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Abstract: The contents of soil available phosphorus (AVP) and potassium (AVK) in karstic moun-
tainous agricultural areas have changed rapidly in recent decades. This temporal variation displays
strong spatial heterogeneity due to these areas’ complex topography and anthropogenic activities.
Socio-geographical factors can reflect the changes in the natural environment caused by human
beings, and our objective is to enhance understanding of their role in explaining the changes of AVP
and AVK. In a typical karst region (611.5 km2) with uniform soil parent material and low climatic
variability, 255 topsoil samples (138 in 2012 and 117 in 2021) were collected to quantify the temporal
AVP and AVK changes. Random forest (RF) and partial dependence plot analyses were conducted to
investigate the responses of these changes to socio-geographical factors (distance from the nearest
town center [DFT] and village density [VD]), topography, biology, and landscape pattern indexes. The
mean values of AVP (48.25 mg kg−1) and AVK (357.67 mg kg−1) in 2021 were significantly (p < 0.01)
higher than those in 2012 (28.84 mg kg−1 and 131.67 mg kg−1, respectively). Semi-variance analysis
showed strong spatial autocorrelation for AVP and AVK, ranging from 7.29% to 10.95% and 13.31%
to 10.33% from 2012 to 2021, respectively. Adding socio-geographical factors can greatly improve
the explanatory power of RF modeling for AVP and AVK changes by 19% and 27%, respectively.
DFT and VD emerged as the two most important variables affecting these changes, followed by
elevation. These three variables all demonstrated clear nonlinear threshold effects on AVP and
AVK changes. A strong accumulation of AVP and AVK was observed at DFT < 5 km and VD > 20.
The AVP changes increased dramatically when the elevation ranged between 1298 m and 1390 m,
while the AVK changes decreased rapidly when the elevation ranged between 1350 m and 1466 m.
The interaction effects of DFT and VD with elevation on these changes were also demonstrated.
Overall, this study examined the important role of socio-geographical factors and their nonlinear
threshold and interaction effects on AVP and AVK changes. The findings help unravel the complex
causes of these changes and thus contribute to the design of optimal soil phosphorus and potassium
management strategies.

Keywords: distance from the nearest town center; village density; nonlinear threshold effect;
interaction effect; random forest; partial dependence plot

1. Introduction

Phosphorus (P) and potassium (K) are crucial elements of plant nutrition, and their
deficiencies can contribute to reduced plant growth, yield, and health [1–4]. Unlike nitrogen
with an atmospheric source, terrestrial plants obtain most of their P and K only from
soils [5]. The portions of total P and K that are readily available for absorption by plant
roots are referred to as soil available P (AVP) and soil available K (AVK) [6], which are
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very limited in natural soils [3,5,7]. To prevent crop P and K deficiencies, farmers in major
agricultural countries (e.g., China) have been intensively applying chemical P/K fertilizers
over the past decades [8–10]. Despite boosting crop yields, the excessive application of
these fertilizers poses many ecological and economic concerns, such as resource wastage,
low P/K efficiency, an unbalanced composition of soil nutrients, and P leaching [3,7,11–14].
The spatiotemporal variability of AVP and AVK in agroecosystems is determined by various
environmental variables, such as natural and socio-geographical factors [1–4,7,15–17].
Therefore, understanding the dynamics of AVP and AVK and the factors influencing their
variability in agricultural systems is important to achieve optimal soil management for
crop production and environmental quality.

The effects of natural factors (e.g., topography) on soil P and K have been well docu-
mented in previous studies [1–3,7,15]. For example, elevation can influence the weathering
of bedrock and the transport and deposition of soil P and K [1,3,18]. The spatiotemporal
variability of soil P and K in agro-ecosystems can also be influenced by human beings
through intentional actions (e.g., land use type and fertilization) or incidental effects (en-
richment sources of P and K [e.g., rubbish dumps and manure piles]) [4]. However, except
for land use types and their derived variables (e.g., landscape pattern indices), other an-
thropogenic factors (e.g., fertilizer, enrichment sources) are generally difficult to investigate
and quantify [19,20]. By contrast, socio-geographical factors (e.g., distance from the near-
est town center and village/population density), which reflect the transformation of the
natural environment triggered by the productive activities of humans, can be accurately
investigated and spatialized. Previous studies have also revealed the great potential of
these factors in driving AVP and AVK variability [4,16,17,21,22]. For example, Turner and
Hiernaux [4] and Samaké [17] found higher levels of soil P and K in fields located close
to villages and attributed such findings to the large amount of agricultural inputs and
net nutrient transfers from outlying areas. Population density is also positively correlated
with soil K and P content [16,21,22]. Overall, socio-geographical factors have an important
influence on AVP and AVK, but their relative importance compared with natural factors
remains unclear. This outstanding issue might prevent an integrative understanding of the
critical drivers of soil P and K dynamics in agricultural areas.

Many scholars suggest that the relationship between natural factors and soil nutrients
(e.g., soil P) [2,23] and between socio-geographical factors and soil pollutants [24,25] may be
nonlinear or has a threshold type. However, only a few studies have verified the nonlinear
threshold effects of socio-geographical factors on soil P and K [17]. Samaké et al. [17], who
identified the potential nonlinear threshold effects of socio-geographical factors on soil P
and K, found that soil P and K in fallow plots do not significantly differ when the distance
from the village exceeds a specific threshold (500 m and 1000 m, respectively). However,
they identified these thresholds by discretizing the independent variables [17], which cannot
sufficiently reflect the sudden changes in the relationship between socio-geographical
factors and soil P and K [25]. Other studies suggest that the effect of one environmental
factor on soil P and K is often driven by another factor [1,4,20,22]. For example, after
controlling for the locational factor, the soil P content remains negatively related to the
distance to the village, although the significance of such a relationship has declined [4].
Overall, socio-geographical factors may have nonlinear threshold and interaction effects
on AVP and AVK. Exploring such potential effects may provide insights into the spatial
variation mechanisms of soil P and K.

As the largest continuous karst region in the world, the southwest China karst region
is also one of the least undeveloped areas in China [26]. To escape poverty, tobacco is
widely cropped by local farmers as an important source of income. In recent years, the
rapid accumulation of P and K in tobacco soils has been witnessed [27,28]. However, the
influence of socio-geographical factors, as important factors characterizing anthropogenic
activities, on soil P and K accumulation remains unclear. Therefore, the objectives of this
study are to (1) investigate the temporal changes in AVP and AVK; (2) determine the impact
of socio-geographical factors on these changes; and (3) explore the nonlinear threshold
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and interaction effects of socio-geographical factors on these changes. This study was
conducted in a karstic sub-region (611.5 km2) with uniform soil parent material and low
climatic variability. Especially, random forest (RF) modeling and partial dependence plot
(PDP) analysis were employed to examine the effects of socio-geographical factors on AVK
and AVK changes.

2. Materials and Methods
2.1. Study Area

The study area is located in the karst region of southwest China (109◦9′–109◦32′ E,
30◦29′–30◦49′ N), which covers an area of 611.5 km2 (Figure 1). This site has a typical
subtropical monsoon climate with a mean temperature of 18 ◦C, mean annual precipitation
of 1132 mm, mean annual total evaporation of 870.4 mm, relative humidity of 67%, and
sunlight of 1242.6 h. The topography is mountainous, with an elevation varying between
244 m and 2072 m and a slope ranging between 0◦ and 75◦. The Triassic system Daye
formation carbonate rocks cover about 95% of the study area. The population density
in the area is relatively low, at 182 person km−2, while the distribution of settlements is
scattered. Planting flue-cured tobacco (Nicotiana tabacum L.) is the main source of income
for local farmers. Tobacco fields are mainly distributed on both sides of the roads. The
growing season for tobacco lasts from May to September, and most tobacco fields are not
cropped during the other months. The amount of nitrogen fertilizer consumed in this area
reaches approximately 111.45 kg ha−1 every year, while those of P and K fertilizers are
90 kg ha−1–120 kg ha−1 and 270 kg ha−1–315 kg ha−1, respectively.
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2.2. Soil Sampling and Chemical Analysis

A total of 138 and 117 tobacco field topsoil (0 cm–20 cm) samples were collected from
the study area in 2012 and 2021, respectively, before tobacco planting and fertilization
(March). The sampling densities in 2012 and 2021 were 0.23 and 0.19 points per square
kilometer, respectively. The average sampling distance in 2012 and 2021 was 0.59 km and
0.45 km, respectively. According to a highly influential review [29], the sampling density
for studies within a spatial extent of 104 km2 is usually between 0.01 and 0.1 points per
square kilometer. According to the recent national-scale soil surveys in China (i.e., the third
national soil census), the sampling distance of the topsoil cropland samples in this area
is 1 km. Therefore, the sampling densities and average sampling distances in 2012 and
2021 fall within the commonly used ranges.

The sampling sites were selected from local unique organizational units, namely, basic
planting units (BPU). Each BPU consists of multiple neighboring tobacco fields with a total
area exceeding 8 hectares. These BPUs are randomly dispersed across the entire study
area, and our sampling activities in 2012 and 2021 encompassed all of them. Moreover,
in each BPU, at least one representative tobacco field with 600 m2 to 1000 m2 was selected
for sampling. The spatial location of these sites was recorded using a handheld GPS
receiver, and 3 to 5 subsamples were collected and well mixed to represent the AVP and
AVK information for each site. About 2 kg of the well-mixed sample was air-dried in
a laboratory and then gently crushed to pass through a nylon sieve. The AVP content
was determined via HCl-H2SO4 extraction and colorimetry, while the AVK content was
measured via ammonium acetate extraction and colorimetry [30].

2.3. Environmental Variables

Based on classical theories (i.e., Jenny’s factorial model of soil formation and Scor-
pan model) [31,32] and existing studies [1–4,17,22,25,33–36], a total of 13 environmental
variables representing topography, biology, landscape pattern, and socio-geographical
factors were used to assess the spatiotemporal variability of AVP and AVK (Table 1 and
Figure 2). All samples were obtained from the same geological formation (i.e., Triassic
system Daye formation) (Figure 1). The annual temperature of sampling sites is closely
related to altitude, and the soil samples received similar amounts of precipitation with a
coefficient of variation (CV) of 0.05%. Consequently, geological and climatic variables were
excluded from the environmental variable set.

Table 1. Environmental variables used in this study.

Type Variables Abbreviation Unit Data Source

Biology Normalized difference vegetation index NDVI unitless Google Earth Engine platform
Topography Elevation Ele m

ASTER GDEM v3

Slope Slp ◦

Aspect Asp ◦

Plane curvature PLC rad m−1

Profile curvature PRC rad m−1

Topographical wetness index TWI unitless
Landscape pattern Patch size MPS ha

Land use map, Chongqing
Provincial Department of Land

and Resources

Landscape contagion index CONTAG %
Aggregation index AI %

Landscape shape index LSI unitless

Socio-geographical
factors

Village density VD unitless Land use map and Google Earth
Pro platformDistance from the nearest town center DFT km
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The annual normalized difference vegetation index (NDVI) of Landsat-8 images
taken from 2013 to 2021 was computed from the Google Earth Engine platform using the
maximum value composite procedure [37]. In 2012, no available NDVI products from the
Landsat missions were found. Specifically, the satellites from Landsat-1 to Landsat-5 ceased
acquiring images in 2012. The Landsat-6 satellite launch failed. Landsat-7 products were
not considered due to well-known striping issues (i.e., wedge-shaped scan-to-scan gaps).
The Landsat-8 satellite had not yet been launched in 2012. The average NDVI values were
calculated at a 30 m resolution.

An elevation map (ASTER GDEM v3) with a resolution of 30 m was used in this
paper [38]. Six terrain indicators, namely, elevation (Ele), aspect (Asp), slope (Slp), plane
curvature (PLC), profile curvature (PRC), and topographical wetness index (TWI), were
calculated using SAGAGIS v7.2.0 [28].

Four classical landscape metrics, namely, mean patch size (MPS), landscape conta-
gion index (CONTAG), aggregation index (AI), and landscape shape index (LSI), were
employed to provide landscape pattern information [19,39]. A higher MPS corresponds to
a larger average area of patches in the landscape, higher CONTAG and AI correspond to
higher connectivity, and larger LSI corresponds to more complex landscape shapes [39].
The landscape metrics of each parcel were calculated at the landscape level using the
moving window method and based on the land use map with a 30 m resolution and the
FRAGSTATS 4.1 software [19,39]. The land use map, surveyed by the Chongqing Provincial
Department of Land and Resources, was not open to the public. The original data for the
land use map is a 1:10,000 vector file, but we only had access to the 30 m resolution raster
file derived from the vector file. The optimal sliding window of 840 m was determined
through extensive testing following the procedures in Liu et al. [19].

The raster maps of village density (VD) and distance from the nearest town center
(DFT) were generated using the point density and near tool of ArcGIS v10.3 [40], respec-
tively. Village vectors were derived from the land use map taken in 2016, and the town
centers were determined from the land use map and the Google Earth Pro platform.

2.4. Classical Statistics

Descriptive statistical analysis (i.e., mean, median, minimum, maximum, standard
deviation [SD], coefficient of variation [CV], and skewness) was performed to characterize
the AVP and AVK contents and environmental variables. The independent sample t-test
was applied to assess the differences in the AVP and AVK contents between the two periods
after natural log transformation. All statistical analyses were conducted in SPSS v22 [41].

2.5. Spatiotemporal Analysis of AVP and AVK

The spatial variability of AVP and AVK in 2012 and 2021 was identified through a
semi-variance analysis in GS+ 7.0 software [42]. The software automatically selects the
optimal theoretical model, as indicated by the smallest residual sum of squares (RSS) and
the largest coefficient of determination (R2), and the corresponding parameters, namely,
nugget variance (Co), sill variance (Co + C), and range. The ratio of Co and Co + C
represents the nugget effect, which is an important parameter for describing spatial auto-
correlation. Nugget effects of <25%, 25%–75%, and >75% represent strong, moderate, and
weak spatial autocorrelations, respectively [42]. Moreover, based on the basic parameters
derived from the semi-variance analysis, the raster maps of AVP and AVK in 2012 and
2021 were produced via ordinary kriging interpolation in the geostatistical analyst tools
of ArcGIS v.10.3 [40]. Using geostatistical analyst tools, the directions and ranges of the
major axis and minor axis were examined, and the anisotropy ratio (the ratio of the major
axis range to the minor axis range) was calculated. If the anisotropy ratio is greater than 1,
it means that soil properties exhibit greater spatial variability in the major axis direction,
and vice versa [43].

The maps of AVP and AVK changes were then generated by performing raster subtrac-
tion on the predictions captured in 2012 and 2021. Afterward, information on the AVP and
AVK changes was extracted from the 255 samples collected in 2 years using the extract multi
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values to points tool in ArcGIS v.10.3 [40]. The spatial clustering of AVP and AVK changes
was detected using the local indicators of spatial association (LISA) analysis developed by
Anselin [38]. The following clustering patterns were identified: (i) no significant spatial
dependence; (ii) high–high, high value in a high-value neighborhood; (iii) high–low, high
value in a low-value neighborhood; (iv) low–high, low value in a high-value neighborhood;
and (v) low–low, low value in a low-value neighborhood [28,44].

2.6. RF Modeling and Accuracy Comparison

The effects of topographical factors, landscape pattern factors, and socio-geographic
factors on AVP changes and AVK changes were analyzed and compared by RF modeling. RF
is a typical bagging ensemble learning model that combines the output of multiple decision
trees to reach a single result [45]. RF is developed based on two important ideas, namely,
the bagging method and feature randomness. In bagging, a large number of trees are built
based on bootstrap sampling of training data. All tree predictions are aggregated through
averaging, and these averages are taken as the final predictions. Feature randomness
means that only a subset of the original covariate set is considered in the tree-splitting
process. RF has two main hyperparameters, which need to be set before training. The
hyperparameter “n_estimators” (the number of trees in the forest) was set to 500 since
our repeated experiments showed that this was sufficient to obtain stable results. The
hyperparameter “max_features” (the number of maximum features provided to each tree)
was set to the default value of the square root of the total number of covariates.

Five RF models were constructed based on different combinations of environmental
variables. Model-A includes NDVI and the topographic variables; Model-B includes
NDVI, the topographic variables, and landscape patterns; Model-C includes NDVI, the
topographic variables, and socio-geographical factors; and Model-D includes all variables.
Given that the reduction in the prediction performance of Model-D for AVK and AVP
changes was due to information redundancy (Section 3.3) [46], the Boruta algorithm was
used to select the optimal combination of variables for Model-E. The Boruta algorithm is a
popular variable selection method used in machine learning, as proposed by Kursa and
Rudnicki [47]. The main steps of the Boruta algorithm are as follows: (1) enlarge the variable
database and add >5 shadow attributes to each variable; (2) perform shuffle procedures
on all attributes to remove correlations; (3) execute RF modeling based on the expanded
data and calculate Z-scores (Equation (1)) for each attribute; (4) select variables based on
Z-scores and generate a new dataset; (5) repeat the above steps until assigned criteria.

Z scores =
Mean(OOBacc − OOBacc_shu f f le)

SD(OOBacc − OOBacc_shu f f le)
(1)

where OOBacc and OOBacc_shuffle are the out-of-bag accuracy of each decision tree with and
without shuffle attributes, respectively. The mean and SD represent the mean and standard
deviation of OOBacc-OOBacc_shuffle, respectively.

A 10-times 10-fold cross-validation (100 replications) technique was used to evaluate
the five RF models. The prediction performance of these models was assessed by root mean
square error (RMSE) (Equation (2)) and R2 (Equation (3)).

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (2)

R2= 1−

n
∑

i=1
(xi − yi)

2

n
∑

i=1
(xi − ym)

2
(3)

where xi and yi represent the measured and predicted values of the i-th sample, respectively,
n is the number of soil samples, and ym is the mean prediction values. The RF model
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and Boruta algorithm were developed based on the Scikit-learn and BorutaPy libraries
embedded in Python v3.8, respectively.

2.7. Variable Importance and Partial Dependence Plot Analysis

The effects of environmental variables on AVP changes and AVK changes were re-
vealed by the nodes’ impurity decrease method [45]. In 100 repetitions of each RF model,
the mean values of the relative contribution of environmental variables to sAVP changes or
AVK changes can be identified. The contribution of the most important variable was set to
100%, and the relative importance of the other variables was scaled.

PDP analysis was performed to visualize the complex effects of environmental vari-
ables on AVP changes and AVK changes. This method can reveal the marginal effect of one
or two features on the predicted outcome of the RF model [48,49], which is accomplished
in this study by a one-way PDP analysis and a two-way PDP analysis, respectively. Con-
sidering the sample set size, all samples were used for PDP analysis. PDP analysis was
executed in Python v3.8.

3. Results
3.1. Descriptive Statistics

The AVP and AVK levels in 2012 and 2021 are shown in Table 2. The mean ± standard de-
viation of AVP in 2012 and AVP in 2021 were 28.84 ± 21.11 mg kg−1 and 48.25 ± 24.76 mg kg−1,
respectively, while their mean values were 131.67 mg kg−1 (32.12 mg kg−1–371.44 mg kg−1)
and 357.34 mg kg−1 (97.54 mg kg−1–782.79 mg kg−1). The distributions of AVP and AVK in
2012 and 2021 are positively skewed (right-skewed). According to the independent samples
t-test, the AVP and AVK contents increased significantly (p < 0.01) by 19.41 mg kg−1 and
225.67 mg kg−1 from 2012 to 2021, respectively. As indicated by their CV, the AVP and
AVK contents in these two periods exhibited high variability (CV > 35%) [50], with the
variabilities in 2021 being lower than those in 2012.

Table 2. Descriptive statistics for soil available phosphorus (AVP), soil available potassium (AVK),
and environmental variables.

Item Abbreviation Unit Minimum Maximum Median Mean SD CV (%) Skewness

AVP in 2012 AVP2012 mg kg−1 0.68 110.15 23.61 28.84 21.11 73.18 1.28
AVP in 2021 AVP2021 mg kg−1 4.70 130.40 45.15 48.25 24.76 51.32 0.79
AVK in 2012 AVK2012 mg kg−1 32.12 371.44 117.5 131.67 70.46 53.51 1.12
AVK in 2021 AVK2021 mg kg−1 97.54 782.79 332.01 357.34 155.26 43.45 0.68
Normalized
difference

vegetation index
NDVI unitless 0.35 0.80 0.66 0.65 0.07 10.74 −0.79

Elevation Ele m 1000 1667 1324 1314.11 134.06 10.20 −0.18
Slope Slp ◦ 0.00 51.28 4.75 7.55 9.72 128.78 1.87

Aspect Asp ◦ 0.01 360 145.49 169.92 107.61 63.33 0.25
Plane curvature PLC rad m−1 −7 × 10−3 5.1 × 10−3 −9 × 10−7 −2 × 10−4 1.7 × 10−3 / −0.76
Profile curvature PRC rad m−1 −1.17 × 10−2 4.7 × 10−3 −1.17 × 10−3 −1.4 × 10−3 2.2 × 10−3 / −0.99
Topographical
wetness index TWI unitless 3.65 21.97 9.57 10.20 4.41 43.20 0.66

Aggregation
index AI % 70.41 100 81.78 81.81 4.09 4.99 −0.23

Landscape
contagion index CONTAG % 0.00 57.61 25.30 25.32 9.45 37.33 0.56

Landscape
shape index LSI unitless 1.00 2.49 1.70 1.73 0.22 12.48 0.86

Patch size MPS ha 3.15 75.69 5.82 6.65 4.82 72.53 1.36
Distance the
from nearest
town center

DFT km 0.65 7.77 4.97 3.65 1.59 43.5 0.32

Village density VD unitless 4.58 228.75 25.39 29.44 21.38 72.61 6.77

Note: /: PLC and PRC have both positive and negative values, which typically means that the CVs are meaning-
less [51]. All sample points in 2012 (N = 138) and 2021 (N = 117) were used for the descriptive statistics.
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The tobacco fields in the study area were distributed at high elevations (>1000 m) and
in any slope direction and terrain curvature (concave or convex). The mean values of NDVI,
Slp, TWI, MPS, AI, CONTAG, and LSI were 0.65, 7.55◦, 10.2, 6.65 ha, 81.81%, 25.32%, and
1.73, respectively. The distances of tobacco fields from the town center ranged from 0.65 km
to 7.77 km, with an average distance of 3.65 km. The village density was 29.44 ± 21.38. The
distributions of NDVI, Ele, PLC, PRC, and AI are negatively skewed (left-skewed), while
those of the other environmental variables are positively skewed (right-skewed). NDVI,
Ele, AI, and LSI showed low variability (CV < 15%), and all other environmental variables
demonstrated strong variability with CV values ranging from 37.33% to 128.78%.

3.2. Spatio-Temporal Variability of Soil Properties

AVP2012 was optimally fitted by the spherical semi-variogram model, while AVP2021,
AVK2012, and AVK2021 were best fitted by the exponential model (Figure 3 and Table S1).
Following the classification described in Cambardella et al. [42], a strong spatial au-
tocorrelation was observed in AVP2012, AVP2021, AVK2012, and AVK2021 (nugget effect
[Co/(Co + C)] < 25%). The spatial autocorrelation ranges of AVP2021 exceeded those of
AVP2012, thereby suggesting that the spatial distribution of the former was more homoge-
neous than that of the latter [42]. Similarly, compared with AVK2021, the spatial distribution
of AVK2012 was more homogeneous. Besides, the anisotropy assessment results showed
that the directions of the major axis were northwest-southeast, and the anisotropy ratios of
AVP and AVK were all less than 1 (Table S1). This implied that AVP and AVK exhibited
stronger variations in the minor axis direction (i.e., southwest-northeast), which was con-
sistent with the topographical direction. The ranges for AVP and AVK in the two periods
were greater than or close to the sampling distance, implying that our sampling system
was adequate for detecting the spatial patterns of AVP and AVK [52–54].
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Figure 3. Semi-variogram plots of soil available phosphorus (AVP) and soil available potassium
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The optimal parameters identified in the semi-variance analysis were employed as
input parameters for ordinary kriging interpolation. The spatial distributions of AVK and
AVP differed between the two periods (Figure 4a,b,d,e). For example, the AVP content in
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the central part of the study area was higher than that in the eastern and western parts
in 2021 yet was generally similar to that in the eastern and western parts in 2012. The
spatial distribution of AVP and AVK changes (Figure 4c,f) was similar in the northern,
eastern, and western parts of the study area. The southern part exhibited high AVP changes
and low AVK changes, while the AVP and AVK changes in the eastern and western parts
predominantly displayed low–low clustering. In the southern part, a high–high clustering
of AVP changes and a slight low–low clustering of AVK changes were observed.
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3.3. Model Performance

Statistics on the prediction performance of all five models for AVP and AVK changes
are summarized in Table 3. Using only terrain variables, Model-A explained 14% and 15%
of the variance in AVP and AVK changes, respectively. Model performance was slightly
improved by the addition of landscape pattern indices and significantly improved by the
addition of socio-geographical factors. Model-D employed all variables to predict AVP
and AVK changes and obtained R2 values of 0.36 ± 0.13 and 0.40 ± 0.11 and RMSE values
of 7.34 ± 0.77 mg kg−1 and 58.91 ± 6.69 mg kg−1, respectively. Model-E obtained the
best prediction performance for AVP and AVK changes, with the highest R2 of 0.41 ± 0.14
and 0.44 ± 0.13 and the lowest RMSE of 7.11 ± 0.79 mg kg−1 and 56.89 ± 6.57 mg kg−1,
respectively. Among the 13 environmental variables, the Boruta algorithm retained 8 and
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9 covariates for AVP and AVK changes, respectively (Table S2). NDVI, DFT, VD, Ele, Slp,
PLC, and AI were retained in the prediction of AVP and AVK changes. Other variables
used for predicting AVP changes included TWI in Model-E, while those used for predicting
AVK changes included CONATG and Asp.

Table 3. Performance of all five models for AVP changes and AVK changes using random forest
models based on 100 repetitions (mean ± standard deviation).

Item Metrics Model-A Model-B Model-C Model-D Model-E

AVP changes R2 0.14 ± 0.14 0.17 ± 0.13 0.33 ± 0.16 0.36 ± 0.13 0.41 ± 0.14
(mg kg−1) RMSE 8.50 ± 0.77 8.39 ± 0.75 7.51 ± 0.86 7.34 ± 0.77 7.11 ± 0.79

AVK changes R2 0.15 ± 0.12 0.16 ± 0.10 0.42 ± 0.12 0.40 ± 0.11 0.44 ± 0.13
(mg kg−1) RMSE 71.21 ± 6.57 69.88 ± 6.64 58.01 ± 6.48 58.91 ± 6.69 56.89 ± 6.57

Note: Model-A: NDVI and topographic variables; Model-B: NDVI, topographic variables and landscape pattern;
Model-C: NDVI, topographic variables and socio-geographical factors; Model-D: included all variables; Model-E:
optimal variables obtained by the Boruta algorithm. AVP: soil available phosphorus; AVK: soil available potassium.

3.4. Relative Importance of Covariates and PDP Analysis

Model-E was iterated 100 times, and the mean relative importance of the environmen-
tal variables in predicting AVP and AVK changes was recorded and presented in Figure 5.
DFT and VD were ranked as the top two most important variables, followed by elevation.
The relative importance of the other variables was relatively low, and their contribution
was generally around 25% of the most important variable.
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Note: AVP: soil available phosphorus; AVK: soil available potassium; NDVI: normalized difference
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wetness index; AI: aggregation index; CONTAG: landscape contagion index; DFT: distance from the
nearest town center; VD: village density.

3.5. Nonlinear Threshold and Interaction Effects of Key Factors

Given that the relative importance of DFT, VD, and Ele far outweighed those of other
factors, their associations with AVP and AVK changes were visualized via PDP analysis
(Figure 6). Generally, AVP and AVK changes were negatively related to DFT and positively
correlated with VD. AVP changes increased along with elevation, while AVK changes
showed a decreasing trend. All three variables exhibited non-linear threshold effects on
AVP changes and AVK changes. Specifically, the effects of DFT and VD on AVP and
AVK changes were mutated at 5 km and 20, respectively. These changes flattened when
DFT < 5 km and VD > 20, decreased rapidly when DFT > 5 km, and increased drastically
when VD ranged between 0 and 20. The AVP changes also increased dramatically when
Ele ranged between 1298 m and 1390 m, while the AVK changes decreased rapidly when
Ele ranged between 1350 m and 1466 m.
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Figure 6. Partial dependence plots of the top three environmental variables for AVP changes (a–c)
and AVK changes (d–f). The black bands along the x-axis visualize the distribution of data. Note:
AVP: soil available phosphorus; AVK: soil available potassium; DFT: distance from the nearest town
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The bivariate interaction effects of the three most important environmental variables
on AVP and AVK changes are visualized in Figure 7. Tobacco soils exhibited lower AVP and
AVK accumulation in areas with VD < 20, and in areas with DFT > 5 km and VD ranging
between 20 and 34. The effects of DFT and VD on AVP and AVK changes significantly varied
across different elevations. Specifically, the relationship between DFT and AVP changes
was roughly stable when Ele < 1298 m, while the effect of DFT on AVP changes exhibited
a large abrupt change near DFT = 5 km in the area with Ele > 1390 m (Figure 7b). When
Ele < 1466 m, the relationship between DFT and AVK changes fluctuated dramatically
around DFT = 5 km, and when Ele > 1466 m, such a relationship was roughly stable
(Figure 7e). In regions with Ele < 1390 m, the relationship between VD and AVP changes
fluctuated dramatically when VD ranged between 20 and 33, but when Ele > 1390 m, such
a relationship abruptly changed near VD = 20 (Figure 7c). At any altitude, the relationship
between VD and AVK changes fluctuated at VD = 20, and this fluctuation was stronger at
altitudes less than 1466 m (Figure 7f).
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4. Discussion
4.1. Temporal Changes of AVP and AVK from 2012 to 2021

From 2012 to 2021, the AVP and AVK contents in tobacco fields increased significantly
(p < 0.01) by 67.3% and 171.39%, respectively (Table 2), which were much higher than
those in Chinese arable land. Specifically, the AVK content of China’s arable land increased
by 15.1% between 1988–2007 and 2008–2018 [55]. Such a rapid increase in AVP and AVK
content was inextricably linked to long-term heavy fertilization [27,28]. Given that tobacco
is a high-value crop, farmers tend to apply higher amounts of chemical fertilizers in tobacco
production than in staple crop production [27,28,55]. For example, the annual application
of chemical K fertilizers for tobacco production is 2.16 to 2.52 times the average level
used in Chinese farmland [55]. Moreover, the AVP and AVK contents in 2021 reached
48.25 mg kg−1 and 357.34 mg kg−1, respectively, which far exceeded the average values
for Chinese farmland (27 mg kg−1 and 139 mg kg−1, respectively) [55,56]. Overall, the
growth rates and current levels of AVP and AVK in tobacco fields were extremely high,
which might pose numerous risks for tobacco production and the ecosystem, including low
P/K use efficiency, resource wastage, and P leaching [11,12].

4.2. Effect of Socio-Geographical Factors on AVP Changes and AVK Changes

The addition of VD and DFT to the RF models greatly improved the prediction of AVP
and AVK changes (Table 3). Moreover, VD and DFT obtained higher relative importance
than the other factors in the optimal model (Figure 5). These findings underscore the
importance of socio-geographical factors in controlling the variation in AVP and AVK
changes. The socio-geographical factors can reflect potential human impacts on soil P
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and K [4,17,21,22,57]. Turner and Hiernaux [4] found that the distance to the nearest village
exerts a greater influence on soil fertility parameters (e.g., soil P and K) than landscape
position and soil physical properties. Similarly, Samaké et al. [17] revealed the close
relationship of AVP and AVK contents with distance from villages in Sahel, Mali. The
accumulation of P in soils in the European Union is closely related to the intensity of the
livestock industry [57]. Road density and population density exert a greater direct influence
on AVK content than topography and annual precipitation [21,22].

Humans always input P and K into agricultural soil through intentional actions
(e.g., fertilizer application) and incidental behaviors (e.g., migration and deposition of
chemical elements from enrichment sources controlled by precipitation and wind) [4]. In ar-
eas with larger VD and smaller DFT, such intentional actions are frequently observed, and
the enrichment sources of P/K (e.g., rural livestock manure and domestic waste) are more
abundant [4,17,21,22,58], thus explaining the negative and positive correlations of AVP and
AVK changes with DFT (Figure 6a,d) and VD (Figure 6b,f), respectively. Similar findings
have been reported in previous studies [4,17,21,22,59]. For example, Samaké et al. [17]
revealed higher levels of soil P and K in fields located closer to villages and attributed
this finding to unknown quantities of household waste and organic manure. Turner and
Hiernaux [4] suggested that those fields located closer to villages are more likely to receive
more agricultural inputs and net nutrient transfers from outlying areas. Chi et al. [60]
reported a negative correlation between distance-related factors (e.g., distance from the
mainland) and soil P/K, which might be due to the fact that in uninhabited islands, human
impacts on soils are predominantly destructive instead of replenishing, unlike in intensively
agricultural areas [4,17]. P and K elements from enrichment sources are also susceptible
to transport and deposition to soils via precipitation and surface runoff [14], given that
fields are typically located in sink areas, such as the foot of slopes or roadsides (Figure S1).
Soils in areas located near town centers and in areas with high village density are also rich
in black carbon, whose soil particle surface area is three times larger than that of normal
soil, thereby reflecting its strong adsorption capacity to reduce the leaching loss of soil P
and K [16,21].

In contrast to the linear response reported in previous studies [4,21,22], socio-
geographical factors exerted nonlinear threshold effects on AVP and AVK changes in
this study (Figure 6). The thresholds for the abrupt shift in the effect of DFT and VD
on AVP and AVK changes were 5 km and 20, respectively. The AVP and AVK changes
were flattened when DFT < 5 km and VD > 20, decreased rapidly when DFT > 5 km, and
increased drastically when VD > 20. In other words, soil P and K accumulated more rapidly
at locations near the town center (DFT < 5 km) and in areas with high village density
(VD > 20). Fertilizer shops are mainly concentrated in towns. When tobacco fields are
located too far from towns, the willingness of tobacco farmers to buy fertilizers may rapidly
diminish due to the high transport costs and limited availability of transportation vehi-
cles [58,61,62]. Tan et al. [62] found that manure from livestock farms is mainly exported to
crop farms within a 5 km distance. Moreover, when the village density exceeds a certain
threshold, the P and K from anthropogenic activities may exceed the loading capacity of
the soil and thus lead to more drastic increases in AVP and AVK contents.

4.3. Influence of Other Environmental Variables

Elevation was ranked as the third most important topographic factor (Figure 5), whose
influence on soil P and K variations has been well documented in the literature [1–3,34–36].
Elevation can control the (re)distribution of runoff and energy across landforms and there-
fore could explain the spatial variability in AVP and AVK changes [1,3]. Elevation positively
affected AVP changes yet negatively controlled AVK changes (Figure 6). Previous stud-
ies have also reported the positive and negative effects of elevation on soil P (positively:
He et al. [18]; negatively: Cheng et al. [35]; Nimalka Sanjeewani et al. [15]; Wang et al. [36])
and K (positively: Li et al. [1]; Nimalka Sanjeewani et al. [15]; negatively: Blanchet et al. [3];
Wang et al. [3]; Winzeler et al. [34]). The increase in soil K and P along with elevation is
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generally due to the enhanced weathering of bedrock [1,18] or decreased microbial activ-
ity [15]. The negative correlation of soil P and K with elevation is generally attributed to
fine fractions (containing high P/K content) or surface-applied fertilizers, which are easily
washed away to lower elevations by precipitation and surface runoff [34,36]. The final
driving direction of elevation and soil P/K may depend on which force predominates in the
study area. As the most popular topographic variable, elevation has been widely reported
for its nonlinear threshold effects on soil properties [2,63], and similar observations were
made in this study.

The index of landscape aggregation/connectivity (e.g., CONTAG and AI) was more
important than the shape (e.g., LSI) and area factors (e.g., MPS) (Table S2). These findings
are consistent with those of previous studies focusing on the Iranian plateau [33] and the
northeastern plain of China [19], respectively. A connected landscape is conducive to the
movement of materials across the region [25]. DFT and VD played a more important role
in controlling the accumulation of soil P and K than topography and NDVI (Figure 5),
thus supporting previous findings [4,21,22]. Moreover, AI contributed more than any
other natural factor except for elevation (Figure 5). These results altogether show that the
anthropogenic impacts on soil nutrients (e.g., P and K) in agricultural soils tend to be more
profound than the impacts of natural factors [20,64,65].

4.4. Interaction Effects of the Three Most Important Environmental Variables

The relationship among DFT, VD, and AVP and AVK changes varied across different
elevations (Figure 7). The interaction effects of natural (e.g., elevation) and other factors
on soil P and K were confirmed in previous studies [1,20,22]. For example, topographic
factors have significant effects on soil K, and these effects are enhanced by climate and soil
properties [1]. Turner and Hiernaux [4] and Wang et al. [22] revealed the interaction effect
of socio-geographical factors on soil P and K. The negative correlation between soil P and
distance to villages diminishes when locational factors are controlled [4]. Population and
road densities can affect AVK and K balance through complex interactions [22]. Despite
the preliminary evidence showing the interaction of socio-economic factors on soil P and
K, to our knowledge, the variation in these interactions across different environments has
been rarely quantified. Apart from revealing the interaction effects of socio-geographical
factors and elevation on AVP and AVK changes, this study is also the first to quantify
the differences in these interactions across different altitudes (Figure 7). These interaction
effects should be considered to understand the underlying processes leading to AVP and
AVK changes in karst regions and to reveal the spatial variability in these changes.

4.5. Implications and Limitations

The tobacco soils across the study area generally have high P/K fertility levels and
increased magnitude (Table 2). The AVP content in 2021 far exceeded the agronomic
soil P threshold (17.3 mg kg−1) and slightly exceeded the environmental soil P threshold
(40.1 mg kg−1) for Chinese soils [13,66]. Excessive soil P can severely inhibit the biologi-
cal ability of crops to efficiently absorb and utilize P [66] and thus exacerbate the risk of
non-point-source pollution [14]. Although excessive soil K does not imply an environ-
mental problem, high surpluses of K may lead to an unbalanced composition of nutrients
(e.g., low magnesium) in soils [3]. Overall, large surpluses of P and K in soils are harmful
to tobacco production and the environment. Given that P and K resources are very limited
in China [5], local agricultural departments should strengthen soil P and K management,
especially in areas located near town centers (DFT < 5 km) and with high village density
(VD > 20). According to the PDP analyses (Figure 6), soil P and K were highly susceptible
to accumulation in these areas.

The Chinese government launched the third national soil census in 2022 [67], one
important task of which was to accurately map soil properties. Improving the accuracy
of digital mapping has been an important challenge in areas with complex terrain, such
as karst [68,69]. Socio-geographical factors can improve the RF modeling accuracy for soil



Land 2024, 13, 882 16 of 19

P and K (Table 3) and show a higher relative importance than the other factors (Figure 5).
Therefore, socio-geographical factors can be useful indicators for improving the accuracy
of soil property mapping.

This study focused on the effects of topography, socio-geographical factors, and land-
scape pattern indices on AVP and AVK changes in tobacco fields. The optimal model
could explain 36% and 42% of the variance in AVP and AVK changes, respectively. The
unexplained variations may be attributed to the following reasons: (1) soil erosion in moun-
tainous areas can affect the accumulation of soil P and K [5], but high-precision soil erosion
products are not accessible; and (2) similar to Minasny et al. [70], the spatial distribution of
AVP and AVK in 2012 and 2021 was initially obtained by kriging interpolation, and then
the spatial subtraction method was applied to calculate the temporal changes in AVP and
AVK. However, kriging interpolation inevitably introduces uncertainty, thus influencing
the modeling of AVP and AVK changes.

5. Conclusions

This study was conducted in a typical karstic mountainous agricultural region with
a uniform geological type and low climatic variability. Results highlighted the temporal
changes of AVP and AVK in tobacco fields, revealed the important influence of socio-
geographical factors on these changes, and detected the nonlinear thresholds and inter-
action effects of these factors. The mean values of AVP (48.25 mg kg−1) and AVK in 2021
(357.67 mg kg−1) were significantly (p < 0.01) higher than those in 2012 (28.84 mg kg−1

and 131.67 mg kg−1, respectively). Based on the optimal RF model, the socio-geographical
factors DFT and VD were identified as the two most important factors affecting AVP and
AVK changes, followed by elevation. The results of the PDP analysis revealed that these
three socio-geographical factors affected AVP and AVK changes in a nonlinear threshold
pattern. AVP and AVK showed stronger accumulation from 2012 to 2021 at locations near
the town center (DFT < 5 km) and in areas with high village density (VD > 20). AVP
changes increased dramatically when Ele ranged between 1298 m and 1390 m, while AVK
changes decreased rapidly when Ele ranged between 1350 m and 1466 m. The interaction
effect of socio-geographical factors with elevation on AVP changes and AVK changes was
determined, indicating that the relationship among DFT, VD, and AVP and AVK changes
varied along with increasing elevation. These findings highlight the important role and
complex patterns of socio-geographical factors in controlling the spatiotemporal variations
in AVP and AVK. Therefore, these factors should be fully considered in mapping studies of
soil P and K and when making agricultural decisions about controlling P and K surpluses
in soils.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land13060882/s1, Figure S1: Realistic map of tobacco fields from
Google Earth Pro (109◦26′02′′, 30◦41′0′′) (Left) and field survey (Right). The red arrow represents the
slope direction; Table S1: Semi-variogram parameters for soil available phosphorus (AVP) and soil
available potassium (AVK) in 2012 and 2021. Table S2: Selected optimal variables for the RF model
using the Boruta algorithm.
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