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Abstract: Confronted with China’s burgeoning population and finite arable land resources, the
enhancement of sustainable arable land efficiency is of paramount importance. This study, grounded
in the United Nations Sustainable Development Goals (SDGs), introduces a robust framework for
assessing sustainable arable land use. Utilizing the Sustainable Utilization of Arable Land (SUA)
indicator system, the DGA–Super-SBM model, the Malmquist–Luenberger production index, and
the TO–Fisher–OSM algorithm, we evaluated the efficiency of sustainable utilization of arable land
(ESUA) in 52 prefecture-level cities within China’s major grain-producing regions of the Yellow
and Huaihai Seas. We analyzed the cropland utilization patterns from 2010 to 2020, examining the
influence of these patterns on sustainable utilization efficiency. Our findings indicate that between
2010 and 2020, the arable land usage in these regions exhibited minimal transformation, primarily
shifting towards construction land and conversely from grassland and water systems. Notably, the
ESUA of arable land demonstrated an upward trend, characterized by pronounced spatial clustering,
enduring high efficiency in the northern regions, and a significant surge in the southern sectors.
The declining ESUA (D-ESUA) trend was general but increased in half of the cities. The change
in the center of gravity of ESUA correlated with the north–south movement of the proportion of
cultivated land area, the turn-in rate, and the turn-out rate, yet moved in the opposite direction to that
of cultivated land density and yield per unit area. Variables such as the replanting index, cropland
density, yield per unit area, and cropland turn-in rate significantly affected ESUA. These findings
offer a scientific basis and decision-making support for optimizing the utilization pattern of arable
land and achieving a rational allocation of arable land resources.

Keywords: human–land perspective; sustainable utilization of arable land resources; the main
grain-producing areas of the Yellow Huaihai; high-dimensional indicators; impact analysis; SDG

1. Introduction

Human society is dependent on arable land resources, which directly determine food
security and sustainable development [1]. Over recent decades, arable land resources world-
wide have experienced severe degradation and decline. The United Nations Food and
Agriculture Organization (FAO) estimates that between 1980 and 2018, the world’s arable
land area shrank by approximately 4% [2]. This decline can be attributed to transitional
exploitation and inefficient use of arable land resources, resulting in the deterioration of
land quality, ecological degradation, and soil infertility, which limit agricultural production
and reduce the ability of humans to address their food needs [3] and run counter to goals
such as Zero Hunger and Climate Action, as outlined in the United Nations Sustainable
Development Goals (SDGs). China is the largest developing country in the world, account-
ing for 20% of the world’s population; however, only 9% of its land is arable [4]. Protecting
China’s limited arable land has received significant attention from the Chinese government,
who have been establishing a comprehensive set of arable land protection policies and
national strategic decisions [5]. However, owing to accelerated urbanization, the expansion
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of industrial land, and need for ecological and environmental protection, some of the coun-
try’s arable land is now being used for other purposes [6]. National Bureau of Statistics data
suggest that from 2010 to 2020, China’s arable land reduced by approximately 7,533,000 ha,
which is approximately the size of the Ningxia Hui Autonomous Region; moreover, the
natural ecology around arable land has been affected by the excessive use of chemical
fertilizers, pesticides, and agricultural films, leading to low production and inefficient land
use. According to the 2020 China Ecological and Environmental Status Bulletin, 19.4% of
China’s arable land is contaminated; the cost to restore this land would be at least USD
116.3 billion [7]. These facts prompt the need to re-examine China’s cropland resource
utilization patterns and explore effective ways to improve the efficiency of sustainable
utilization of arable land (ESUA) in order to achieve the UN Sustainable Development
Goals (SDGs) such as “Zero Hunger”, “Climate Action”, and “Clean Water and Sanitation”
of the UN Sustainable Development Goals (SDGs).

Agricultural land resource utilization is a multifaceted concept that encapsulates
the complexities of land planning, distribution, usage, and management. Researchers
in this domain are tasked with not only quantifying and qualifying arable land but also
assessing the distribution and efficiency of its application. The pattern of cultivated land
use encompasses the spatial distribution, quantifiable extent, functional roles, and level
of utilization of arable land, among other nuanced characteristics [8]. In the scholarly
exploration of agricultural land utilization patterns, domestic and international scholars
have expounded extensively on the drivers of land utilization [9], the transformations in
land use patterns [10], and the responses to shifts in ecological values [11]. These studies
have augmented our comprehension of agricultural land use dynamics. Notably, the
analysis of the evolving agricultural land use pattern has been bolstered by the deployment
of remote sensing data [12] and socio-economic statistics [13] to delve into the process of
land use change [14], its efficiency [13], and its temporal and spatial attributes [15]. These
investigations span a spectrum of scales, from the macroscopic intercontinental [11] to the
micro-county level [16], offering invaluable insights into the nuances of agricultural land
use alterations. In aggregate, the academic discourse on agricultural land use changes has
largely focused on the quantity of arable land, shifts in land use patterns, and reactions
to ecological value changes, yet it has overlooked the repercussions of land use patterns
on the sustainable utilization of agricultural land within the broader context of the United
Nations Sustainable Development Goals (SDGs).

The concept of sustainable use was first introduced by the German geographer Hans
Carl von Carlowitz in his published work Sylvicultura oeconomica, where he introduced
the concept of “Nachhaltigkeit”, which states that in the use of resources, not only immedi-
ate but also long-term benefits and efficiencies need to be considered to protect the natural
environment and socio-economic sustainability. The proposal of sustainable utilization has
aroused a strong reaction at the international level. At the 1990 International Symposium
on Sustainable Utilization Systems held in New Delhi, India, the concept of sustainable
land use was put forward based on the concept of Nachhaltigkeit; at the 1993 Seminar on
Sustainable Land Use Management in the 21st Century, held in Canada, the International
FAO put forward the “Evaluation Outline of Sustainable Land Management”, which set out
criteria for the evaluation of sustainable utilization. In-depth studies on the sustainable use
of land resources have laid a research foundation and provided models on the sustainable
use of cropland, and many studies on the sustainable use of cropland have been carried
out worldwide, including those on the theoretical connotations of sustainable cropland
use [17,18] and models for sustainable cropland use [19–21]. In 1994, the State Council
of China adopted the white paper “China’s Agenda 21—Population, Environment and
Development”, and sustainable development began to involve the field of agriculture.
As a major component of agriculture, the sustainable development of arable land has
received significant attention. Many subsequent studies have focused on the establish-
ment of indicator evaluation systems and evaluation methods for sustainable use and
influencing factors, including the ecological–economic–social model, productive–safety–
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protection–economic–social acceptability model, pressure–state–response indicator system,
and driving force–pressure-state–impact–response model. There are a range of evaluation
methods of sustainable cropland use, including hierarchical analysis, the gray predic-
tion model, coefficient of variation method, multi-factor integrated evaluation method,
multiple linear regression model [22], coupled coordination model, structural equation
model [23], and ecological footprint model [24], among others. However, most existing
research methods and evaluation systems are limited to the statistics and prediction of
single system indicators of arable land resources; they cannot meet the comprehensive
and accurate evaluation of the sustainable utilization of arable (SUA) land and production
efficiency. Moreover, there is a lack of research on the grading of arable land ESUA and
the characteristics of the time-space double scale, which is not conducive to the analysis of
the SUA evaluation as well as the evolution of the spatial and temporal processes which
are even more detrimental to the estimation of the development trend of the sustainable
development of arable land.

Considering this context, the present study introduces a comprehensive evaluation
framework for the sustainable utilization of arable land, grounded in the United Nations
Sustainable Development Goals (SDGs) framework. This framework originates from the
interplay between human–land relationships and the balance of inputs and outputs. It con-
structs an SUA indicator evaluation system that is aligned with the sustainable objectives of
production inputs, whilst also encapsulating the economic, social, and ecological expecta-
tions, as well as the non-expectations, associated with arable land utilization. Furthermore,
the study establishes a sophisticated high-dimensional indicator system evaluation frame-
work that integrates the coupled dimensionally reduced genetic algorithm with the super-
efficiency SBM model (DGA–Super-SBM), the Malmquist–Luenberger production index,
and the time-sequence optimized optimal segmentation algorithm (TO–Fisher–OSM). This
framework is employed to conduct an ESUA evaluation of 52 prefecture-level cities within
the major grain-producing regions of the Yellow and Huaihai Seas (YHHRB) in China.
Analysis of the shifts in cropland utilization patterns from 2010 to 2020 is conducted, with a
keen eye on the essence of cropland utilization patterns. Four key indicators are selected to
probe the influence of cropland utilization patterns on the sustainable efficiency of cropland
utilization: variations in cropland area, shifts in cropland function, alterations in cropland
configuration, and modifications in cropland utilization efficiency. These indicators serve
to inform policy makers and provide a robust decision-making tool for the formulation of
relevant policies and the sustainable management of cropland resources.

Compared with previous studies, the novelties of this manuscript are centered on three
distinct aspects. 1⃝ Perspective Innovation. The paper introduces a novel evaluation system
for the Sustainable Utilization of Arable land (SUA), drawing upon the United Nations
Sustainable Development Goals (SDGs) system. This system is uniquely constructed from
the dual vantage points of human–land relationships and the input–output dynamics.
Such an approach is unprecedented in the extant scholarly literature, offering a fresh
perspective on the assessment of arable land sustainability. 2⃝ Methodological Innovation.
Leveraging the power of genetic algorithms to optimize a super-efficient Source-Based
Model (SBM), this study transcends the limitations of conventional SBM evaluation, which
often struggles with high-dimensional parameter spaces. This innovative methodology
enables the comprehensive evaluation and analysis of complex, high-dimensional indicator
systems. It thus facilitates a profound understanding of the status quo of arable land’s
sustainable development and promotes the efficient, intensive, and economic utilization
of regional arable land. 3⃝ Theoretical Innovation. The paper introduces the concept of
cropland utilization patterns, expanding the discourse to encompass four dimensions that
influence the ESUA of cropland: area, distribution, function, and utilization degree. This
holistic analysis provides a novel theoretical foundation for the sustainable management
of cropland resources, offering insights into how these resources can be preserved and
utilized for the benefit of future generations.
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2. Data and Methods

The comprehensive SUA evaluation system was constructed based on the structure of
the economic–social–ecological system (Figure 1). Then, the spatiotemporal evolution of
ESUA in the YHHRB was analyzed using DGA–Super-SBM and Malmquist–Luenberger
production indices. Finally, ESUA was classified and graded by using TO–Fisher–OSM.
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2.1. Conceptual Definition of Cropland Use Patterns

Arable land stands at the heart of agricultural endeavors, shaping a landscape that is
decidedly anthropogenic [25]. Subject to immediate human dominion and manipulation, it
has evolved in step with the advancement of human civilization. The conceptualization
of this vital resource has evolved through the annals of history, its definition broadening
to encompass enhanced productivity and innovative land management techniques [26].
Physically, arable land is characterized as a precious terrestrial asset that humanity has
reclaimed and put to use to satisfy the demands of life and progress, facilitated by current
technological capabilities. It is soil that is hospitable to the growth of crops, endowed with
fertility, distinct qualitative attributes, and a favorable soil structure [27].

The utilization pattern of cultivated land encompasses a nuanced and multifaceted
construct, spanning the spatial distribution, quantitative dimensions, functionalities, and
the degree of utilization of agricultural land, and is a fundamental component of the
agricultural production milieu [28]. The spatial distribution of arable land manifests the ge-
ographical positioning and extension of this vital resource, serving as a critical determinant
that influences the efficiency of arable land utilization and agricultural productivity [29].
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The extant area of arable land is intrinsically linked to the scale of food production and
the trajectory of agricultural development [30]. The functional evolution of arable land
mirrors the diversification of its applications, incorporating multifaceted roles such as food
provision, ecological conservation, and recreational tourism [31]. The level of arable land
utilization underscores the efficiency and technological sophistication of human utilization,
serving as a paramount indicator of the modernization level within agricultural produc-
tion [32]. Variations in the utilization patterns of cropland encapsulate the alterations
in the quantity, location, function, and degree of utilization of cropland across different
regions and over temporal intervals. These shifts are contingent upon a multitude of
factors, including policy orientation, market demand, technological advancements, and
environmental considerations [33]. Consequently, a thorough examination of changes in
cropland utilization patterns necessitates an intricate analysis from diverse perspectives.
Firstly, the alteration in the acreage of arable land constitutes a pivotal dimension for scruti-
nizing shifts in the utilization pattern of arable land. An upsurge or decline in arable land
acreage reflects the intensity of human engagement with land resources and the scaling
of agricultural production. Secondly, the transformation in the function of arable land
elucidates the trend toward multifunctionality and the realignment of the agricultural
industrial structure. Conversely, modifications in the layout of arable land signal the
recalibration of its spatial distribution and the differentiation of agricultural production
across regions. Lastly, modifications in the degree of arable land utilization underscore the
progression of agricultural production technologies and the enhancement of land resource
management methodologies.

2.2. Study Area

The study area was centered on the YHHRB and located between 112◦29′ E and the
eastern coastline of China and between 31◦21′ N and 40◦26′ N. This area covers 380,000 km2

across the middle and lower reaches of the Yellow, Huaihe, and Haihe river basins, in-
cluding parts of greater Beijing, Tianjin, Hebei, Lu, Henan, northern Jiangsu, and northern
Anhui, with a total of 52 prefecture-level municipalities (Figure 2). The area is flat and
fertile and covers approximately 32 million ha of arable land, accounting for ~15% of the
total arable land in China. The region is rich in water resources, with a number of rivers and
lakes providing a solid basis for agricultural production. The area has a warm temperate
monsoon climate, four distinct seasons, and average annual sunshine of 1700–2200 h. Due
to its special geographic location and the influence of seasonal and climatic factors, the
region has fewer hours of sunshine than other parts of China, resulting in a longer crop
growth cycle, with most crops maturing twice a year, and some parts of the northern part
of the country maturing three times in two years. The main crops include wheat, rice, corn,
sorghum, beans, and oilseed, of which wheat and rice are the main food crops. The region
is one of the most important food production bases in the country, and plays an important
role in the country’s economic development and food security.

We chose the YHHRB as a case study for several reasons. First, at the national
policy level, achieving food security and sustainability are important concerns, and grain
production in the YHHRB is nationally important. Second, natural conditions in the
YHHRB are unique, with abundant water resources providing excellent conditions for crop
growth. The region has a large amount of high-quality land resources, providing a rich
material basis for food production. Cultivated land production conditions are typical of
both the North China Plain region and Yangtze River Basin [34], and the study of SUA
evaluation in the region can help to provide a reference for cultivated land protection
strategies and policies in other key agricultural regions. Third, rapid urbanization in the
region has led to a rising demand for land resources. A large amount of arable land has been
utilized for production and living purposes, such as industry and urban construction [35],
which threatens food security.
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Figure 2. Location map of the project area. Note: This map is based on a standard map [review
number GS(2020)4619], retrieved from the Ministry of Natural Resources’ standard map service
website. The base map is unmodified.

2.3. Research Methods

(1) Calculation of sustainable use efficiency of arable land under high-dimensional indi-
cators using DGA–Super-SBM

Super-SBM is a nonparametric efficiency evaluation method originally proposed by
Tone [36]. The model was developed based on the traditional non-expectation SBM model
to address input and output slack and directly addresses the problems of excess inputs
and insufficient outputs in efficiency assessment. Therefore, Super-SBM is particularly
suitable for evaluating ESUA. Recently, Super-SBM has been widely used in the assessment
of agro-ecological efficiency and agricultural land use efficiency [37,38]. And in contrast to
the conventional CCR model paired with the non-expected SBM framework, the research
demonstrates that the super-efficient SBM model exhibits greater precision and trustworthi-
ness. It transcends the constraints encountered by the non-expected SBM model in terms
of the scope of its calculated outcomes, thus being able to appraise decision-making units
operating at high efficiency levels. However, given that arable land is an intricate and
multifaceted ecosystem, a multidimensional indicator system must be considered to assess
the sustainable utilization of this resource. Although the super-efficient SBM model has
significant utility in evaluating sustainability, the limitations of its modeling parameters can
introduce distortions when computing within the context of a high-dimensional indicator
system within the super-efficient SBM model. Genetic algorithm-based dimensionality
reduction involves the mapping of high-dimensional data into a lower-dimensional space.
Unlike conventional dimensionality reduction techniques, such as principal component
analysis (PCA) [39], genetic algorithms have the capacity to select a superior projection
matrix, thereby more effectively preserving the structural integrity of the original data.
Consequently, this study employs an SBM model coupled with a genetic algorithm for
dimensionality reduction to evaluate the sustainable efficiency of arable land resource use.
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The detailed calculation process of the Super-SBM model is described in the literature. In
brief, the Super-SBM model contains non-desired outputs as follows:

minρ =
1
m ∑m

i=1 s−i /xin

1+ 1
s1+s2

(∑
s1
r=1 sg

r /yg
rn+∑

s2
l=1 sb

l /yb
ln)

(1)

where ρ is the target efficiency value, s− is the amount of slack in the input schedule, sg is the
amount of slack in the desired output, and sb is the amount of slack in the undesired output.

(2) Calculation of Dynamic sustainable efficiency of cropland (D-ESUA) through the
Malmquist–Luenberger Production Index

As the technical efficiency of DGA–Super-SBM assessment is based on 1 year of data,
it is suitable for dealing with static changes in ESUA [40]. In analyzing the SUA state,
the initial state of utilization changes from period to period, and the conditions under
which the ESUA is analyzed are different in each case. For this reason, when calculating
ESUA, scholars have proposed evaluation methods that can be compared over time [41].
The dynamic Malmquist production index is based on a distance function to analyze the
efficiency changes and technical progress of decision-making units [42–44].

As the traditional Malmquist index ignores the constraints of environment and re-
sources, combined with the actual situation of the YHHRB, in this study, we adopted the
Malmquist–Luenberger production index based on the directional distance function of SBM,
which is able to analyze the dynamic change of the efficiency of cultivated land use, and to
identify how to improve the desired output and reduce pollutant emissions based on the
integrated cultivated land and external environmental factors. The Malmquist–Luenberger
production index formula is as follows:

MLt+1
t =

 1 +
→
Dt

0(x
t, yt, zt; yt,−zt)

1 +
→
Dt

0(xt+1, yt+1, zt+1; yt+1,−zt+1)

× 1 +
→
D

t+1

0 (xt, yt, zt; yt,−zt)

1 +
→

Dt+1
0 (xt+1, yt+1, zt+1; yt+1,−zt+1)


1/2

(2)

where MLt+1
t is the index of change in production,

→
Dt

0(x
t, yt, zt; yt,−zt) and

→
Dt

0(
xt+1, yt+1, zt+1; yt+1,−zt+1) are the technology in period t as the reference technology

(distance functions for decision units in periods t and t + 1), and
→

Dt+1
0 (xt, yt, zt; yt,−zt)

and
→

Dt+1
0

(
xt+1, yt+1, zt+1; yt+1,−zt+1) are the technology of period t + 1 as the reference

technology (distance function of the decision unit in period t and period t + 1).

(3) Classification of ESUAs using TO–Fisher–OSM

Fisher’s optimal partitioning method is an ordered clustering algorithm first proposed
by the British statistician Ronald Fisher in 1958; the purpose of the algorithm is to find
an optimal solution that makes the solution of each sub-problem optimal, so as to obtain
the optimal solution of the original problem. Fisher’s optimal partitioning method has
been widely applied in the field of agriculture, and is used to assess the efficiency of
agricultural production and land use, including the efficiency of agricultural resource
utilization [45], crop growth detection [46], cropland potential assessment [47], and land
quality analysis [48], among others. The traditional optimal segmentation algorithm can
only obtain a local optimal solution rather than a global optimal solution, owing to the
limitation of the local optimal solution, and is only applicable to short time-series and
small-scale data; the computation amount and time increase exponentially for long time-
series and large-scale data [49]. Therefore, in practical application, the traditional optimal
segmentation method cannot meet the hierarchical division of ESUA in the study area. The
manipulation of extensive long-term time-series data remains an underdeveloped area of
research. Nonetheless, the processing of time-series data is integral to the examination
of the sustainable dynamics of arable land. Consequently, this paper integrates Principal
Component Analysis (PCA) with Fisher’s Optimal Segmentation Method (FOSM) to create
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the TO–Fisher–OSM model, thereby enhancing its proficiency in handling time-series
data. Compared with the commonly used natural breakpoint method, it can effectively
segment the series in time and space through mathematical models and algorithms, and
can adaptively select appropriate segmentation algorithms according to the characteristics
of different series [50]. TO–Fisher–OSM can select the components that best cover the
characteristics of the original data as principal components to complete the dimensionality
reduction of the time series and serve as categorical variables, and can use as few principal
components as possible to express the variability of the data, which not only reduces
the number of categorical variables, but also better captures the correlation between the
variables so as to improve the accuracy of the model. Its principle is as follows:{

L[P(n, 2)] = min2≤j≤n D(1, j − 1) + D(j, n),
L[P(n, k)] = mink≤j≤n {L[P(n, k)] + D(j, n)} (3)

where n is the sample size, k is the number of splits, b(n, k) is the sample size split into k
classes, D(i, j) is the sum of the squares of the deviations, L(i, j) the loss function, and P(n, k)
is the minimum of L[P(n, k)], namely L[P(n, k)] = min1=i1<i2<ig<···<ik<ik+1=n+1 L[b(n, k)].

2.4. SUA Evaluation System Construction

Drawing upon the United Nations Sustainable Development Goals (SDGs) as a
framework, this paper references the National Sustainable Agricultural Development
Plan (2015~2030) and builds upon the findings of prior research [23,51]. Additionally,
considering the regional peculiarities of the YHHRB, and adhering to the principles of
systematicity, representativeness, and utility, a comprehensive evaluation system for Sus-
tainable Agricultural (SUA) has been constructed, encompassing economic, social, and
ecological dimensions. In total, 23 indicators, including film inputs, machinery inputs,
and light inputs, were selected as input indicators; six indicators (arable land value per
capita, number of employees in agriculture, forestry, animal husbandry, and fisheries, and
sewage treatment rate) were selected as desired output indicators; three indicators (carbon
emissions, surface pollution in agriculture, and the intensity of the grey-water footprint of
the plantation industry) were selected as non-desired output indicators. The accessibility
and operability of the index data were considered, and the comprehensive evaluation
system for the sustainable utilization of YHHRB cropland was finally established as shown
in Table 1.

Table 1. YHHRB comprehensive evaluation system for sustainable utilization of cultivated land.

System of Indicators Initial Indicators Secondary Indicators Tertiary Indicators Unit

SUA evaluation system

Economic inputs

Film inputs Agricultural plastic film use per
unit of GDP

t/CNY
1 million

Fertilizer inputs Fertilizer application per unit
of GDP

t/CNY
1 million

Pesticide inputs Pesticide use per unit of GDP t/CNY
1 million

Government inputs Percentage of expenditure
on agriculture %

Electricity inputs Rural electricity consumption KWh

Social inputs

Labor inputs

Size of rural population %
Ease of farming km

Cultivated land area per capita ha/per
Rotation and fallow status %

Mechanized inputs Degree of agricultural
mechanization kilowatt

Irrigation inputs Effective irrigated area Kha
Distance to water source km
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Table 1. Cont.

System of Indicators Initial Indicators Secondary Indicators Tertiary Indicators Unit

SUA evaluation system

Ecological inputs

Land inputs

Cropland fragmentation Blocks/Kha
Percentage of high-grade

arable land %

Share of arable land area %
Cropland type as a percentage %

Percentage of basic farmland area %

Resource inputs

Percentage of area graded by slope %
NDVI

Soil-water harmony m3/ha
Ratio of cropland area to forest

and grassland area

Light input Length of exposure Hour

Expected outputs

Economic benefits

Value of arable land per capita CNY/per
Disposable income per

rural household
ten thousand

CNY

Value of ecological services ten thousand
CNY

Social benefits

Coefficient of income disparity
between urban and rural areas

Production per unit area of
arable land t/ha

Ecological benefit Percentage of forest cover %
Sewage treatment rate %

Unexpected
outputs

Gaseous waste Carbon footprint mt
Solid waste Agricultural surface pollution t

Liquid waste Graywater footprint intensity
of cultivation m3/kg

2.5. Data Sources

This study used panel data from 52 prefecture-level cities in the YHHRB from 2010 to
2020. The resources used to compile panel data for the 52 prefecture-level cities from 2011
to 2021 included the China Urban Statistical Yearbook, China Regional Economic Statistical
Yearbook, Hebei Statistical Yearbook, Jiangsu Statistical Yearbook, and Third National Land
Survey databases; some missing data were supplemented by interpolation or exponential
smoothing. Owing to the different positive and negative directions and unit magnitudes
of the data for each indicator, it was necessary to standardize the original data using the
positive indicator standardization Formula (4) and negative indicator standardization
Formula (5) before performing data calculation:

bij =
aij − amin

j

amax
j − amin

j
(4)

bij =
amax

j − aij

amax
j − amin

j
(5)

where bij is the normalized value, aij is the ith value of the j metrics, and amax
j and amin

j are
the maximum and minimum values of the j indicators, respectively.
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3. Results and Analysis
3.1. Changing Patterns of Cropland Use

The utilization patterns of arable land in the YHHRB over the period from 2010 to
2020 are delineated in Table 2 and Figure 3. Scrutiny of the temporal aspect reveals that
between 2010 and 2015, the allocation of arable land exhibited minimal fluctuation, with a
staggering 96% of the arable land within the municipal jurisdiction remaining unaltered.
The prevalent outward movement of arable land was toward conversion into construction
land, whereas the principal inward movement stemmed from the transformation of grass-
land. Notably, the extent of arable land ceding from the region between 2015 and 2020 was
marginally reduced by 1.1%, registering a general trend of stability. The quantum of land
transitioning to construction purposes diminished by a significant 35.41%, whereas there
was a discernible upsurge of 15.7% in the conversion of land to shrubbery. The reversion
of grassland and forested areas to arable land collectively accounted for 71.2% of the total
area subjected to conversion. These findings suggest that throughout the trajectory of
arable land conversion, there is a palpable diminution in the expanse of non-agricultural
territories, such as construction land and shrub land, concurrent with a gradual expansion
of the agricultural landmass.

Table 2. Arable land use transfer matrix, 2010–2020.

2010–2020 Grassland Cropland Dioecious Wasteland Building
Land Woodland Wetlands Water

grassland 33,594.14 4122.92 213.50 38.78 325.30 2331.10 0.01 35.41
cropland 2838.78 1,004,189.64 1.49 2.56 24,753.50 4107.92 0.01 3351.35
dioecious 272.50 3.28 1241.82 0.00 0.02 243.19 0.00 0.00
wasteland 17.62 137.31 0.00 2507.44 1051.03 0.00 0.00 1293.35

building land 0.18 20.75 0.00 1.16 268,226.19 0.04 0.00 1333.50
woodland 15.85 3499.95 344.19 0.00 142.99 125,633.98 0.00 0.86
wetlands 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

water 5.75 3798.17 0.00 355.58 2205.81 9.77 0.00 37,635.35
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Spatially, the interconversion of arable land and other land types within the YHHRB
exhibits pronounced spatial heterogeneity (Figure 4). The primary sources of arable land
conversion in these areas are grassland, aquatic systems, and forested land. The reclamation
of grassland is particularly prevalent in the western reaches of Hebei Province, the central
and southern districts of Shandong Province, and the western portion of Henan Province,
with grassland contributing to 35.59% of the converted arable land. Aquatic systems are the
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source of 32.79% of the converted arable land, primarily located in the eastern and southern
parts of Jiangsu Province, the central region of Tianjin, and the southeastern portion of
Anhui Province. Forested land accounts for 30.21% of the converted arable land, primarily
distributed across Beijing, Henan Province, and Hebei Province. The transfer of grassland
and aquatic systems exhibits a pattern of spatial clustering, whereas the distribution of
forested land is more diffuse. Arable land is primarily acquired from construction land and
forested land, with the area of arable land transferred to construction land representing
70.61% of the total converted area, primarily occurring in Anhui Province, Hebei Province,
and the Municipality of Tianjin. The area transferred to forested land constitutes 11.72% of
the converted area, primarily found in the Municipality of Beijing, Jiangsu Province, and
Shandong Province.

Figure 4. Spatial pattern of changes in cropland use, 2010–2020.

3.2. Characterization of the Spatial and Temporal Evolution of the Efficiency of the Sustainable Use
of Arable Land
3.2.1. Model Optimization Evaluation

In this study, the Super-SBM, DGA–Super-SBM, and projection-seeking model for
evaluating high-dimensional indicators were compared in terms of model performance
by being used to evaluate the SUA land resources in a high-dimensional indicator system.
In evaluating model performances, we adopted five indicators: the silhouette coefficient,
Davies–Bouldin index, overall information retention rate, running time, and visualization
test. The silhouette coefficient measures the tightness within the cluster to which each
sample belongs and the separation from other clusters. Higher silhouette factors indicate
a better distribution of samples and a more accurate delineation of clusters. The Davies–
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Bouldin index measures the similarity between coarseness and the closeness within clusters.
A lower Davies–Bouldin index indicates a better delineation of clusters. The combined
assessment of these two metrics was used to reflect the modeling performances of the
three models. The overall information retention rate measures the amount of information
retained in the downscaled dataset relative to the original dataset, and the expectation is
that the downscaled dataset will retain sufficient information while reducing dimensionality
to maintain model accuracy and evaluative power. Running time can directly affect model
efficiency and practicality in practical applications. The calculation results of the above four
indicators are shown in Table 3. Finally, the three models were visualized and examined
by scatter plots, and the distribution and clustering of the dimensionality-reduced data
and original data were observed to determine whether the dimensionality-reduced data
could effectively express the structure of the original dataset (Figure 5). We found that
DGA–Super-SBM was the most suitable model for evaluating the SUA of land resources.

Table 3. Model performance evaluation.

Model
Norm Silhouette Factor Davies–Bouldin Index Overall Information

Retention Rate Running Time

Super-SBM 0.5779 0.4229 — 2s’26
DGA–Super-SBM 0.7604 0.3023 94.96% 0s’91
Projective tracing

algorithm 0.5816 0.4819 11.44% 3s’81
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3.2.2. Characterization of the Time Evolution of Sustainable Use Efficiency of Arable Land

In this study, based on the national strategy of sustainable development of food pro-
duction, the YHHRB was divided into seven regions according to administrative districts
(Table 4). The average value of ESUA of arable land from 2010 to 2020 was calculated on
the basis of administrative regions (Figure 6).
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Table 4. Yellow–Huai–Hai River Basin (YHHRB) regional divisions.

Administrative Divisions Province Prefecture-Level City

Northern YHHRB
Beijing
Tianjin

Hebei Shijiazhuang, Qinhuangdao, Tangshan, Langfang, Baoding, Cangzhou,
Hengshui, Xingtai, Handan

Central YHHRB
Shandong Jinan, Dezhou, Binzhou, Dongying, Zibo, Weifang, Yantai, Weihai, Liaocheng,

Qingdao, Heze, Jining, Zaozhuang, Linyi, Rizhao, Tai’an

Henan Zhengzhou, Anyang, Puyang, Hebi, Xinxiang, Jiaozuo, Luoyang, Kaifeng,
Shangqiu, Xuchang, Pingdingshan, Luohe, Zhoukou, Zhumadian

Southern YHHRB
Anhui Huabei, Bozhou, Cebu, Fuyang, Bengbu, Huainan
Jiangsu Xuzhou, Lianyungang, Suqian, Huai’an, Yancheng
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From Figure 6, from 2010 to 2020, 44.23% of cities in the YHHRB had arable land with
ESUA of >1. Among them, Beijing had the largest value (1.3727), followed by Cangzhou
City (1.1347); the lowest value is for Hebi City (0.4717). Overall, the average ESUA value
for the YHHRB from 2010 to 2020 was 0.9012, and the number of more efficient and efficient
cities increased from 15.38% in 2010 to 23.07% in 2020; the number of cities with medium
efficiency or above decreased from 67.31% in 2010 to 71.15% in 2020, indicating that the
region as a whole increased from low efficiency to medium efficiency. Figure 5 also shows
regional differences in ESUA. At the provincial level, 11.54% of cities in Hebei Province
had an ESUA of >1, 7.69% of cities in Henan Province had an ESUA of >1, 5.77% of cities
in Jiangsu Province had an ESUA of >1, 13.46% of cities in Shandong Province had an
ESUA of >1, and 1.92% of cities in Anhui Province had an ESUA of >1. Except for Beijing
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and Tianjin, the two municipalities with the highest efficiency, the ESUA of the remaining
provinces was in the order of Hebei > Jiangsu > Shandong> Henan > Anhui.

Figure 7 shows temporal changes in ESUA. ESUA for the whole YHHRB showed an
increasing and then decreasing trend, with ESUA peaking in 2016 and decreasing from
2016 to 2020. ESUA in the northern YHHRB consistently maintained a high efficiency
level during the study period, with a mean value of 1.136. The gap between ESUAs
in the central and northern regions gradually narrowed, with a mean value of 0.866; in
the southern region, ESUA had a clear upward trend, with a mean value is 0.878. The
results show that ESUA is more efficient in the northern part of the YHHRB than in the
central and southern parts. In the YHHRB, land management policies as well as high-tech
agricultural development strategies are relatively developed in the northern region, where
local governments utilize advanced high-tech agricultural applications and environmental
protection to spend more resources on improving ESUA [52]. The central region has rich
land resources and has experienced sustainable and efficient development of arable land;
however, owing to poor agricultural management, a large amount of reclaimed arable land
has had a decline in stability and quality, leading to a decline in the ESUA [14]. Although
ESUA in the southern region was lower than that in the northern and central provinces
in 2010, its favorable geographical location and land resources, coupled with a push to
develop green agriculture and increase investment in agricultural science and technology,
have allowed the ESUA to gradually improve, contributing to a steady increase in the
efficiency of cultivated land in the YHHRB in terms of sustainability.
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3.2.3. ESUA Spatial Difference Characterization

We named the evaluation efficiency of the sustainable use of arable land from low to
high as the low efficiency zone, lower efficiency zone, medium efficiency zone, higher effi-
ciency zone, and high efficiency zone, and from Figure 6, we can see that there are 30 cities,
accounting for 57.7%, in the high efficiency zone and higher efficiency zone, and 10 cities, ac-
counting for 19.23%, in the medium efficiency zone, so it can be seen that the Huanghuaihai
region as a whole is in a higher sustainable use efficiency level. From Figure 6, ESUA in the
YHHRB increases from west to east, and spatial agglomeration is obvious. The overall high
ESUA in the northeast and low ESUA in the southwest are mainly due to differences in the
(1) soil and water resources, (2) the level of agricultural science and technology, and (3) land
occupation and environmental pollution. First, the northeastern YHHRB is mostly plains,
with fertile soil, sufficient water sources, and flat terrain; in contrast, the southwestern
YHHRB is mostly mountainous and hilly, with overall poor land quality, shallow soils,
low soil fertility, and severe soil erosion, all of which restrict arable land use [53]. Second,
the northeastern region of the YHHRB, which has a more advanced economy and level
of development, has a much higher level of agricultural mechanization and agricultural
science and technology input than the southwestern region; larger government investment
in agriculture is indispensable to rapidly improving ESUA [54]. Finally, the southwestern
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region of the YHHRB suffers from poor land development and environmental pollution
caused by urban expansion and industrial development, which has greatly limited the
ESUA of local arable land. Supporting the sustainable development of arable land requires
increased land governance and environmental protection [55].

3.2.4. Dynamic Sustainable Efficiency of Cropland

Figure 8 shows changes in 2-yearly ESUA data for each province in the YHHRB from
2010 to 2020. We observed a negative overall change in D-ESUA (0.9977) over the research
period, with D-ESUA decreasing by 2.3% per year. The average sustainable efficiency of
cropland resources from 2010 to 2020 showed a fluctuating trend, indicating that SUA
in the YHHRB is still in the exploratory development stage. The number of provinces
showing a positive offset (>1) in D-ESUA during the study period accounted for 50% of the
entire YHHRB, among which Beijing and Tianjin had the highest average annual growth
rates (4.89 and 5.56%, respectively). While the other provinces did not show an offset in
efficiency, they also showed an increasing trend yearly. In summary, according to D-ESUA
analysis, the YHHRB is still in the exploratory stage in terms of sustainable development of
arable land, but it is expected to experience rapid development in the near future.
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the YHHRB.

Figure 9 shows average D-ESUA values for different regions over time. The D-ESUA of
the whole YHHRB fluctuated between 2010/2011 and 2017/2018; between 2017/2018 and
2019/2020, it decreased and then increased. D-ESUA values were highest in the southern
region from 2010/2011 to 2013/14 and in 2016/2017; they were highest in the northern
region from 2014/2015 to 2019/2020 (with the exception of 2016/17). During the study
period, D-ESUA in the northern region increased from low to high efficiency, probably
owing to local government policies on arable land protection and the rapid development of
new agricultural technologies. D-ESUA resources in the central and southern regions were
slow to improve, experiencing a fluctuating rising trend, probably because of the transition
of land cultivation due to local climate and crop maturity, which led to a decline in land
quality and affected the sustainable development efficiency of arable land.
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3.2.5. Grading of the Efficiency of the Sustainable Use of Arable Land

We used the natural breakpoint, optimal segmentation, and TO–Fisher–OSM methods
to classify the SUA of land, to explore the most suitable classification model for SUA in the
YHHRB. The natural breakpoint method is automatically generated by ArcGIS; the results
of the optimal segmentation method and TO–Fisher–OSM are shown in the following
Tables 5 and 6, respectively. According to the actual needs of arable land classification, we
set the number of classification to five.

Table 5. Grade classification based on the optimal partitioning method.

Number of Categories Error Function Optimal Segmentation Results

2 0.3788 1–15,16–54
3 0.2296 1–3, 4–15, 16–54
4 0.1329 1–3, 4–15, 16–50, 51–54
5 0.0724 1, 2–6, 7–15, 16–50, 51–54
6 0.049 1, 2–5, 6–11, 12–15, 16–50, 51–54
7 0.0278 1, 2–5, 6–11, 12–15, 16–43, 44–52, 53–54
8 0.0189 1, 2–5, 6–11, 12–15, 16–39, 40–48, 49–52, 53–54
9 0.0128 1, 2–3, 4–6, 7–11, 12–15, 16–39, 40–48, 49–52, 53–54

10 0.0095 1, 2–3, 4–6, 7–11, 12–15, 16–24, 25–41, 42–49, 50–52, 53–54

Note: The color-emphasized fonts in the table are the optimal solutions of the Optimal Segmentation and
TO-Fisher-OSM algorithms chosen by the authors.

Table 6. Grade classification based on the TO–Fisher–OSM method.

Number of Categories Error Function TO–Fisher–OSM Results

2 0.6249 1–15, 16–54
3 0.3066 1–15, 16–52, 53–54
4 0.1513 1–12, 13–23, 24–52, 53–54
5 0.0931 1–3, 4–12, 13–23, 24–52, 53–54
6 0.0552 1–3, 4–12, 13–19, 20–38, 39–52, 53–54
7 0.039 1–3, 4–12, 13–17, 18–23, 24–45, 46–52, 53–54
8 0.0293 1–3, 4–12, 13–17, 18–23, 24–36, 37–48, 49–52, 53–54
9 0.0226 1–2, 3–9, 10–12, 13–17, 18–23, 24–36, 37–48, 49–52, 53–54

10 0.0168 1–2, 3–9, 10–12, 13–15, 16–19, 20–23, 24–36, 37–48, 49–52, 53–54

Note: The color-emphasized fonts in the table are the optimal solutions of the Optimal Segmentation and
TO-Fisher-OSM algorithms chosen by the authors.

Maintaining the main statistical characteristics of data is an important principle in data
classification. There are three commonly used grading evaluation models: information en-
tropy, the Gini coefficient, and weighted total deviation grading accuracy evaluation model.
Information entropy measures a dataset’s existence, focusing on measuring information
uncertainty; the smaller the information entropy, the more reasonable the division. The Gini
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coefficient is used to extract the Gini impurity to measure the uncertainty or impurity of the
rank classification; the smaller the Gini coefficient, the more reasonable the classification.
The weighted total deviation grading accuracy model considers the consistency within and
between grades and focuses on the evaluation of the grading interval; the closer the grading
accuracy model is to 1, the better the model performance. The three evaluation models only
consider one or two factors that affect the merits of grading, and do not have universality
for all grading results; therefore, they have greater limitations in practical application.

To evaluate the grading results more comprehensively, we comprehensively consid-
ered these three evaluation models as the attributes of multi-attribute decision making, that
is, as evaluation indices for determining the reasonableness of grading based on the natural
breakpoint method, optimal segmentation method, and TO–Fisher–OSM method (Table 7,
Figure 10). There were large differences in grading among the three grading methods, with
TO–Fisher–OSM offering the best grading accuracy and reasonableness. From Figure 10,
the natural breakpoint approach provided good grading visually and a more uniform
distribution at all levels; however, the demarcation points did not completely show the
data distribution features. The optimal segmentation method emphasized data distribution
features; however, there was some data aggregation, and the data distribution at all levels
was unequal, obscuring the spatial rank inequalities in the YHHRB. TO–Fisher–OSM could
fully highlight the data distribution characteristics while maintaining the overall sense of
balance, quantity, and rank of SUA in the YHHRB. Moreover, the visualization effect was
better than that of the other methods.

Table 7. Determination of grading evaluation results.

Information Entropy Gini Coefficient Weighted Total Deviation
Grading Accuracy

Natural breakpoint method 0.6448 0.1082 0.1805
Optimal segmentation method 0.4945 0.1176 0.1829

TO–Fisher–OSM 0.3987 0.0660 0.4247
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3.3. Analysis of the Correlation between Changes in Cropland Use Patterns and Sustainable Use
Efficiency of Cropland

This investigation isolates variables from four distinct dimensions: arable land area,
arable land function, arable land configuration, and arable land utilization intensity. These
dimensions are examined to discern the repercussions of alterations in the structure of
arable land use on the efficiency of its sustainable utilization. The core indicators encompass
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1⃝ Arable Land Area Ratio, which quantifies the retention of arable land within the YHHRB
by comparing the regional arable land area to the total regional area; 2⃝ cultivated land
transfer rate, signifying the proportion of land area that transitions from alternative land use
categories to arable land; 3⃝ cropland turnover rate, indicating the proportion of land area
that converts from arable land to other land use types; 4⃝ Arable Land Shape Index, which
evaluates the degree of clustering or dispersal of arable land by assessing the deviation of
the regional arable land form from a circular or square shape of equivalent area; 5⃝ Arable
Land Density, which assesses the clustering of arable land by calculating the number of
arable land patches per unit of area; 6⃝ Yield per Unit Area, representing the productivity
of arable land, or the quantity of foodstuffs yielded per unit of arable land area; 7⃝ Arable
Land Replanting Index, reflecting the extent of arable land utilization within a given area,
computed by the ratio of the sown area of arable land to the total arable land area. Tabular
descriptive statistics for each of these indicators are provided in Table 8.

Table 8. Descriptive statistics of variables.

Targets
2010 2015 2020

Average
Value

Standard
Deviation

Average
Value

Standard
Deviation

Average
Value

Standard
Deviation

Arable Land Area Ratio 49.003 13.734 48.835 13.668 48.095 14.383
Cultivated land transfer rate 2.697 1.397 3.082 1.534 4.445 2.833

Cropland turnover rate 4.029 2.172 4.133 2.066 5.200 4.239
Arable Land Shape Index 47.397 20.822 51.002 23.116 51.246 22.509

Arable Land Density 1.925 0.840 2.176 0.865 2.102 0.777
Yield per Unit Area 7.626 1.802 7.905 2.539 8.140 2.822

Arable Land Replanting Index 1.259 0.290 1.243 0.463 1.542 0.866

Utilizing the center of gravity model along with statistical data, the coordinates of the
center of gravity for cropland use pattern and cropland sustainable use efficiency indicators
within the YHHRB between 2010 and 2020 were determined. Subsequent to this, an
analysis of the trajectory of the center of gravity was conducted, based on which the spatial–
temporal coupling relationship and associated characteristics were investigated, aiming
to furnish a theoretical foundation for subsequent research. As depicted in Figure 11, the
center of gravity for the sustainable use efficiency of arable land in the YHHRB experienced
a northeastward shift from 2010 to 2020. The center of gravity for each indicator of the
cropland use pattern exhibited the following movements: the center of gravity for the
cropland area share ratio heading northwest from 2010 to 2020; the center of gravity for
the cultivated land transfer rate heading northeast from 2010 to 2020; the center of gravity
for the cropland turnover rate initially moving eastward from 2010 to 2015, followed by
a northeastward shift from 2015 to 2020; the center of gravity for the cropland shape
index migrated northwestward during 2010–2015 and southeastward from 2015 to 2020;
the center of gravity for cropland density trended southeastward from 2010 to 2015 and
southwestward from 2015 to 2020; the center of gravity for yield per unit area shifted
southwestward from 2010 to 2015 and northwestward from 2015 to 2020; and the center of
gravity for the cropland replanting index experienced a southward and north-westward
shift from 2010 to 2015, followed by a further north-westward movement from 2015 to 2020.
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Figure 11. Migration of the center of gravity of the variables of sustainable use efficiency of arable
land and arable land use pattern.

The trajectory of the center of gravity for the sustainable use efficiency of arable land
aligns in the north–south direction with that of the arable land area share ratio, the arable
land conversion rate, and the arable land abandonment rate, while it diverges from the
direction of the arable land density and the yield per unit area in the north–south direction.
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Similarly, in the east–west direction, the center of gravity for sustainable use efficiency
is aligned with the movement of the arable land area share ratio and the arable land
abandonment rate, whereas it exhibits a different trend from the arable land density, the
yield per unit area, and the replanting index. During the period from 2010 to 2015, the
center of gravity for sustainable use efficiency and the arable land shape index moved in
the same direction in the north–south direction, whereas in the subsequent period from
2015 to 2020, they exhibited a similar movement in the east–west direction. In contrast,
the relationship between the sustainable use efficiency of arable land and the arable land
density was inverse in the north–south direction from 2010 to 2020, and they moved in the
same direction in the east–west direction from 2010 to 2015. These observations suggest
that there are certain correlations between the cultivated land transfer rate, conversion rate,
yield per unit area, and replanting index and the efficiency of sustainable arable land use.
However, the specific influence of the arable land area ratio, shape index, and density on
sustainable arable land use efficiency is not yet fully understood. To delve deeper into
the specific impacts of these variables on sustainable arable land use efficiency, further
empirical research is warranted.

3.4. Empirical Study on Analyzing the Impact of Changes in Cropland Use Patterns on the
Sustainable Use Efficiency of Cropland

In the course of assessing the stability of the selected indicators, we employed the
Augmented Dickey–Fuller (ADF) unit root test to gauge the stationarity of the efficiency
of sustainable arable land use, the proportion of arable land area, the rate of conversion
of arable land into other uses, the rate of abandonment of arable land, the shape index of
arable land, the density of arable land patches, the yield per unit area, and the replanting
index. The findings reveal that all these indicators exhibit stationary characteristics, thereby
refuting the conjecture of the presence of a unit root. To ascertain whether these indicators
are interconnected in a long-term equilibrium, we conducted the Engle–Granger cointe-
gration test. Initially, we hypothesized the absence of a cointegration relationship, but
the p-value of the test result was below the 0.05 significance level, thereby warranting the
rejection of the null hypothesis and affirming the presence of a cointegration relationship
among these indicators. Consequently, we are justified in conducting a comprehensive
analysis of these indicators using a panel data model.

Regarding the selection of a panel data model, researchers commonly confront three
primary alternatives: the pooled ordinary least squares (OLS) model, the fixed effects (FE)
model, and the random effects (RE) model. To discern the most fitting model, this study
engaged in a comparative assessment utilizing the F-test, the Breusch–Pagan (BP) test, and
the Hausman test. The outcomes disclosed p-values significantly below 0.05, affirming that
the FE model is the most suitable choice. Additionally, the study included time as a dummy
variable in the OLS regression model, and it was discerned that both the time term and
the ESUA of arable land were statistically significant, indicating that temporal dynamics
must be considered in the analysis. The regression outcomes for the fixed effects model
that omitted the time effect were not significant, hence necessitating the establishment of a
model with a time fixed effect.

Building upon the preceding analyses, we employed a time fixed effect (FE) model
to examine the repercussions of alterations in cropland use patterns on the sustainable
use efficiency of cropland. The regression analysis of the efficiency of sustainable arable
land use within the YHHRB, alongside each variable, revealed p-values for the F-statistic
values that were less than 0.05, corroborating the statistical significance of the regression
outcomes (refer to Table 9). Among the variables, the replanting index and the cropland
density demonstrated significant positive impacts on the sustainable use index of cropland,
with regression coefficients of 0.138 and 0.067, respectively. This implies that for every
incremental unit rise in the replanting index, the sustainable use efficiency of cropland
escalates by 13.8%, and for every incremental unit increase in cropland density, it increases
by 6.7%. These findings suggest that both the cropland replanting index and density have



Land 2024, 13, 863 21 of 26

been on the rise from 2010 to 2020, which collectively contribute to the rational utilization
of land resources and the enhancement of agricultural productivity, thereby bolstering
the sustainable use efficiency of cropland. In contrast, the output per unit area and the
cropland transfer rate exhibited significant negative impacts, with regression coefficients
of −0.02 and −0.01, respectively. This suggests that for every incremental unit increase
in the output per unit area, the sustainable use efficiency of cropland decreases by 2%,
and for every incremental unit rise in the cropland transfer rate, it decreases by 1%. These
outcomes indicate that the escalation in unit area production and the augmentation of
cropland transfer rates exert an intensifying pressure on land resources, thereby hindering
the advancement of cropland ESUA. Variables such as the changes in arable land area
per unit, the cultivated land transfer rate, and the shape index of arable land manifested
negative effects, albeit to a lesser extent and not statistically significant. This suggests that
the fluctuations in these metrics do not significantly influence the sustainable use efficiency
of arable land. This might be attributable to the relatively minor magnitude of their changes
or the influence of other factors, rendering their roles in improving the sustainable use
efficiency of arable land less conspicuous. Consequently, these variables are not elaborated
upon further in this study.

Table 9. Time fixed effects model regression results.

Variant Ratio t-Value Standard Error

Intercept 1.038 *** 7.444 0.139
Arable Land Area Ratio −0.003 −1.646 0.002

Cultivated land transfer rate −0.02 * −1.649 0.012
Cropland turnover rate 0.138 ** 2.394 0.058

Arable Land Shape Index −0.01 ** −2.235 0.004
Arable Land Density −0.002 −0.593 0.003
Yield per Unit Area −0.001 −1.342 0.001

Arable Land Replanting Index 0.067 *** 3.017 0.022
Note: *, ** and *** denote significant at the 10%, 5% and 1% statistical levels, respectively.

4. Discussion

Analysis of the quantitative disparities in the spatial distribution of arable land trans-
fers within the study area reveals distinct patterns. The influx of arable land into the region
is notably concentrated in the western mountainous and central hilly zones, whereas in the
plain regions, conversion of arable land to other land uses, particularly for construction,
is prevalent. This trend reflects a marked preference for “gradual encroachment to offset
ruggedness”, “territorial expansion to counteract elevation”, and “unified occupation to
nullify absence”, suggesting that human influence on arable land usage is pronounced,
especially in flat areas. Notably, in the plains, the encroachment of arable land by con-
struction expansion is particularly significant [56]. Furthermore, the shift in arable land
use demonstrates an adaptive response to topographical features and resource allocation,
with a significant portion of arable land in Anhui and Jiangsu provinces being reallocated
from water bodies. This phenomenon underscores the rapid pace of population growth
and urbanization, coupled with escalating demands for land resources. To satisfy the
needs of food production and economic advancement, some water-covered areas may be
reclaimed for agricultural use [57]. Currently, the Jiangsu provincial government is actively
promoting the policy of “converting ploughs to lakes and grasses”, signaling a heightened
emphasis on ecological environmental conservation and the implementation of measures
to curtail the overexploitation and irrational utilization of land resources [58].

During the research period, ESUA decreased in the YHHRB. This may have been
due to rapid urban development, which led to environmental pollution and agricultural
structure imbalances. This developmental mindset has led to a decline in arable land
quality and ecological and environmental crises [59]. Some studies have shown that the
overall ESUA is higher in the YHHRB compared with other regions. However, the ESUA
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trends differed among the provinces in the region (Figure 12), reflecting the different arable
land conditions and local development paths. Surprisingly, the ESUAs of Henan (Yu),
Shandong (Lu), and Jiangsu (Su), which form the major grain-producing area in the country
(‘Yulu-Suzhou’), were not high. Yulu-Suzhou is located in the Central Plains and is the
country’s main food production region; however, the quality of arable land has declined
owing to agricultural overuse and environmental pollution. Simultaneously, owing to
excessive abstraction of groundwater, the overall lack of surface water has decreased the
soil water content and fertility, leading to a decrease in grain production. In 2007, with
the release of the National Medium and Long-Term Urbanization Plan (2007–2020), the
Yulu-Suzhou region began the process of accelerated urbanization and economic/industrial
development while attracting many laborers and rapid development of secondary and
tertiary industries. This resulted in serious environmental pollution and a decline in the
quality and quantity of arable land [60].
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The cities with the highest outputs are mainly concentrated in the provinces of Yu, Lu,
and Su, which contain cities with the lowest efficiency. ESUAs are determined by desired
outputs; however, inputs and undesirable outputs are also important influencing factors.
Therefore, we considered not only the relationship between inputs and desired outputs
but also the relationship between desired and undesired outputs, and the relationship
between inputs and undesired outputs. Accordingly, we suggest two possible causes of low
ESUA: (1) more non-desired outputs than desired outputs and (2) increased non-desired
outputs due to input overload. The first results in low ESUA of arable land; for the second,
we found that economic inputs, social inputs, ecological inputs, and non-desired outputs
showed an increasing fluctuating trend in the main grain producing areas of the YHHRB
during the study period; the overall growth rate was lower than the non-desired outputs,
although the desired outputs also increased (Figure 13). Although the desired outputs
also increased, the overall growth rate was lower than the non-desired outputs. During
2019~2020, ecological inputs, social inputs, and non-desired outputs showed a decreasing
trend, while economic inputs showed an increasing trend. Therefore, the relationship
between input and output factors requires further observation in future works.
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5. Conclusions

In this scholarly endeavor, we have developed a comprehensive evaluation index sys-
tem for Sustainable Utilization of Arable Land (SUA). By integrating the Data Envelopment
Analysis–Super-SBM (DGA–Super-SBM) model, the Malmquist–Luenberger production
index, and the TO–Fisher–OSM algorithm, we have established a computational framework
capable of handling long-time-series, high-dimensional index systems. This framework was
subsequently applied to assess the Environmental Sustainable Assessments (ESUAs) for
52 prefecture-level municipalities within China’s Huanghuai-Haihai Sea grain-producing
regions. Our analysis delved into the trajectory of cropland use changes and the impact of
these variables on ESUA. The findings of our study are as follows.

Between 2010 and 2020, the utilization of arable land within the YHHRB underwent
minimal alteration, with approximately 90% of the land maintaining its agricultural status.
The predominant direction of arable land conversion was to construction purposes, with the
primary sources of such transfers being grasslands and aquatic systems. A spatial analysis
of these patterns revealed that the conversion of arable land to construction land com-
prised 70.61% of the total area transferred, principally occurring in Anhui Province, Hebei
Province, and the Municipality of Tianjin. Conversely, the reallocation of land from grass-
lands to arable land represented 35.59% of the transferred area, clustered predominantly
in the western reaches of Hebei Province, the central and southern districts of Shandong
Province, and the western portion of Henan Province. Additionally, the transformation
of arable land from water systems to agricultural use was primarily concentrated in the
eastern and southern sectors of Jiangsu Province, the central area of Tianjin Municipality,
and the southeastern portion of Anhui Province.

Between the years 2010 and 2020, the Environmental Sustainable Assessment (ESUA)
within the YHHRB exhibited a fluctuating trend, reaching its zenith in 2016. Geographically,
ESUA progressively augmented from the west to the east, manifesting distinct spatial
clustering, with a preponderance of high efficiency in the northeastern quadrant and lower
levels in the southwestern reaches. The northern regions maintained their proficiency
in ESUA, while the disparity between the central and northern regions lessened, and
there was a marked uptick in the southern areas. The Malmquist–Luenberger production
index disclosed a general decline in declining ESUA (D-ESUA), with an average annual
diminution of 2.3%. However, D-ESUA increased in half of the municipalities, suggesting a
transient enhancement in arable land utilization efficiency. The most substantial upsurge
in D-ESUA was observed in the northern regions, at 3.2%, with more modest, fluctuating
increments in the central southern parts of the country. Collectively, the sustainability of
cropland resources in the Yellow and Huaihai regions is commendable.

Utilizing the center of gravity model, it was discovered that the alterations in the
ESUA of arable land aligned with the north–south migration of the share of arable land
area, as well as the rates of arable land conversion in and out. Conversely, these changes
diverged from the movement of arable land density and the yield per unit area. In terms of
the east–west progression, the gravitation of sustainable cropland use efficiency aligned
with the rates of arable land conversion in and out, whereas it diverged from the trends
in arable land area share, yield per unit area, and the replanting index of cropland. A
time fixed effects model analysis revealed that the replanting index and cropland density
exerted significant positive influences on ESUA. Conversely, the yield per unit area and
the cropland turn-in rate demonstrated significant negative impacts. The alterations in
cropland unit area, cropland turnout rate, and cropland shape index demonstrated negative
effects, albeit minor and insignificant in statistical terms.

Under the environment of accelerating the construction of a strong agricultural country
and comprehensively realizing the revitalization of the countryside, SUA is an important
driving force to promote green modernization of agriculture and rural areas. It is important
to study the evaluation criteria and spatiotemporal evolution of SUA to clarify the direction
of sustainable development of arable land, drive the development of peripheral cities by
high-efficiency cities, and drive peripheral cities by the main food-producing areas to ulti-
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mately achieve strategic sustainable development of arable land across the whole country.
Owing to limitation of the model parameters, DGA–Super-SBM can only evaluate static
sustainable utilization index systems; however, in reality, arable land changes dynamically.
Therefore, it is necessary to identify dynamic indicators for the dynamic monitoring of
sustainable utilization. How to evaluate high-dimensional dynamic indicator systems is a
research direction for the future.
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