources Department green areas | 40.37 | 40.67 | 39.77 | 40.62 |
Bolinjingu community green areas | 40.07 | 40.65 | 39.88 | 40.51 |
Wuling Road green areas | 39.03 | 39.37 | 38.99 | 39.33 |
Average of 8 samples | 40.4136 | 40.6872 | 40.0637 | 40.4962 |
Temperature difference with green areas | 1.7577 | 2.0313 | 1.4078 | 1.8402 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, H.; Cai, X.; Liu, S.; Lai, W.; Chang, Y.; Qi, J.; Zhu, G.; Zhang, C.; Liu, Y. Quantifying Urban Spatial Morphology Indicators on the Green Areas Cooling Effect: The Case of Changsha, China, a Subtropical City. Land 2024, 13, 757. https://doi.org/10.3390/land13060757
Li J, Wang H, Cai X, Liu S, Lai W, Chang Y, Qi J, Zhu G, Zhang C, Liu Y. Quantifying Urban Spatial Morphology Indicators on the Green Areas Cooling Effect: The Case of Changsha, China, a Subtropical City. Land. 2024; 13(6):757. https://doi.org/10.3390/land13060757
Chicago/Turabian StyleLi, Jiang, Hao Wang, Xiaoxi Cai, Shaobo Liu, Wenbo Lai, Yating Chang, Jialing Qi, Gexuan Zhu, Chuyu Zhang, and Yudan Liu. 2024. "Quantifying Urban Spatial Morphology Indicators on the Green Areas Cooling Effect: The Case of Changsha, China, a Subtropical City" Land 13, no. 6: 757. https://doi.org/10.3390/land13060757
APA StyleLi, J., Wang, H., Cai, X., Liu, S., Lai, W., Chang, Y., Qi, J., Zhu, G., Zhang, C., & Liu, Y. (2024). Quantifying Urban Spatial Morphology Indicators on the Green Areas Cooling Effect: The Case of Changsha, China, a Subtropical City. Land, 13(6), 757. https://doi.org/10.3390/land13060757