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Abstract: This study introduces a novel approach to landslide detection by incorporating the Spatial
and Band Refinement Convolution (SBConv) module into the U-Net architecture, to extract features
more efficiently. The original U-Net architecture employs convolutional layers for feature extraction,
during which it may capture some redundant or less relevant features. Although this approach aids
in building rich feature representations, it can also lead to an increased consumption of computational
resources. To tackle this challenge, we propose the SBConv module, an efficient convolutional unit
designed to reduce redundant computing and enhance representative feature learning. SBConv
consists of two key components: the Spatial Refined Unit (SRU) and the Band Refined Unit (BRU).
The SRU adopts a separate-and-reconstruct approach to mitigate spatial redundancy, while the BRU
employs a split-transform-and-fuse strategy to decrease band redundancy. Empirical evaluation
reveals that models equipped with SBConv not only show a reduction in redundant features but
also achieve significant improvements in performance metrics. Notably, SBConv-embedded models
demonstrate a marked increase in Recall and F1 Score, outperforming the standard U-Net model. For
instance, the SBConvU-Net variant achieves a Recall of 75.74% and an F1 Score of 73.89%, while the
SBConvResU-Net records a Recall of 70.98% and an F1 Score of 73.78%, compared to the standard
U-Net’s Recall of 60.59% and F1 Score of 70.91%, and the ResU-Net’s Recall of 54.75% and F1 Score of
66.86%. These enhancements in detection accuracy underscore the efficacy of the SBConv module in
refining the capabilities of U-Net architectures for landslide detection of multisource remote sensing
data. This research contributes to the field of landslide detection based on remote sensing technology,
providing a more effective and efficient solution. It highlights the potential of the improved U-Net
architecture in environmental monitoring and also provides assistance in disaster prevention and
mitigation efforts.

Keywords: deep learning; landslide detection; remote sensing; U-Net; SBConv

1. Introduction

Landslides, as a prevalent and hazardous natural phenomenon, pose significant risks
to human lives and infrastructure [1,2]. Landslides are recognized as a significant geo-
environmental concern and a key geomorphological characteristic influenced by numerous
surface processes. They represent a complex phenomenon, encompassing diverse geo-
physical and hydro-meteorological factors, unlike any other natural hazard [3]. Therefore,
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landslide detection and modeling plays a crucial role in their analysis [4]. These studies
are categorized based on the triggering factors of landslides [5], primarily including those
induced by rainfall [6–8] and earthquakes [9–11]. Key research topics in landslides include
the prediction of displacement in single landslide [9,12], identification of landslides [13–15],
susceptibility assessment [2,16], hazard evaluation [17], and risk assessment [18,19].

Traditional methods for landslide detection, often constrained by manual efforts and
limited accuracy, necessitate advancements in automated detection technologies [13].

Remote sensing technology has a broad and profound impact on landslide identifica-
tion or mapping [20–24]. Satellite and aerial images provide valuable data for landslide
identification, analysis, and monitoring, with multi-temporal satellite images showing
changes in landslides over time [21]. Synthetic Aperture Radar (SAR) technology can
penetrate clouds and work in any weather condition, especially through Interferometric
Synthetic Aperture Radar (InSAR) technology, which can measure ground displacement
and provide important information for identifying landslide risk areas [25–27]. Optical and
infrared images help identify potential landslide areas by analyzing the spectral character-
istics of the images [28]. Data fusion technology combines multiple remote sensing data
sources, such as optical, SAR, and LiDAR data, while machine learning algorithms can
automate the analysis of these data, improving the accuracy of landslide detection [13,29].
LiDAR technology provides high-resolution topographic data for analyzing terrain and
identifying landslide risk areas [30]. Research on real-time monitoring of landslides is also
being explored, with the aim of achieving real-time/near-real-time early warning of land-
slides [31,32]. Finally, the integration of remote sensing data with other data sources such as
geology, hydrology, and meteorology offers the possibility of a comprehensive understand-
ing of landslide risk and the development of better prediction models. However, challenges
such as data availability, resolution, and cost still exist, which may affect the effective
application of remote sensing technology in landslide identification and monitoring.

Early landslide remote sensing identification mainly relied on visual interpretation,
identifying potential landslide areas by analyzing surface features in remote sensing im-
ages [13], often constrained by manual efforts and limited accuracy, necessitate advance-
ments in automated detection technologies. Change detection methods are also used for
landslide detection, but these meothods need 2 remote sensing images (before and after
landslide events) at least, limited by the data availability.

With the development of computer technology, researchers began to use shallow ma-
chine learning techniques, such as support vector machines [33,34] and random forests [28],
to automatically identify landslides. These methods usually require manual selection and
extraction of features, and then use these features to train classifiers. In recent years, with
the rise of deep learning technology, researchers have begun to use convolutional neural
networks (CNNs) and other deep learning algorithms for landslide identification. Wang
et al. published a study on remote sensing landslide identification based on convolu-
tional neural networks [35]. Another study developed an integrated machine learning
approach that combined multi-source data and pixel- and object-based processing to detect
landslides, and also systematically studied the impact of training data size on detection
performance [36]. Researchers have also used improved Transformers models to iden-
tify landslides using multi-feature remote sensing data [37,38]. Unlike shallow machine
learning techniques, deep learning can automatically learn and extract features from data
without manual intervention [39]. These studies provide an important research foundation
for landslide identification based on remote sensing data and machine learning technology,
and also show the current state and future development trends of this field [13].

The U-Net architecture [40], originally developed for biomedical image segmentation,
has been particularly influential in advancing the field of semantic segmentation. Its novel
architecture, characterized by a U-shaped design with a contracting path to capture context
and an expansive path that enables precise localization, has been widely adopted and
adapted for various image segmentation tasks. The effectiveness of U-Net is largely due
to its use of skip connections, which allow for the combination of low-level detail with
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high-level contextual information, making it particularly suitable for tasks that require
the segmentation of fine-grained structures [10,41,42]. In the field of geospatial analysis,
U-Net and its derivatives have been successfully applied to object detection and image
segmentation tasks in remote sensing images. Similarly, they have also been extensively
used for the identification and assessment of landslide risks [11,13,41].

However, including the U-Net architecture’s use of convolutional layers for feature
extraction, faces significant challenges in dealing with feature redundancy and optimizing
channel feature processing [43]. To address these challenges, this paper integrates a plug-
and-play convolution module—SBConv [43]—into the U-Net architecture. The SBConv
module consists of two key components: the Spatial Refinement Unit (SRU) and the Band
Refinement Unit (BRU), designed to reduce spatial and band redundancy, thereby enhanc-
ing the network’s representation learning and improving landslide detection accuracy.
Through this research, our goal is to leverage the advantages of spatial and band feature
refinement for more precise and reliable landslide detection.

Through this research, our goal is to leverage the advantages of spatial and band
feature refinement for more precise and reliable landslide detection. A key innovation is the
integration of the SBConv module into the U-Net architecture, which enhance traditional
convolutional layers. This enhancement significantly boosts the model’s capabilities in
aggregating features and representing complex patterns through the inclusion of the Spatial-
Refined Unit (SRU) and the Band-Refined Unit (BRU). Experimental results confirm that the
U-Net and ResU-Net architectures improved with SBConv outperform traditional models,
showcasing marked improvements in landslide detection performance.

The remainder of this paper is structured as follows. The Materials and Methods
section provides a detailed description of our improved U-Net approach and the data used
in this study. The Results section presents the experiments and analysis, followed by a
Discussion section. Finally, the Conclusion summarizes the findings and limitations of the
study, offering perspectives for future work.

2. Materials and Methods
2.1. Materials

The Landslide4Sense dataset is designed as a multi-source benchmark for training deep
learning (DL) models in landslide detection [44,45]. Given the challenges posed by small or
homogeneous datasets, this benchmark incorporates data from four diverse geographic
regions [44]. This approach ensures a broad representation of landslide characteristics. The
specific geographical locations are marked on the map of Asia provided by ArcGIS 10.8.2
(see Figure 1). As illustrated in the figure, the four areas—the Iburi-Tobu Area of Hokkaido,
the Kodagu District of Karnataka, the Rasuwa District of Bagmati, and Western Taitung
County—are located in Japan, India, Nepal, and Taiwan, China, respectively. Among these,
the landslides in Japan and Nepal are of the earthquake-induced type (the April 2015 Nepal
earthquake and the August 2018 Hokkaido earthquake), while those in India and Taiwan,
China, are triggered by heavy rainfall and Typhoon [44]. A detailed landslide distribution,
typically existing landslide inventory maps could be seen in the article (Ghorbanzadeh
et al., 2022) [44].

It aims to improve model transferability to new regions by incorporating various
landslide triggers and environmental conditions. The dataset also utilizes data from
Sentinel-2 and ALOS PALSAR sensors. Key aspects include detailed annotations for
landslide inventory and a focus on geographic diversity to enhance the robustness and
generalizability of DL models trained with this dataset. The data is accessible on Future
Development Leaderboard for future evaluation at https://github.com/iarai/Landslide4
Sense-2022 (accessed on 30 December 2023) [45].

The steps, procedures, and approaches employed in this study are outlined in the
workflow depicted in Figure 2. The input data, comprising multi-spectral Sentinel-2 imagery
and Digital Elevation Model (DEM) derivatives (slope and elevation), undergo a series of
transformations through an encoder-decoder structure reminiscent of the U-Net architecture.

https://github.com/iarai/Landslide4Sense-2022
https://github.com/iarai/Landslide4Sense-2022
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Figure 1. Geo-locations of the landslide samples source.

Figure 2. Research workflow.

The encoder segments sequentially extract the features of the input, employing a
downsampling strategy to compress spatial information while enhancing feature specificity.
This is visualized through the diminishing spatial dimensions in the encoder blocks, which
reflect the hierarchy of learned representations.
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In counterpoint, the decoder segments engage in an upsampling routine, reconstruct-
ing the spatial dimension of the original input from the encoded abstract feature maps.
This is evident from the incrementing dimensions in the decoder blocks, signifying the
expansion of data towards its original resolution.

The feature extract module, demarcated by a dashed blue outline, enumerates the
pivotal components within the encoder-decoder interplay. These include Conv2d layers,
which apply two-dimensional convolutions to extract spatial features; SBConv, a specialized
convolution module; BatchNorm2d, which normalizes the features within a batch to
improve stability and performance; and ReLU activations, which introduce non-linearity
into the learning process.

The resultant output from this sophisticated computational apparatus is a binary prediction
map, delineating the edge of landslide occurrences with crisp, unambiguous boundaries.

Finally, the model’s inferential prowess is gauged against a suite of evaluation met-
rics—F1 Score, Recall, Precision, and Overall Accuracy (OA). These metrics collectively
quantify the model’s predictive accuracy and reliability, offering a multi-faceted assessment
of its classification efficacy.

2.2. Methods
2.2.1. U-Net

U-Net is a convolutional neural network (CNN) architecture designed for semantic
segmentation tasks, particularly in medical image analysis [40]. The name “U-Net” de-
rives from its U-shaped architecture, comprising a contracting path and an expanding
path. The contracting path is a traditional CNN consisting of convolutional and pooling
layers that progressively reduce the spatial dimensions of the input image while increasing
the number of feature channels to extract hierarchical features. The expanding path in-
volves upsampling and concatenation operations to gradually restore the spatial resolution
of the feature maps, with each upsampling step accompanied by a convolutional layer
that reduces the number of feature channels. Skip connections are established between
corresponding layers in the contracting and expanding paths to help the network retain
detailed information from early layers, aiding in precise localization and segmentation.
The final layer typically utilizes a convolutional layer with a Softmax activation function
to generate pixel-wise predictions, where each pixel in the output corresponds to a class
label indicating the likelihood of belonging to a specific semantic category. U-Net is often
trained using pixel-wise cross-entropy loss or other suitable segmentation loss functions to
minimize the discrepancy between predicted segmentation masks and ground truth masks
during training. Widely adopted in medical imaging tasks such as cell segmentation, tumor
detection, and organ segmentation, U-Net’s effectiveness lies in its ability to efficiently
capture both local and global context while preserving spatial information.

2.2.2. ResU-Net

ResU-Net [46] is a deep learning model specifically designed for medical image
segmentation, and it has also been successfully applied to target detection in remote sensing
images. This model is based on the classical U-Net architecture and incorporates residual
learning to enhance performance. Structurally, ResU-Net consists of a contracting path and
an expanding path, with residual connections added at each layer to effectively address
the vanishing gradient problem, allowing direct signal propagation from lower to higher
network layers. This design enables ResU-Net to handle deeper network structures, better
capturing details, particularly suitable for dealing with images with complex or blurred
boundaries. ResU-Net has been widely used in various image analysis tasks such as tumor
detection, organ segmentation in medical images, and target detection in remote sensing
images, demonstrating outstanding segmentation performance and generalization ability.
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2.2.3. SBConv Module

To enhance the accuracy of landslide detection, we have optimized the U-Net architec-
ture by integrating the SBConv module, aimed at reducing the redundancy in the U-Net
structure during the information extraction process. U-Net is praised for its outstanding
performance in medical image segmentation tasks, attributed to its symmetrical design and
skip connections [40]. These features enable efficient extraction and fusion of features from
both the encoder and decoder ends, thereby capturing detailed information more precisely.
Although the architecture performs excellently, it reveals the need for further optimization
when faced with the complex challenges of geographical spatial images characterized by
multi-resolution and multi-spectral features.

As shown in Figure 3, the traditional U-Net architecture employs a DoubleConv module,
which consists of two consecutive convolution layers for feature extraction. In our research,
we adopted an innovative approach by integrating an SBConv module right after the standard
Conv2d convolution layer within the DoubleConv module. The foundational Spatial and
Channel Reconstruction Convolution (SCConv) operator was initially introduced in 2023 as
a plug-in convolution module [43]. Building upon this innovation, ref. [47] expanded the
SCConv operator, dubbing the enhanced module as ESBConv. In our work, we adopted the
ESBConv module and designated it SBConv for our purposes.

This strategy was aimed at reducing information redundancy, leading to the devel-
opment of the novel SBConvU-Net architecture. This enhanced DoubleConv module has
been rebranded as the Improved DoubleConv Unit (IDCU), with its architecture depicted
as part of the feature extraction or reconstruction module in Figure 2.

The enhancement of this architecture is rooted in the understanding that the feature
extraction phase is crucial for the success of semantic segmentation tasks. By bolstering this
stage, our aim is to increase the network’s sensitivity and specificity, thereby enhancing its ability
to precisely identify potential landslide areas. The SBConv module stands as the cornerstone
of our improved U-Net, utilizing sophisticated convolution operations to ensure the network
efficiently learns the most significant features within complex geographic spatial datasets.

Figure 3. The structure of the improved U-Net architecture.

2.2.4. Spatial and Band Refined Convolution (SBConv)

The SBConv module is a novel component introduced in our architecture to augment
the specificity of feature refinement, as shown in Figure 4. The SBConv module is designed
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to process features through two sequential sub-modules: the Spatial Refined Unit (SRU)
and the Band Refined Unit (BRU), as illustrated below.

• Input ConvBlock: The process begins with an input feature map that is first processed
by a standard convolutional block (ConvBlock), preparing the features for subsequent
refinement.

• ResBlock + SBConv: The output from the initial ConvBlock is then fed into a residual
block combined with the SBConv. This combination allows for the incorporation
of both residual learning and specialized convolution operations to enhance feature
representation.

• SRU: Within the SBConv, the Spatial Refined Unit (SRU) takes the input feature map
X and applies a series of operations to refine the spatial characteristics of the features,
yielding a spatially-refined feature map X′.

• BRU: Following spatial refinement, the Band Refined Unit (BRU) further processes X′

to emphasize and recalibrate the spectral information, resulting in the band-refined
feature map Y.

• Output ConvBlock: Finally, the refined feature map Y is passed through an output
convolutional block (Output ConvBlock), producing the final output that is used in
further layers or for constructing the final segmentation map.

The SBConv module, encompassing the SRU and BRU, is encapsulated within our
network to enhance the extraction and differentiation of features relevant to accurate
image segmentation.

Figure 4. The structure of the IDCU module.

This module synergizes the Spatial Refined Unit (SRU) with the Band Refined Unit
(BRU), aiming to significantly optimize spatial and spectral feature extraction capabilities
tailored for landslide identification tasks. The SRU is engineered to amplify the delineation
of spatial details, which is paramount in accurately segmenting landslide-prone regions
from complex geospatial backgrounds. Meanwhile, the BRU is designed to recalibrate and
refine the spectral features across the bands, ensuring that the model accentuates relevant
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characteristics essential for identifying subtle differences in the multispectral data indicative
of landslides. The architecture begins with a multi-band input, suggestive of a combination
of spectral bands from remote sensing data, each with a resolution of 128 × 128 pixels.
This input feeds into an encoder-decoder structure with skip connections, typical of a
U-Net framework, but with the novel addition of SBConv modules at each stage. As we
progress from the input to deeper layers, the feature map dimensions are systematically
reduced using 2 × 2 max pooling operations, while the feature depth increases, peaking
at 512 channels. This expansive feature extraction phase is balanced by the decoder path,
where up-sampling operations incrementally restore the spatial resolution. Simultaneously,
skip connections from corresponding encoder stages reintegrate contextually rich details by
concatenating feature maps from the encoder with those of the decoder. The culmination of
this intricate process is a prediction output that precisely maps the likelihood of landslide
occurrences within the input imagery. It is the fusion of the SRU and BRU within the
SBConv module that empowers our architecture with the discernment to effectively differ-
entiate and segment landslides with a superior degree of accuracy than the conventional
U-Net model. The improved U-Net architecture, bolstered by SBConv, providing a robust
tool for the detection of landslides from multi-spectral remote sensing data.

2.2.5. Spatial Refined Unit (SRU)

To deal with the spatial redundancy of features, we introduce the Spatial Refined Unit
(SRU) proposed by [43], as depicted in Figure 5.

The SRU adopts a separate-restructure approach to mitigate the spatial redundancy
of features, and its model structure is depicted in Figure 5. The purpose of the Separate
operation is to separate the more informative feature maps, especially in terms of their
spatial content. In Group Normalization (GN) layers, the scaling factors are used to evaluate
the informative content of various feature maps.

Specifically, consider an feature map X ∈ RN×C×H×W , in which N and C represent
the batch and channel axis, and H and W represent the spatial height and width axes,
respectively. To standardize X, subtract the mean µ and divide by the standard deviation σ.
This process is achieved by the following formula:

Xout = GN(X) = γ
X − µ√
σ2 + ε

+ β (1)

A small positive constant ε is added to ensure numerical stability during division. The
parameters γ and β are trainable factors associated with the affine transformation applied
during normalization.

It is noteworthy that γ ∈ RC is a trainable parameter in GN layers to measure the spa-
tial pixels variance of batches and channels. A greater variance in spatial pixels, indicative
of richer spatial information, corresponds to a larger value of γ. To signify the importance
of feature maps, the normalized correlation weight Wγ ∈ RC is derived using Equation (2).

Wγ = {wi} =
γi

∑C
j=1 γj

, i, j = 1, 2, · · · , C (2)

Subsequently, Wγ are normalized to the range 0 to 1 using the sigmoid function and
a predefined threshold. We assign a value of 1 to those weights exceeding the threshold,
thereby defining the informative weights W1, while weights below the threshold are set
to 0, resulting in the non-informative weights W2. In our experiments, this threshold is
established at 0.5. W is succinctly represented by Equation (3):

W = Gate(Sigmoid(Wγ(GN(X)))) (3)

In the final step, the input features X are multiplied by W1 and W2 respectively, result-
ing in two distinct sets of weighted features: Xw

1 , which are informative and contain expres-
sive spatial content, and Xw

2 , which are less informative and considered to have minimal or
no relevant information, hence deemed as redundant. This process effectively segregates
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the input features into two categories: Xw
1 representing the significant, information-rich

features, and Xw
2 encapsulating the less critical, potentially superfluous data.

To mitigate spatial redundancy, we further propose a Reconstruct operation. This
operation involves summing features rich in information with those less informative,
aiming to synthesize features that encapsulate richer information while conserving spatial
resources. Rather than simply adding these two categories of features, we employ a cross
reconstruct operation. This method is designed to effectively amalgamate the weighted,
differing informative features, thereby enhancing the flow of information between them.
Then, the features Xw1 and Xw2 are cross-reconstructed to yield the spatial-refined feature
maps Xw. The entire Reconstruct operation can be articulated as follows:

Xw
1 = W1 ⊗ X

Xw
2 = W2 ⊗ X

Xw
11 ⊕ Xw

22 = Xw1

Xw
21 ⊕ Xw

12 = Xw2

Xw1 ∪ Xw2 = Xw

(4)

where ⊗, ⊕ and ∪ are element-wise multiplication, summation, and concatenation, respectively.
Symbols used in the figure and their corresponding operations include summation

(⊕), multiplication (⊗), concatenation (C), group normalization (GN), weighting (wi),
thresholding (T), and sigmoid activation (S). The SRU’s design is tailored to improve
the network’s ability to capture and emphasize spatial details, thereby facilitating more
accurate segmentation in complex images, such as those used in landslide detection tasks.

Figure 5. The structure of the SRU module.
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2.2.6. Band Refined Unit (BRU)

The BRU employs a Split-Transform-Fuse strategy to address the issue of band redun-
dancy in feature maps, depicted in Figure 6. Conventionally, feature extraction involves the
use of repetitive standard k × k convolutions, often leading to the generation of somewhat
redundant feature maps along the band dimension. Thus, we use Mk ∈ Rc×k×k instead
of the k × k convolution kernel, and let X and Y denote the input and convolved output
features, respectively, where X, Y ∈ Rc×h×w.

A standard convolution, can be defined as Y = Mk · X. In our approach, we substitute
the standard convolution with the BRU, which is realized through three distinct operations:
Split, Transform, and Fuse. The BRU operates through a multi-stage process detailed
as follows:

Split: For a given set of spatial-refined features Xw ∈ Rc×h×w, we initially divide
its channels into two segments, consisting of αC and (1 − α)C channels, as illustrated
in the splitting section of Figure 6. Here, α represents the split ratio, where 0 ≤ α ≤ 1.
Subsequently, to enhance computational efficiency, we apply 1× 1 convolutions to compress
the channel dimensions of these feature maps. This compression introduces a ‘squeeze ratio’
r, which is utilized to regulate the feature channels, thereby balancing the computational
load of the BRU (with r = 2). Following the split and squeeze operations, Xw are segregated
into two components: Xup and Xlow.

Transform: Xup is channeled into the upper transformation stage, functioning as a
“Rich Feature Extractor”. To extract high-level representative information while simultane-
ously reducing computational demands, we adopt more efficient convolutional operations,
namely Group-Wise Convolution (GWC) and Point-Wise Convolution (PWC) instead of
the standard k × k convolutions. The sparse convolution connections in GWC lead to a
reduction in the number of parameters and computational requirements, albeit at the cost
of impeding the information flow between channel groups. PWC, in contrast, addresses
this information loss and facilitates cross-channel information flow. Therefore, we apply
both k × k GWC (setting the group size g = 2 in our experiments) and 1 × 1 PWC to Xup.

The outputs of these operations are then summed up to create a merged representative
feature map Y1, as depicted in the Transform section of Figure 6. The process of the upper
transformation stage can be expressed as follows:

Y1 = MGXup + MP1 Xup (5)

where MG ∈ R
αc
gr ×k×k×c and MP1 ∈ R αc

r ×1×1×c represent the learnable weight matrices
of GWC and PWC, respectively. Additionally, Xup ∈ R αc

r ×h×w and Y1 ∈ Rc×h×w are the
input and output feature maps of the upper part, respectively. In essence, the upper
transformation stage employs a synergistic combination of GWC and PWC on the same
Xup. This approach is designed to extract rich representative features Y1, while maintaining
a lower computational footprint.

Xlow is directed into the lower transformation stage. At this stage, we employ cost-
effective 1 × 1 PWC to generate feature maps, which could be used to reveal shallow
hidden details and serve as a complement to the “Rich Feature Extractor” of the upper
transformation stage. Additionally, we repurpose the features in Xlow to derive more feature
maps, thereby augmenting our feature set without incurring additional computational
costs. To form the output Y2 of the lower stage, both the newly generated and reused
features are concatenated in the final step of this stage, as follows:

Y2 = MP2 Xlow ∪ Xlow (6)

In this equation, MP2 ∈ R
(1−α)c

r ×1×1×(1− 1−α
r )c is weight matrix that could be learned for

PWC. The operation ∪ signifies concatenation. The input feature map Xlow ∈ R
(1−α)c

r ×h×w

undergoes a transformation via PWC, and then the resulting feature map is concatenated
with the original input Xlow. This process effectively combines the transformed and original
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features, resulting in the final output feature map Y2 ∈ Rc×h×w, which encompasses
supplementary detailed information extracted from the lower stage.

Fuse: Following the transformation stages, a simplified version of the SKNet method [48]
is employed to merge the output features Y1 and Y2 from the upper and lower transfor-
mation stages, as illustrated in the Fuse section of Figure 6. Initially, we apply global
average pooling (referred to as Pooling) to aggregate global spatial information. This
process generates channel-wise statistics Sm ∈ Rc×1×1, which are computed as follows:

Sm = Pooling(Ym) =
1

H × W

H

∑
i=1

W

∑
j=1

Yc(i, j), m = 1, 2 (7)

Next, we combine the global channel-wise descriptors S1 and S2 from the upper and
lower stages, respectively, and proceed to apply a channel-wise soft attention operation.
This operation is designed to obtain the feature importance vectors β1, β2 ∈ Rc, which are
computed as follows:

β1 =
es1

es1 + es2
, β2 =

es2

es1 + es2
, β1 + β2 = 1 (8)

Finally, guided by the feature importance vectors β1 and β2, the channel-refined
features Y are derived by channel-wise merging of Y1 and Y2. This merging process can be
expressed as follows:

Y = β1Y1 + β2Y2 (9)

Figure 6. The structure of the BRU module.
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In summary, the BRU is utilized, following a Split-Transform-and-Fuse strategy, to
reduce the redundancy of Xw. The BRU effectively extracts representative features via
lightweight convolutional operations and handles redundant features through cost-effective
operations and feature reuse strategies. Significantly, the BRU can function independently
or be synergistically combined with the SRU operation. By sequentially integrating the
SRU and BRU, we establish the proposed SBConv, a highly efficient architecture that serves
as a viable alternative to standard convolution operations.

Symbols in the figure denote element-wise summation (⊕), element-wise multiplica-
tion (⊗), and concatenation (C), indicating the operations performed at each stage of the
BRU. This unit is integral to our network’s ability to discern and enhance spectral features,
further contributing to the robustness of the landslide detection task.

2.3. Model Evaluation

Precision, recall, overall accuracy (OA) and F1 score (F1) are computed to evaluate the
performance of the proposed model. These 5 indexes are defined as:

precision =
TP

TP + FP
(10)

recall =
TP

TP + FN
(11)

F1 =
2 × precsion × recall

precsion + recall
(12)

OA =
TP + TN

FP + FN + TP + TN
(13)

In this context, TP represents the count of true positives, which are the pixels ac-
curately identified as landslides. TN denotes the true negatives, referring to the pixels
correctly classified as non-landslide areas. FP is the number of false positives, indicating
pixels that are actually non-landslide (background) but erroneously classified as landslides.
Conversely, FN stands for the false negatives, which are the pixels that should be classified
as landslides according to ground truth but are mislabeled as non-landslide areas. Precision
is a measure that quantifies the accuracy of the landslide predictions, signifying the pro-
portion of pixels correctly classified as landslides out of all pixels predicted as landslides.
Recall, on the other hand, represents the ability of the model to correctly identify landslide
pixels, calculated as the proportion of pixels correctly classified as landslides out of the total
ground truth landslide pixels. F1 score is considered the harmonic mean of precision and
recall. This value provides a comprehensive measure of overall performance in accurately
classifying landslides by balancing precision and recall [13].

3. Results
3.1. Experimental Settings

In the course of this study, a total of 3799 image patches were employed for the training
of various models. Each experimental model underwent training across 5000 epochs to
ensure thorough learning. A comparative analysis was conducted using several architec-
tures: standard U-Net, SBConv-Unet, BruU-Net, SruU-Net, ResU-Net, SBConvResU-Net,
BruResU-Net, and SruResU-Net, all applied to the identical dataset. Notably, the training
of these models was executed without the aid of any pre-trained models, ensuring an
unbiased learning process. The implementation of these experiments was carried out using
the PyTorch framework, a popular choice for its flexibility and efficiency in deep learning
tasks. The hardware setup for these experiments included a personal computer equipped
with an Intel 12400F CPU and an NVIDIA GeForce RTX 4060Ti GPU, supported by 16 GB
of memory.
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3.2. Experimental Results

As detailed in Table 1, our study highlights the superior performance of the proposed
network in landslide detection, as evidenced by quantitative comparisons. Specifically, the
SBConvU-Net, our proposed model, demonstrated noteworthy performance in terms of
recall and F1 scores, achieving 75.74% and 70.89%, respectively. In the task of landslide
detection or landslide susceptibility mapping, the model’s ability to identify landslides (the
positive class) is of paramount importance [16]. Therefore, a higher recall and a compara-
tively high F1 score significantly indicate the practicality and efficacy of the model. This
is particularly significant when contrasted with other models used for comparison; for in-
stance, the ResU-Net produced the lowest recall and F1 scores among all models evaluated.

Table 1. Comparison results of different models for landsilde detection.

Model Precision Recall F1 Mean F1 OA

U-Net 85.47 60.59 70.91 85.16 98.85
SruU-Net 81.57 64.89 72.28 85.85 98.85
BruU-Net 73.75 68.35 70.95 85.14 98.7

SBConvU-Net 72.13 75.74 73.89 86.63 98.76
ResU-Net 85.85 54.75 66.86 83.11 98.74

SruResU-Net 83.75 58.89 69.16 84.27 98.78
BruResU-Net 80.69 59.24 68.32 83.84 98.73

SBConvResU-Net 76.82 70.98 73.78 86.59 98.83

Notably, while the SBConvU-Net secured the highest F1 score, it did record a relatively
modest precision score of 72.13%. This is acceptable in the context of landslide extraction,
where sample imbalance is a common challenge. A higher recall and F1 score are desirable
attributes in models for this application, as they indicate a stronger capability to correctly
identify a greater number of landslide pixels compared to non-landslide pixels. Further
analysis of the performance across different network architectures—U-Net, SruU-Net,
BruU-Net, and SBConvU-Net—reveals that the integration of the BRU and SRU modules
can enhance the U-Net model’s effectiveness. Of particular note is the Mixed module, which
exhibited the most robust capability for landslide extraction. This finding emphasizes the
value of incorporating these modules into the U-Net framework to achieve improved
performance in landslide detection tasks.

3.3. Prediction with Different Models

To further evaluate the effectiveness of the proposed method, this study randomly
selected 5 image samples and conducted ablation experiments. We calculated the results of
using U-Net (ResU-Net) alone, U-Net with the added SRU module (SruU-Net or SruResU-
Net), U-Net with the added BRU module (BruU-Net or BruResU-Net), and U-Net with
both the SRU and BRU modules added (SBConvU-Net or SBConvResU-Net). Figure 7
intuitively illustrates the landslide detection results achieved by each method. In the
figure, the first column displays the true-color remote sensing images, the second column
shows the Ground Truth provided by the dataset used in the experiment, and the third to
tenth columns show the prediction results of different methods, with blue representing
the Ground Truth and red indicating the landslide areas predicted by the model. By
observing the first row as an illustrative example, we can notice significant differences
in the detection capabilities of various models. Traditional models like U-Net and ResU-
Net rely on more conventional convolutional neural network architectures, thus can only
detect relatively small landslide areas. This limitation can be attributed to their standard
feature extraction mechanism, which may not capture the subtle differences often present
in complex geographical terrains.

In contrast, models incorporating Spatial Refinement Units (SRU) or Band Refinement
Units (BRU), whether integrated into the U-Net or ResU-Net framework, demonstrate
significantly enhanced capabilities, capable of identifying larger and more subtle landslide
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areas affected by spatial influences. This improvement indicates the advanced feature
aggregation and analysis capabilities endowed by SRU and BRU modules, enabling the
models to discern finer details and variations in the landscape, thus more accurately
identifying landslides. Among all evaluated models, SBConvU-Net and SBConvResU-Net
stand out for their outstanding performance. These models equipped with SRU and BRU
enhancement functionalities showcase the ability to detect the widest and most detailed
landslide areas.

Figure 7. Visualization comparison of prediction results of various models. Red represents the
predicted landslide area, and blue represents the label data (ground truth) provided by the dataset.

4. Discussion

The rapid development of deep learning technologies has spurred growth in the field
of computer vision. Architectures such as CNN, RNN, LSTM, U-Net, and ResNet have been
widely applied to various tasks including image classification, recognition, and semantic
segmentation. Remote sensing images, characterized by multiple bands, spatiotemporal
resolutions, and sensors, have also benefited from advancements in computer vision and
deep learning.

U-Net, a convolutional neural network (CNN) based fully convolutional network, is
particularly effective for image segmentation tasks due to its encoder-decoder structure
and skip connections. It excels in extracting features and identifying targets in remote
sensing images [40]. ResNet addresses the vanishing gradient problem in deep networks
by introducing residual connections, allowing for the effective training of deeper networks.
This makes it highly effective for classifying various land cover types in remote sensing
images, such as urban areas, forests, and agricultural fields [49]. CNNs, as the foundational
architecture of deep learning, are widely applied in remote sensing image processing
tasks, showing exceptional performance in image classification, object detection, and scene
recognition due to their layered convolution and pooling design [50]. RNNs and LSTMs,
known for their prowess in handling sequential data, are crucial in spatiotemporal data
analysis in remote sensing. They are applied in tasks such as environmental monitoring,
climate prediction, and disaster assessment [51].

In conclusion, deep learning technologies have significantly advanced the processing
of remote sensing images. The successful application of various neural network archi-
tectures in image classification, segmentation, and semantic recognition has enhanced
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the capabilities for processing and analyzing remote sensing data, providing robust tech-
nical support for fields such as environmental monitoring, resource management, and
disaster assessment.

This study presents the integration of the Spatial and Band Refinement Convolution
(SBConv) module into the U-Net architecture, enhancing landslide detection capabilities
using multisource remote sensing data. Compared to existing methods, our SBConv-
embedded U-Net models demonstrate significant improvements in performance metrics
such as recall and F1 score, which are critical for accurate and reliable landslide detection.

4.1. Comparison with Existing Approaches

Recent advancements in landslide detection have primarily leveraged conventional
convolutional architectures like standard U-Net and its derivatives, which, while effective,
often fail to address the complexity and heterogeneity of multispectral remote sensing
data used in detecting landslides [14,35]. Our approach differs by incorporating the SB-
Conv module, which systematically reduces redundancy in spatial and spectral feature
processing. For instance, our SBConvU-Net model achieves a recall of 75.74% and an F1
Score of 73.89%, outperforming the base U-Net’s recall of 60.59% and F1 Score of 70.91%.
This indicates a substantial enhancement in detecting true positives, a crucial aspect often
overlooked in previous studies.

To further compare the model proposed in this study with results obtained by other
researchers using the same dataset, we present a comparison between our results and those
found in Reference [44] in Table 2.

Table 2. Quantitative Results of Different Deep Neural Networks for the Landslide Detection (%).

Model Recall Precision F1

PSPNet 52.03 61.55 56.39
ContextNet 49.29 70.77 58.11
DeepLab-v2 63.68 60.8 62.21
DeepLab-v3+ 62.11 69.91 65.78
FCN-8s 63.05 68.66 65.73
LinkNet 67.02 66.76 66.89
FRRN-A 64.4 76.57 69.96
FRRN-B 76.16 64.93 70.1
SQNet 66.69 74.2 70.24
SBConvU-Net 75.74 72.13 73.89
SBConvResU-Net 70.98 76.82 73.78

The table includes models such as PSPNet, ContextNet, various DeepLab versions,
FCN-8s, LinkNet, and FRRN types, which were employed in [44], alongside the SBConvU-
Net and SBConvResU-Net proposed in this study. These latter models demonstrate a
marked improvement in performance metrics. The SBConvU-Net and SBConvResU-Net
exhibit superior performance with F1 Scores of 73.89% and 73.78%, respectively. These
models surpass other approaches, illustrating their capability to effectively balance preci-
sion and recall within this specific application context. The enhanced performance of these
models emphasizes the potential of specialized architectures to significantly enhance both
the accuracy and reliability of landslide detection systems.

4.2. Broader Implications and Future Work

The implications of our findings extend beyond academic research into practical appli-
cations, including enhanced real-time monitoring and early warning systems for landslide-
prone areas. By improving the accuracy of landslide detection, our methodology supports
more informed decision-making in disaster management and mitigation strategies.

However, despite these advancements, our study has limitations that warrant further
research. The current SBConv module focuses predominantly on spatial and spectral data
without integrating other environmental factors like soil moisture content and terrain
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stability, which can also influence landslide occurrences. Future studies could explore in-
corporating these variables to provide a more comprehensive assessment of landslide risks.

Additionally, ongoing advancements in deep learning architectures may offer further
opportunities to enhance the SBConv module. Exploring the integration of newer neural
network architectures or advanced regularization techniques could potentially lead to even
higher performance gains.

The method proposed contributes significantly to the field of remote sensing and
landslide detection by introducing a refined convolutional approach that optimizes both
spatial and spectral feature processing. By setting a new benchmark in the performance
metrics of landslide detection models, this research paves the way for future investigations
into more sophisticated and comprehensive approaches for environmental monitoring.

5. Conclusions

Our research presents a transformative approach to landslide detection through the
innovative application of the SBConv module within the U-Net architecture. The empir-
ical evaluation of our models demonstrates not only a reduction in feature redundancy
but also a substantial improvement in detecting landslide events, as evidenced by the
performance metrics.

The strategic enhancement of spatial and spectral feature processing capabilities
has proven to be a decisive factor in improving the accuracy and reliability of landslide
detection. Our improved U-Net architecture, augmented with the SBConv module, offers a
more effective tool for environmental monitoring.

This study contributes to the body of knowledge in remote sensing technology for
landslide identification and monitoring. The proposed model’s performance indicates
a promising direction for future research in applying advanced CNN architectures to
environmental surveillance and analysis. The success of the SBConv-U-Net model in this
study encourages further exploration into the integration of specialized convolutional
modules for enhancing feature recognition in various remote sensing applications.

While our SBConv integrated U-Net model demonstrates significant advancements in
landslide detection, there are several aspects that merit further investigation: One limitation
of the current study lies in the data processing approach. Our model primarily focused on
spatial and spectral features but did not fully incorporate other critical topographic factors.
Future research should include additional variables such as slope aspect, terrain curvature,
and surface roughness. These factors could provide a more comprehensive understanding
of landslide dynamics and improve detection accuracy. Moreover, the controlling and
triggering factors of landslides require deeper exploration. While our model efficiently
identifies landslide occurrences, understanding the underlying causes and mechanisms is
essential for predictive analysis and risk management. Integrating geological, hydrological,
and climatic data could offer valuable insights into the factors that contribute to landslide
susceptibility and occurrence. Looking ahead, there is significant scope for enhancing
the model by integrating a broader range of environmental variables and exploring more
sophisticated deep learning techniques. The ongoing advancement of convolutional neural
network (CNN) architectures offers a promising avenue for crafting more sophisticated and
resilient models tailored for geospatial analysis. Such progress holds considerable potential
to enhance the effectiveness of landslide monitoring efforts.

In conclusion, our study lays the groundwork for future advancements in automated
landslide detection using deep learning approaches. By addressing the identified limita-
tions and exploring the outlined future directions, we can move towards more accurate,
reliable, and comprehensive landslide monitoring systems.
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