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Abstract: China repeatedly surpasses international fertilizer safety limits, resulting in significant
fertilizer nonpoint source pollution (denoted as FNSP), which adversely affects food security and
agricultural sustainability. Simultaneously, farmland transfer has emerged as a pivotal strategy
for transitioning between agricultural production methods. The present study aims to investigate
the relationship between farmland transfer and FNSP. In line with the aim of the study, based
on China’s panel data from 2005 to 2020, the fixed-effect model, mediating-effect model, spatial
Durbin model, and threshold regression model are employed. The findings reveal that farmland
transfer exerts a significant inhibitory effect on FNSP. The reduction in FNSP through farmland
transfer is facilitated by the decrease in fertilizer application intensity and increase in compound
fertilizer application. Further, farmland transfer demonstrates a significant spatial spillover effect
on FNSP, mitigating pollution levels within regions and influencing neighboring areas. Moreover, a
nonlinear relationship between farmland transfer and FNSP is observed. These findings contribute
to understanding the intricate dynamics between agricultural land management strategies and
environmental sustainability, offering valuable insights for policymakers and stakeholders engaged
in promoting green and sustainable agricultural practices.

Keywords: farmland transfer; fertilizer nonpoint source pollution; environmental benefits; sustain-
able farmland utilization; sustainable agricultural development

1. Introduction

Fertilizer stands as a crucial agricultural production factor [1], with its contribution
to food growth previously reaching 56.81% [2], thereby playing an indispensable role
in ensuring food security in China [3]. Historically, China’s agricultural development
has heavily relied on chemical fertilizer inputs [4]. China not only ranks as the world’s
largest fertilizer producer but also as a substantial user of fertilizer [5]. According to
data from the National Bureau of Statistics, China’s total fertilizer application reached
50.79 million tons in 2022, with a fertilizer application intensity of 278.79 kg/ha, exceeding
the internationally recognized safety standard of 225 kg/ha by 1.24 times [6]. However, the
effective utilization efficiency remains less than half that of developed countries [7]. Notably,
fertilizer’s marginal contribution rate is gradually declining [8]. Excessive fertilizer inputs
not only escalate the economic costs of agricultural production [9] but also lead to severe
fertilizer nonpoint source pollution (denoted as FNSP) [10,11], posing significant threats
to food security and the sustainable development of agriculture [12–14]. Recognizing the
gravity of fertilizer pollution, the Chinese government has issued policy documents such
as the “Action Plan for Zero Growth of Fertilizer Use by 2020” to guide the reduction in
fertilizer application. Additionally, Central Document No. 1 of 2021 and 2022 emphasizes
the urgent need for deep implementation of fertilizer reduction and efficiency measures.
Hence, further exploration to reduce FNSP remains a vital issue that warrants continuous
discussion for the sustainable development of agriculture in China [15].
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Indeed, allocating production factors such as fertilizers inherently reflects natural
resource endowments like arable land. This suggests an intrinsic connection between
fertilizer application and the utilization of arable land [16,17]. Farmland transfer entails the
redistribution of land resources through various means such as transfer-outs, subcontract-
ing, swaps, and cooperation, wherein farmers or agricultural organizations transfer their
land contract rights and usage rights wholly or partially [18–21]. It serves as a significant
mechanism for reconfiguring land resources. Farmland transfer emerges as an effective
strategy for mitigating the fragmentation of arable land, altering planting structures, and
fostering agricultural modernization [22–24]. Policies such as the “three rights of owner-
ship” have fostered the standardized development of China’s farmland transfer market
and facilitated the expansion of moderate-scale agricultural operations [25,26]. However,
despite these advancements, the persistent trend of excessive chemical fertilizer usage
persists. Within academia, a unified conclusion regarding this matter has yet to be reached,
forming two distinct viewpoints.

One perspective contends that farmland transfer and large-scale agricultural opera-
tions facilitate fertilizer reduction [27–31]. Scale growers typically employ more judicious
fertilizer than small farmers [32]. Farmland transfer enables the realization of economies
of scale, thereby expanding avenues for knowledge and technology transfer among farm-
ers. Moreover, it enhances farmers’ comprehension and utilization of cleaner production
methods, subsequently refining factor input management and fostering more scientific and
rational fertilizer application practices [27,33–35]. Another perspective suggests that farm-
land transfer and large-scale operations do not necessarily lead to fertilizer reduction. The
farmland transfer may introduce management rights instability [36], potentially fostering
moral hazard among farmers who may prioritize short-term gains and invest heavily in fer-
tilizers [37,38]. Furthermore, expanding the operational scale may increase the demand for
production factors and incentivize labor substitution with inputs such as fertilizers, thereby
increasing chemical fertilizer usage [39,40]. Studies have analyzed the connection between
farmland transfer and fertilizer usage. However, there is a relative scarcity of research
directly investigating the correlation between farmland transfer and FNSP. Moreover, the
exploration of its underlying mechanisms remains somewhat limited. Furthermore, given
the spatial delineation of farmland across various regions, it becomes essential to analyze
the environmental ramifications of farmland transfer from a spatial perspective.

This paper contributes to three main aspects. Firstly, this research advances research
content by integrating farmland transfer and FNSP within a unified analytical framework.
While existing studies have focused on the relationship between agricultural land transfer
and fertilizer application, this paper explores the impact of farmland transfer on FNSP.
Employing methods such as the fixed-effect model and mediating-effect model, this paper
comprehensively analyzes this relationship and its underlying mechanisms. Secondly, this
paper broadens research perspectives by employing more representative provincial macro
panel data for empirical analysis. Unlike studies relying on micro research data from
specific regions, this approach aims to enhance the generalizability of findings to the entire
nation. By analyzing heterogeneity, the paper endeavors to provide insights applicable on
a broader scale. Lastly, the paper extends research by exploring the nonlinear relationship
between farmland transfer and FNSP. This exploration contributes to enriching related
research by shedding light on nuanced dynamics that were previously underexplored.

The remainder of this paper is structured as follows. Section 2 provides a theoretical
analysis and formulates the research hypothesis. Section 3 describes the research methodol-
ogy and data sources. Section 4 presents and analyzes the main research findings. Section 5
provides further discussion. Section 6 summarizes the main conclusions.

2. Theoretical Analyses

Schultz noted that transitioning traditional agriculture necessitates the incorporation
of modern factors of production [41]. The core of reducing FNSP lies in altering traditional
production methods and enhancing the ecological environment, thereby generating sig-
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nificant positive externalities. Rational economic actors, such as farmers, prioritize their
economic gains and are unlikely to voluntarily enhance the environment at the expense of
their own interests without external constraints [42]. The prevalence of small-scale farming
characterizes agricultural production in China, as highlighted by the theory of induced
technological change, where the utilization of fertilizers and other production factors can
enhance land output within resource constraints [43,44]. Nonetheless, the fragmented
and dispersed nature of land ownership makes it challenging to establish a unified field
management model, leading to widespread instances of excessive fertilization [4]. With
the progression of farmland transfer, substantial portions of fragmented agricultural land
have consolidated into the hands of large-scale agricultural entities, such as large-scale
farming households and cooperatives, enabling the optimization and restructuring of
agricultural land resource allocation [45]. On the one hand, adhering to economies of
scale principles, large-scale farming operations can curtail marginal production costs, con-
sequently reducing the application of pesticides, fertilizers, and other sources of surface
pollution per unit area of agricultural land [46]. As operational land scale expands, agri-
cultural specialization deepens, prompting increased adoption of agricultural machinery
and equipment due to limited labor supply elasticity [47]. Specialized agricultural ma-
chinery facilitates deep plowing and loosening, enhancing fertilizer utilization efficiency
and reducing pollution generation [48]. Conversely, large-scale operators typically possess
superior agricultural knowledge and management skills [9]. Expert farmers can accurately
discern the deleterious effects of irrational fertilizer inputs, promptly adjust fertilizer types
and structures, optimize micronutrient proportions, decrease nitrogen and phosphorus
fertilizer usage, and prioritize compound fertilizer application. Thus, this paper posits the
following research hypotheses:

Hypothesis 1: Farmland transfer can significantly reduce FNSP.

Hypothesis 2: Farmland transfer can mitigate FNSP through two pathways: by reducing fertilizer
application intensity and by promoting compound fertilizer application.

Spatial econometrics incorporates spatial factors and unveils the spatial correlation of
economic characteristics or natural attributes across regions [49]. From a spatial perspec-
tive, neighboring regions often share similar resource endowments, cultivation structures,
production methods, and geomorphological features, fostering spatial interaction in FNSP
between these regions [50]. Moreover, contiguous farmland land borders between neigh-
boring regions can trigger environmental effects of farmland transfer, generating spillovers.
The inhibitory effect of farmland transfer on FNSP can produce spatial overflow through
two main pathways. Firstly, positive outcomes from farmland transfer implementation in
one region can serve as a demonstration effect for neighboring regions, prompting them to
emulate the experience and foster farmland transfer development, thereby reducing FNSP
in these regions. Secondly, competition among local governments in China may incentivize
regions that improve their environment through farmland transfer to receive policy support
from higher-level governments, granting them a relative advantage in regional competi-
tion. This competitive mechanism motivates other regions to emulate these practices and
vigorously develop farmland transfer to achieve environmental benefits. Consequently,
this paper posits the following research hypothesis:

Hypothesis 3: Farmland transfer has a spatial spillover effect on the suppression of FNSP.

Based on the above analysis, this paper constructs the following empirical analysis
framework (Figure 1).
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3. Materials and Methods
3.1. Research Methodology
3.1.1. Measurement of FNSP

Existing statistics still need to directly quantify the FNSP emissions accurately and sci-
entifically. This study measured FNSP using the unit survey method and inventory analysis
method, supplemented by the loss coefficient method [51,52]. Nitrogen, phosphorus, and
compound fertilizers were considered sources of FNSP pollution [53]. Fertilizers primarily
contribute to water pollution through surface runoff, farmland drainage, and underground
leaching [54,55]. As a result, pollutant indicators including total nitrogen (TN), nitrate
nitrogen (NO3

−), ammonia nitrogen (NH4
+), total phosphorus (TP), and dissolved total

phosphorus (DTP) were employed [56]. The calculation formula is given by:

FNSP = ∑ FNSPij = ∑
(
Ti × ρij × ηij

)
(1)

where FNSPij represents the amount of pollutant j produced by pollution unit i. Specifically,
ρij denotes the pollution production coefficient. Ti denotes the amount of fertilizer applica-
tion refraction [57], with total nitrogen refraction coefficients of 1, 0, and 0.33 for nitrogen
fertilizer, phosphorus fertilizer, and compound fertilizer, respectively, and total phospho-
rus refraction coefficients of 1, 0.44, and 0.15 for the same fertilizers, respectively [58].
ηij represents the loss coefficient. The loss coefficients for each region are provided in
Table 1 [59].

Table 1. The loss coefficients for each region.

Region Loss Coefficient η (%)

TN NO3− NH4
+ TP DTP

Beijing, Tianjin, Shandong, Hebei, Henan 1.173 0.489 0.122 0.199 0.054
Shanxi, Shaanxi, Ningxia 0.293 0.050 0.041 0.215 0.039

Heilongjiang, Jilin, Liaoning 0.422 0.133 0.054 0.096 0.012
Inner Mongolia, Gansu, Xinjiang, Qinghai 0.511 0.184 0.025 0.108 0.000

Hunan, Hubei, Zhejiang, Shanghai, Anhui, Jiangsu 1.536 0.867 0.147 0.410 0.147
Yunnan, Guangxi, Fujian, Jiangxi, Guangdong,

Chongqing, Sichuan, Guizhou, Hainan 0.868 0.239 0.149 0.497 0.086

3.1.2. Fixed Effects Model

To prevent the omission of explanatory variables and to account for both individual
and time effects, this paper established a two-way fixed-effect model for estimation [60]:

FNSPij = α0 + α1Trans f erit + α2Controlit + θt + µi + εit (2)

where FNSPit and Transferit denote FNSP and farmland transfer for region i in period t. θt, µi,
and εit represent time-fixed effects, individual-fixed effects, and random errors, respectively.
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3.1.3. Mediating-Effect Model

To analyze the pathway through which farmland transfer inhibits FNSP, this paper
established a mediating-effect model in the form of [61,62]:

FNSPij = α0 + α1Trans f erit + α2Controlit + θt + µi + εit
(Mediatingit) = β0 + β1Trans f erit + β2Trans f erit + θt + µi + εit

FNSPij = δ0 + δ1Trans f erit + δ2(Mediatingit) + δ3Controlit + θt + µi + εit

(3)

where Mediatingit represents the mediating variables.

3.1.4. Global Moran’s I Index

This study uses the global Moran’s I index to analyze the global spatial evolution
characteristics of farmland transfer and FNSP [63]. The index is calculated as follows [49]:

Moran′ s I =
n∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 ∑n

i=1 Wij(xi − x)2 (4)

where n is the sample size and Wij is the spatial weight matrix; to ensure the robustness of
the estimation results, the following three matrices are selected in this paper, respectively:

W1 =

{
1 · · · · · · i is adjacent to j

0 · · · · · · i is not adjacent to j
(5)

W2 =

{ 1
d · · · · · · i = j
0 · · · · · · i ̸= j

(6)

W3 =

{ 1
d2 · · · · · · i = j
0 · · · · · · i ̸= j

(7)

where d denotes the Euclidean distance between region i and region j calculated based on
latitude and longitude.

3.1.5. Spatial Durbin Model

The spatial autoregressive model (SAR), spatial error model (SEM), and spatial Durbin
model (SDM) are commonly employed methods for analyzing spatial effects, with the
ability to transform them into each other under certain conditions [64]. In this paper, an
SDM is constructed, and a series of tests are conducted to assess its appropriateness. The
model is defined as follows [65]

:

FNSPit = ρ
n

∑
j=1

WijFNSPit + αTrans f erit + β
n

∑
j=1

WijTrans f erij + ωXjt + τ
n

∑
j=1

WijXjt + θt + µi + εit (8)

When β = 0, the SDM simplifies to the SAR, and when β + αρ = 0, it simplifies to
SEM [66]. Relying on point estimates from traditional spatial regression models to estimate
spatial spillover effects may yield misleading conclusions. Therefore, this study utilizes
partial differential estimation to assess the direct, indirect, and overall impacts of farmland
transfer on FNSP:

[
∂FNSP1

∂Trans f er1
. . .

∂FNSPn

∂Trans f er2

]
=


∂FNSP1

∂Trans f er11
· · · ∂FNSPn

∂Trans f er1n
...

. . .
...

∂FNSP1
∂Trans f ern1

· · · ∂FNSPn
∂Trans f ernn

 = (I − ρW)−1(αI + βW) (9)
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The mean of the diagonal sum represents the direct effect, the non-diagonal sum signifies
the indirect effect, and the sum of these two components yields the total effect [67–69].

3.1.6. Threshold Effect Specification

Drawing on Hansen’s research, this study employs a panel data threshold regression
model to investigate the nonlinear effect of farmland transfer on FNSP. The calculation is
performed as [70]:

FNSPit = α0 + α1Control + β1Trans f er·D(Trans f er < θ1) + β2Trans f er·D(θ1 < Trans f er < θ2) + · · · · · ·+ βnTrans f er·D(Trans f er > θn−1) + µit (10)

where θ1, θ2,. . ., θn denote the threshold values, D(·) represents the indicator function, and
µit stands for the random disturbance term.

3.2. Variable Selection

The FNSP calculated in the previous section is chosen as the explanatory variable in
this paper, denoted as FNSP.

The core explanatory variable selected in this paper is farmland transfer (Transfer),
expressed as the ratio of the area of cultivated land transferred under a family contract to
the total cultivated land area under a family contract [71,72].

The control variables selected in this paper are as follows. Educational level (Education)
is expressed as the average schooling years of the rural population and is calculated by
the formula: (no + primary × 6 + junior × 9 + senior × 12 + college × 15)/all where no
represents the number of people who have not attended school, primary, junior, senior,
college represents the number of people in elementary school, middle school, high school,
college, and above, respectively, and all represents the number of people who are six years
old and above. Agriculture disaster (Disaster) is measured by the ratio of the affected
agricultural area to the total cultivated area of crops. Agricultural Support (Support) repre-
sents the expenditure on agriculture, forestry, and water affairs. The degree of agricultural
mechanization (Machine) is expressed in terms of the total power of agricultural machinery.
The effective irrigated area indicates irrigation (Irrigation). Agricultural structure (Struc-
ture) represents the proportion of agricultural output value in the overall output value of
agriculture, forestry, animal husbandry, and fishery.

As for the mechanism variables, this paper selects fertilizer application intensity
(Intensity) and compound fertilizer application (Compound) as the mediating variables,
respectively [27,73]. Specifically, fertilizer application intensity is characterized by the
amount of fertilizer applied per unit of sown area, calculated as the discounted amount
of fertilizer applied divided by the total sown area of the crop. The compound fertilizer
application is characterized by the proportion of compound fertilizer in the fertilizer,
calculated as the pure amount of compound fertilizer applied divided by the pure amount
of chemical fertilizer applied.

3.3. Data Sources

This paper selects 30 provinces in mainland China, excluding Hong Kong, Macao,
Taiwan, and the Tibet Autonomous Region, as the study sample from 2005 to 2020. The
data necessary for calculating FNSP were sourced from the China Rural Statistical Year-
book. Information regarding farmland was obtained from the China Rural Management
Statistical Yearbook, wherein explicit records of the total area of cultivated land transferred
under family contracts and the area of cultivated land operated under family contracts
were provided. The ratio of these two figures was utilized to characterize farmland transfer.
Population data were extracted from the China Demographic Statistics Yearbook, while
education-related statistics were sourced from the China Education Statistical Yearbook.
Additional data were gathered from the China Rural Statistical Yearbook. It is important to
note that all data utilized in this study represent actual values for the respective years. Miss-
ing values in each variable are filled in using linear interpolation. Natural logarithms are
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applied to all variables in the empirical analyses to mitigate differences in data magnitude.
The descriptive statistics for each variable are presented in Table 2.

Table 2. Descriptive statistics of variables.

Variable Unit Mean Std. Error Min Max

Explained variable
FNSP 10,000 Ton 4.389 1.278 0.786 6.435

Core explanatory variable
Transfer % 0.203 0.139 0.013 0.648

Control variables
Education Year 2.017 0.092 1.637 2.268
Disaster % 0.334 0.502 0.000 3.114
Support 10,000 CNY 6.917 0.460 5.368 12.963
Machine 10,000 KW 7.592 1.091 4.543 9.499
Irrigation 1000 Hectare 7.247 1.020 4.694 8.729
Structure % 0.504 0.083 0.304 0.678

Mediating variables
Intensity Ton/1000 Hectare 5.820 0.368 4.567 6.684

Compound % 0.292 0.072 0.132 0.528

4. Results
4.1. Characteristics of Farmland and Transfer and FNSP Reality

Taking 2005, 2010, 2015, and 2020 as benchmark years, each province’s farmland
transfer intensity is categorized by the natural breakpoint method of ArcMap 10.8 software
into five levels: low, medium-low, medium, medium-high, and high. Figure 2 illustrates
the spatial and temporal evolution characteristics of farmland transfer. Broadly, the high-
intensity farmland transfer areas gradually expand from the southeast coast to the northeast.
In 2005, only Guangdong and Zhejiang provinces were classified as high-intensity areas; by
2020, Beijing, Jiangsu, Shanghai, and Heilongjiang had also joined this category. Conversely,
the intensity of farmland transfer in southwestern regions such as Sichuan, Chongqing,
Guizhou, Yunnan, and Guangxi appear relatively subdued. The degree of farmland
transfer in central and western regions demonstrates a pattern of initial weakening followed
by resurgence.

Likewise, the FNSP of each province is segmented, and the outcomes are depicted
in Figure 3. At the national level, there is a discernible trend of overall improvement
in FNSP, with each province’s FNSP characterized by spatial agglomeration. From
2005–2015, high-intensity FNSP regions were primarily concentrated in Hebei, Shan-
dong, Henan, Jiangsu, Anhui, Hubei, Hunan, and others, displaying a clear spatial
agglomeration pattern. Medium-high-intensity zones gradually shifted from western
regions like Sichuan and Guangdong and southern regions towards central and northern
areas. Conversely, the northeastern region exhibited a trend of initial strengthening
followed by weakening. Medium-intensity zones transitioned from north to south,
while medium-low-intensity areas predominantly clustered in central regions such as
Shaanxi. Low-intensity areas were mainly concentrated in northwestern regions like
Gansu and Qinghai.
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4.2. Baseline Regression Results for the Impact of Farmland Transfer on FNSP

This paper employs the stepwise regression method to examine the impact of farmland
transfer on FNSP, with the results presented in Table 3. In model (1), the regression coeffi-
cient of farmland transfer is −0.781, passing the 1% level test without including any control
variables, suggesting a reduction in FNSP with farmland transfer development. Model (2),
model (3), and model (4) progressively incorporate control variables with consistently
negative regression coefficients for farmland transfer, and the model fit is improved and
the estimation results are robust. Therefore, hypothesis 1 is preliminarily supported.

Table 3. Baseline regression of the impact of farmland transfer on FNSP.

Variables Model (1) Model (2) Model (3) Model (4)

Transfer −0.781 *** −0.798 *** −0.800 *** −0.418 ***
(0.133) (0.132) (0.131) (0.115)

Education
−0.592 ** −0.628 ** −0.646 ***

(0.248) (0.246) (0.202)

Disaster
−0.065 *** −0.086 *** −0.069 ***

(0.019) (0.021) (0.018)

Support 0.026 * 0.008
(0.014) (0.011)

Machine
0.016 *** 0.011 **
(0.006) (0.005)

Irrigation 0.650 ***
(0.043)

Structure
−0.910 ***

(0.240)

Constant
4.548 *** 5.766 *** 5.546 *** 1.413 ***
(0.028) (0.504) (0.504) (0.543)

Individual fixed Yes Yes Yes Yes
Time fixed Yes Yes Yes Yes

Observations 480 480 480 480
R2 0.9919 0.9923 0.9925 0.9951

Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively. Standard errors are in parentheses.

Among the control variables, educational level significantly negatively impacts FNSP.
This is attributed to the higher environmental awareness among rural residents with in-
creased education levels, leading to the adoption of more standardized fertilizer application
practices, thus reducing FNSP. Agricultural disasters have a significant negative impact on
FNSP. While these disasters affect agricultural production, they also prompt farmers to con-
sider environmental factors, leading to changes in production methods and improvements
in fertilizer usage. Agricultural structure significantly reduces FNSP. Higher proportions of
agriculture are more susceptible to policy influence, and greater agricultural green devel-
opment levels facilitate FNSP improvements. The regression coefficient of the agricultural
mechanization degree on FNSP is significantly positive. Agricultural machinery facilitates
the shift from labor-intensive to capital-intensive production, advances production tech-
nology, and increases inputs of modern factors like fertilizers, thus improving FNSP. The
degree of irrigation is significantly positively correlated with FNSP at the 1% level, likely
due to the prevalent use of irrigation methods such as diffuse irrigation, border irrigation,
furrow irrigation, and flooding irrigation in China. These irrigation methods destroy the
soil tillage layer and aggravate the loss of fertilizer nutrients and pollution.

4.3. Endogeneity Treatment and Robustness Test

The previous empirical analysis highlights the significant suppressive effect of farm-
land transfer on FNSP. However, it is important to note that as FNSP increases within a
region, it can damage arable land quality and constrain farmland transfer development.
Additionally, ecological damage caused by FNSP limits farmers’ income potential and
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diminishes demand for farmland transfer to expand production. Consequently, the model
may encounter endogeneity issues due to bidirectional causality.

Accordingly, this paper employs the lagged core explanatory and instrumental vari-
ables methods to address endogeneity [74]. Initially, the lagged one-period farmland
transfer (L1.Transfer) serves as a proxy variable for regression. Subsequently, the farmland
transfer with a two-period lag (L2.Transfer) is utilized as an instrumental variable to es-
tablish a two-stage least squares regression model (IV-2SLS). The instrumental variable
is primarily selected due to the predevelopment of farmland transfer, which serves as a
basis for subsequent development and meets relevance requirements [75]. The lagged two-
period farmland transfer minimally influences the current FNSP, satisfying the exogenous
criterion for instrumental variable selection.

In model (5) of Table 4, the coefficient of farmland transfer in the lagged one-period
remains negative and statistically significant at the 1% level, validating the baseline regres-
sion results. In model (6), the results of the IV-2SLS method reveal a significant positive
effect of the two-period lagged farmland transfer on the current period farmland transfer.
In contrast, the suppressive effect on FNSP remains significant. The Anderson canonical
correlation LM statistic passes the 1% level test, and the Cragg–Donald Wald F statistic
exceeds the critical value of 16.380; the instrumental variable selection is appropriate [76].
In summary, the direction of the regression coefficients for farmland transfer does not
change after addressing the endogeneity of the model, which is consistent with the baseline
regression results.

Table 4. Results of endogeneity treatment.

Variables
Model (5) Model (6): IV−2SLS

FNSP Transfer FNSP

L1.Transfer −0.511 ***
(0.114)

L2.Transfer 0.487 *** −1.039 ***
(0.042) (0.244)

Constant
1.512 *** 0.273 * 1.423 **
(0.558) (0.209) (0.610)

Control variables Yes Yes Yes
Individual fixed Yes Yes Yes

Time fixed Yes Yes Yes
Anderson canon. corr. LM statistic 139.391 ***

Cragg–Donald Wald F statistic 184.293 > 16.380
Observations 450 420 420

R2 0.9956 0.9005 0.5730
Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. Standard errors are in parentheses.

To enhance the reliability of the estimation results, this paper conducts robustness
testing by employing techniques such as shrinking sample capacity, shrink-tailed regression,
and replacing core explanatory variables, as detailed in Table 5. Firstly, the sample capacity
is shrunk by excluding the four regions of Beijing, Shanghai, Guangdong, and Hainan,
where agricultural activities are not concentrated. The regression is then conducted, and the
results are presented in model (7). Secondly, shrink-tailed regression eliminates abnormal
data in individual years that may bias global estimation results. All variables in the model
undergo 1% shrink-tailed treatment, and the resulting outcomes are displayed in model (8).
Finally, the core explanatory variables are replaced, with carbon emissions resulting from
fertilizers used as a proxy variable for FNSP [77,78]. The results are then presented in
model (9). The impact coefficients of farmland transfer in the three models above are
consistently negative and significant at the 1% level, confirming the credibility of the
previous estimation results.
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Table 5. Result of robustness test.

Variables Model (7) Model (8) Model (9)

Transfer −0.440 *** −0.461 *** −0.404 ***
(0.127) (0.118) (0.117)

Constant
3.329 *** 1.056 * 2.117 ***
(0.607) (0.572) (0.551)

Control variables Yes Yes Yes
Individual fixed Yes Yes Yes

Time fixed Yes Yes Yes
Observations 400 480 480

R2 0.9962 0.9948 0.9933
Note: *** and * indicate significance at the 1% and 10% levels, respectively. Standard errors are in parentheses.

4.4. Heterogeneity Analysis

Firstly, the provinces were categorized into primary grain-producing areas, primary
grain-marketing areas, and areas of grain balance [79]. The results are displayed in
model (10), model (11), and model (12) in Table 6. Farmland transfer exhibits a signif-
icant pollution reduction effect in primary grain production areas. Conversely, within
primary grain marketing areas and grain balance areas, although the regression coefficients
of farmland transfer remained negative, none attained statistical significance. This discrep-
ancy can be attributed to the relatively flat terrain and concentrated, continuous cultivation
characterizing primary grain production areas, which facilitate the promotion and advance-
ment of farmland transfer, thereby fully exploiting the inhibitory effect of farmland transfer
on FNSP. In contrast, within primary grain marketing areas and grain balance areas, the
prevalence of farmland fragmentation and dispersion is more pronounced, hindering the
realization of the scale effect generated by farmland [80].

Table 6. Results of heterogeneity analysis.

Variables
Model (10) Model (11) Model (12) Model (13) Model (14)
Production Marketing Balance Plain Mountain

Transfer −0.351 *** −0.298 −0.062 −0.353 ** −0.510 ***
(0.102) (0.205) (0.279) (0.157) (0.148)

Constant
1.046 0.002 3.973 *** 1.054 4.701 ***

(0.817) (0.953) (1.062) (0.796) (0.616)
Control variables Yes Yes Yes Yes Yes
Individual fixed Yes Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes Yes
Observations 208 112 160 240 240

R2 0.9901 0.9951 0.9951 0.9957 0.9974
Note: *** and ** indicate significance at the 1% and 5% levels, respectively. Standard errors are in parentheses.

Secondly, based on the classification of topographic features, the provinces were seg-
mented into plain and mountainous regions [71,81], with separate regressions conducted
for each category. The results are detailed in model (13) and model (14) in Table 6. The
impact of farmland transfer on FNSP is significantly negative in both plains and moun-
tainous areas, with a larger regression coefficient observed in mountainous regions. This
finding diverges from conventional perceptions. A plausible explanation lies in the fact
that mountainous areas encompass approximately one-third of the national cultivated land
area. In these regions, farmland transfer can effectively mitigate abandonment phenomena,
thereby restoring hilly areas’ ecological nutrient functions and reducing FNSP [82].

4.5. Mechanism of the Impact of Farmland Transfer on FNSP

The results elucidating the mechanism of farmland transfer on FNSP are depicted in
Table 7. As per model (15), farmland transfer significantly diminishes fertilizer application
intensity [83]. Subsequently, in model (17), it is observed that fertilizer application intensity



Land 2024, 13, 798 12 of 20

exerts a significant reduction on FNSP. Hence, farmland transfer reduces FNSP by curtailing
fertilizer application intensity.

Table 7. Mechanisms of farmland transfer affecting FNSP.

Variables
Model (15) Model (16) Model (17) Model (18)
Intensity Compound FNSP FNSP

Transfer −0.407 *** 0.052 ** −0.332 *** −0.374 ***
(0.004) (0.024) (0.092) (0.114)

Intensity 0.615 ***
(0.044)

Compound −0.837 ***
(0.231)

Constant
−2.907 *** 0.570 *** 2.610 *** 1.890 ***

(0.478) (0.112) (0.457) (0.551)
Sobel-Godman statistic −0.250 *** −0.044 *

Control variables Yes Yes Yes Yes
Individual fixed Yes Yes Yes Yes

Time fixed Yes Yes Yes Yes
Observations 480 480 480 480

R2 0.9499 0.9341 0.9965 0.9953
Note: ***, **, and * indicate significance at the 1%, 5%, and 10%, levels, respectively. Standard errors are in parentheses.

Moreover, model (16) indicates that farmland transfer significantly increases the
compound fertilizer application. Conversely, model (18) highlights that compound fertilizer
application significantly increases FNSP. Consequently, while farmland transfer boosts
the compound fertilizer application, thus enhancing FNSP, the overall impact of farmland
transfer on FNSP remains negative.

The stability of the mediating effect is further examined through the Bootstrap and
Sobel-Goodman methods, with results detailed in Table 8 confirming the existence of the
mediating effect. The mediating utility ratio is calculated at 43.01% and 10.34%, respectively.
In summary, farmland transfer suppresses FNSP through two pathways: by reducing
fertilizer application intensity and by increasing compound fertilizer application. Therefore,
Hypothesis 2 is validated.

Table 8. Results of the mediating-effect test.

Variables
Bootstrap Test Sobel Test

Observation 95% Interval Indirect Direct Total

Intensity −0.250 [−0.379, −0.095] −0.250 *** −0.332 *** −0.582 ***
Compound −0.044 [−0.089, −0.007] −0.044 * −0.374 *** −0.418 ***

Note: *** and * indicate significance at the 1% and 10% levels, respectively.

4.6. Spatial Spillover Effects of Farmland Transfer on FNSP

This paper employs the spatial neighbor matrix W1, spatial geographic distance matrix
W2, and spatial geographic distance square matrix W3 to calculate the global Moran index
of farmland transfer and FNSP, as presented in Figure 4. Across the three matrices, Moran’s
I of farmland d transfer exhibits a gradual expansion from 2005 to 2020, suggesting a
continuous strengthening of spatial aggregation among regions [84]. Moran’s I of FNSP
displays a positive trend from 2005 to 2020, signifying an intensified pollution interaction
among regions [85]. Overall, the observed spatial correlation between farmland transfer and
FNSP suggests a relationship warranting further analysis using spatial econometric models.

This paper employs a comprehensive approach utilizing the LM test, LR test, Wald test,
and Hausman test to determine the specific form of the spatial econometric model (Table 9).
Initially, the statistical values of both LM and robust LM tests are significant at the 1% level,
indicating the necessity of a spatial econometric model. Additionally, the Hausman test
passes the 1% level test, suggesting the use of a fixed-effect model. Combined with the
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results of the LR test, selecting a two-way fixed SDM is more reasonable. Secondly, the
statistical value of the Wald test is significant at the 1% level, indicating that SDM will not
degenerate into SEM or SAR. In summary, a two-way fixed-effect SDM model is selected to
analyze the spatial spillover effect of farmland transfer on FNSP.
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Table 9. Results of spatial econometric model tests.

Test Method Test Name
Test Statistic

W1 W2 W3

LM test

LM–Error 161.231 *** 1124.035 *** 81.973 ***
LM–Error Robust 109.048 *** 15.134 *** 9.774 ***

LM–Lag 94.080 *** 114.541 *** 101.177 ***
LM–Lag Robust 41.914 *** 5.640 ** 28.978 ***

LR test

LR–Both–Ind 101.360 *** 75.980 *** 67.890 ***
LR–Both–Time 1714.060 *** 1911.540 *** 1774.920 ***
LR–SDM–SEM 88.630 *** 60.390 *** 39.460 ***
LR–SDM–SAR 136.680 *** 75.120 *** 67.370 ***

Wald test
Wald–SDM–SEM 84.110 *** 59.900 *** 34.760 ***
Wald–SDM–SAR 136.010 *** 82.270 *** 72.830 ***

Hausman test Hausman 46.430 *** 30.380 *** 44.160 ***
Note: *** and ** indicate significance at the 1% and 5% levels, respectively.

The results in Table 10 indicate that the coefficients of farmland transfer are all sig-
nificantly negative and remain so after the introduction of W factors. This preliminary
evidence suggests the presence of spatial spillover in the inhibitory effect of farmland
transfer on FNSP. However, relying solely on point estimate parameters to measure the
degree of influence may lead to bias due to the presence of the spatial lag term. Therefore,
it is necessary to decompose the total effect, direct effect, and spillover effect. The decompo-
sition results reveal that under three matrices, the total effects of farmland transfer on FNSP
are −1.428, −1.151, and −1.399, respectively. The direct effects are −0.225, −0.304, and
−0.268, respectively. The indirect effects are −1.203, −0.847, and −1.130, respectively. The
coefficients of each effect pass the significance test. These findings further indicate that the
inhibitory effect of farmland transfer on FNSP exhibits a strong spatial spillover effect. This
effect significantly reduces FNSP within the region and generates environmental benefits
in other regions, thus validating hypothesis 3.
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Table 10. Results of SDM and decomposition effects.

Variables
Model (19): W1 Model (20): W2 Model (21): W3

Ratio Std. Err. Ratio Std. Err. Ratio Std. Err.

Transfer −0.171 * 0.103 −0.283 *** 0.110 −0.225 ** 0.100
W × Transfer −0.914 *** 0.216 −0.008 *** 0.157 −0.753 *** 0.214
Direct effect −0.225 ** 0.107 −0.304 *** 0.110 −0.268 *** 0.101

Indirect effect −1.203 *** 0.274 −0.847 * 0.436 −1.130 *** 0.286
Total effect −1.428 *** 0.310 −1.151 *** 0.426 −1.399 *** 0.306

Control
variables Yes Yes Yes

Individual fixed Yes Yes Yes
Time fixed Yes Yes Yes
Spatial rho 0.235 *** 0.057 0.745 *** 0.050 0.306 *** 0.076

Observations 480 480 480
R2 0.2457 0.3169 0.0664

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

4.7. Nonlinear Effect of Farmland Transfer on FNSP

To further explore the nonlinear characteristics of the effect of farmland transfer on
FNSP, a threshold effect test is conducted to determine the number of potential thresh-
olds. Stata 18.0 software is utilized to conduct the Bootstrap method, randomly sampling
300 times for the threshold effect test. The results are presented in Table 11. Both single
and double thresholds passed the 1% level test. Furthermore, after separately plotting the
LR diagram of the two thresholds, it is observed that both thresholds pass the test with a
95% confidence interval (Figure 5). Therefore, the nonlinear relationship between farmland
transfer and FNSP shows a double threshold.

Table 11. Results of threshold model test.

Threshold Test Threshold Value Conversion Value F Statistic p Value

Single threshold 0.199 0.220 83.050 *** 0.000
Double

threshold 0.344 0.411 46.350 *** 0.000

Triple threshold 0.472 0.603 27.730 0.330
Note: *** indicate significance at the 1% levels, respectively.
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Table 12 results indicate that when farmland transfer is below the first threshold
value of 0.344 (corresponding to a proportion of actual farmland transfer less than 0.411),
the inhibitory effect on FNSP is insignificant. For farmland transfer between 0.344 and
0.472 (corresponding to a proportion of actual farmland transfer between 0.411 and 0.603),
the coefficient is −0.467, passing the 1% level test. This indicates significant inhibition
of FNSP within this interval. For farmland transfers exceeding 0.472 (corresponding to
a proportion of actual farmland transfer greater than 0.603), the regression coefficient is
−0.970, significant at the 1% level. This signifies an intensified inhibitory effect of farmland
transfer on FNSP after surpassing the second threshold. In summary, the effect of farmland
transfer on FNSP is nonlinear.

Table 12. Regression results of the threshold model.

Variables Coefficient T Value 95% Confidence

Transfer (Transfer < 0.344) −0.044 −0.460 [−0.193, 0.119]
Transfer (0.344 ≤ Transfer ≤ 0.472) −0.467 *** −6.510 [−0.587, −0.308]

Transfer (Transfer > 0.472) −0.970 *** −11.370 [−1.128, −0.797]
Constant 0.398 0.910 [−0.256, 1.454]

Control Variables Yes
F(29, 441) 661.020 ***

Observations 480
R2 0.4756

Note: *** indicate significance at the 1% levels, respectively. Standard errors are in parentheses.

Additionally, this study selects 2005, 2010, 2015, and 2020 as representative years.
Provinces across the country are divided based on actual thresholds, with the results
depicted in Figure 6. Overall, there is a gradual increase in the number of provinces crossing
the threshold. In 2005, all of the provinces remained within the threshold. In 2010, only
Beijing and Shanghai crossed the first threshold, while the remaining provinces remained
below it. In 2015, Shanghai and Jiangsu crossed the second threshold. Beijing, Heilongjiang,
Zhejiang, Anhui, and Chongqing were between the first and second thresholds. In 2020,
Shanghai, Beijing, Jiangsu, and Chongqing crossed the second threshold. Most other
provinces were within the first threshold. Zhejiang, Heilongjiang, Tianjin, Anhui, Jiangxi,
Guangdong, Shandong, and Hunan were between the first and second thresholds.
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5. Discussion
5.1. Comparison with Related Studies

This paper found that farmland transfer can significantly inhibit pollution caused by
fertilizer application [86], which is similar to the findings of Guo et al. [87] and Lu et al. [88].
Farmland transfer is an essential means of expanding the scale of operation [89]. The
scale of operation contributes to reducing chemical fertilizers; for example, Ren et al.
analyzed data from China and pointed out that the scale of agricultural operation up to
3.8 hectares could save 45% of chemical fertilizers [90]. Similarly, Guo et al. concluded that
for every 1% increase in cropland area, nitrogen fertilizer application would be reduced
by 0.93% [91]. These studies are similar to the main points of this paper. However, these
studies should have considered the heterogeneous effects of differences in land types,
natural conditions, and other factors on fertilizer loss, and the fertilizer loss rate determined
using fertilizer application intensity and the application ratio may also lead to inaccurate
estimation results. Therefore, this paper used a more scientific method to measure FNSP
and integrated multiple econometric models to verify the inhibitory effect of farmland
transfer on FNSP.

In terms of the influence mechanism, this paper argues that reducing the application
intensity of chemical fertilizer and increasing the application ratio of compound fertilizer
has a mediating effect on the process of farmland transfer, inhibiting FNSP. First, farmland
transfer can significantly reduce the intensity of chemical fertilizer application [83], which
was verified by Cao et al. [89] and Xu et al. with microdata [92]. Secondly, farmland
transfer contributes to compound fertilizer application, which is similar to the findings of
Li et al. [93] and different from those of Shang et al. [94]. In addition, this paper found a
spatial spillover of the inhibitory effect of farmland transfer on FNSP, and existing studies
have reached similar conclusions [72,95].

5.2. Implications for Policymakers

Drawing from this study, several policy insights emerge. Firstly, there is a crucial
need to acknowledge the scale economies and environmental benefits of farmland trans-
fer. This entails bolstering the rural land transaction market, enhancing mechanisms for
resolving land disputes, and reinforcing support for large-scale agricultural producers.
Secondly, enhancing regional coordination throughout the farmland transfer process is
imperative. Facilitating inter-regional communication and collaboration within the agri-
cultural sector and expediting the refinement of compensation mechanisms for promoting
green agricultural development is paramount. Finally, it is essential to actualize the high-
quality development of farmland transfer. This necessitates adhering to principles of
moderate-scale operation, transforming agricultural management practices, and enhancing
the efficiency of agricultural production factor allocation to mitigate the risks of low-quality
or spurious transfers.

5.3. Limitations of the Study and Future Prospects

This paper contributes to existing studies by integrating farmland transfer and FNSP
into a unified analytical framework, systematically exploring their relationship. While
this paper analyzes the impact of farmland transfer on FNSP using macro statistical data,
further elucidation of the specific mechanism requires field research or experimental design.
Future research should undertake a more detailed and in-depth analysis by investigating
or comparing micro-level farmland transfer activities and FNSP using microdata.

The analysis in this paper reveals heterogeneity in the impact of farmland transfer on
FNSP. However, only regional heterogeneity is addressed due to the limitations of macro
panel data, and further analysis on the heterogeneity of the impact of farmland transfer on
different land types and transfer types is needed. Future research should conduct a more
in-depth analysis of the impact of farmland transfer heterogeneity on FNSP by further
integrating medium and micro data.
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6. Conclusions

This study assesses the FNSP of each province in mainland China by analyzing panel
data from 2005 to 2020, encompassing 30 provinces. Various models including the fixed-
effect model, the mediating-effect model, the spatial Durbin model, and the threshold
regression model are constructed to empirically investigate the impact of farmland transfer
on FNSP. The primary findings are as follows:

Firstly, farmland transfer demonstrates significantly inhibited FNSP, which persists
even after accounting for endogeneity and conducting robustness tests. Moreover, this effect
exhibits regional heterogeneity, manifesting a notable reduction in pollution in primary
grain production areas, yet lacking significance in primary grain marketing and grain
balancing areas. Notably, the inhibitory effect is more pronounced in mountainous regions
than in plains.

Secondly, the environmental effects triggered by farmland transfer involve media-
tion, predominantly through two pathways: reducing fertilizer application intensity and
increasing compound fertilizer application, both contributing to the inhibition of FNSP.

Thirdly, farmland transfer significantly mitigates FNSP within its own region and induces
neighboring regions to decrease FNSP, illustrating a substantial spatial spillover effect.

Lastly, a double-threshold nonlinear relationship between farmland transfer and FNSP
is identified. FNSP suppression occurs only beyond a certain threshold of farmland transfer,
with larger-scale transfers correlating with stronger suppression effects.
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