Research on the Risk Spillover among the Real Economy, Real Estate Market, and Financial System: Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Intra-Sectoral Risk Spillover in the Real Economy
2.2. Spillover in the Real Economy, Real Estate Market, and Financial System
2.3. Risk Spillover Measurement Methods
3. Model Specification and Data Selection
3.1. Construction of the Real Economy Risk Spillover Model
3.1.1. Indicator Selection
3.1.2. Model Construction
3.2. Construction of the SV-TVP-VAR Model among the Real Economy, Real Estate Market, and Financial System
3.2.1. Selection of Indicators
3.2.2. Model Construction
4. Empirical Analysis
4.1. Volatility Spillover Effects in the Real Economy
4.1.1. Static Analysis of Volatility Spillover Effects among Real Economy Sectors
4.1.2. Dynamic Analysis of Volatility Spillover Effects among Real Economy Sectors
- (1)
- Overall Volatility Spillover in the Real Economy
- (2)
- Directional Volatility Spillover Among Real Industries
4.2. SV-TVP-VAR Model Empirical Results
4.2.1. Unit Root Test and Optimal Lag Length Selection
4.2.2. SV-TVP-VAR Model Empirical Results
- (1)
- Impact of Real Estate Market Shocks
- (2)
- Impact of Financial System Shocks
- (3)
- Impact of Real Economy Shocks
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, X.-L.; Zhao, M.; Wu, Z.-C.; Jia, K.-W.; Xiong, X. Research on tail risk contagion in international energy markets—The quantile time-frequency volatility spillover perspective. Energy Econ. 2023, 121, 106678. [Google Scholar] [CrossRef]
- Huang, C.-L.; Shang, Y.-F.; Liu, X.-L. Industry Characteristics, Risk Spillover of Real Economy and Financial Industry. Macroeconomics 2021, 3, 5–24+110. [Google Scholar]
- Glawe, L.; Wagner, H. China in the middle-income trap? China Econ. Rev. 2020, 60, 101264. [Google Scholar] [CrossRef]
- Yu, X.; Wang, P. Economic effects analysis of environmental regulation policy in the process of industrial structure up-grading: Evidence from Chinese provincial panel data. Sci. Total Environ. 2021, 753, 142004. [Google Scholar] [CrossRef]
- Li, Q.; Wang, S.; Song, V. Product competition, political connections, and the costs of high leverage. J. Empir. Financ. 2023, 74, 101430. [Google Scholar] [CrossRef]
- Cincinelli, P.; Pellini, E.; Urga, G. Leverage and systemic risk pro-cyclicality in the Chinese financial system. Int. Rev. Financial Anal. 2021, 78, 101895. [Google Scholar] [CrossRef]
- Umar, M.; Sun, G. Determinants of non-performing loans in Chinese banks. J. Asia Bus. Stud. 2018, 12, 273–289. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, C.; Lee, C.-C.; Tian, Y. Systemic risk of Chinese financial institutions and asset price bubbles. N. Am. J. Econ. Financ. 2023, 64, 101880. [Google Scholar] [CrossRef]
- Huang, Y.; Pagano, M.; Panizza, U. Local Crowding-Out in China. J. Financ. 2020, 75, 2855–2898. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Jiang, Y. Exploring the Dynamic Impact between the Industries in China: New Perspective Based on Pattern Causality and Time-Varying Effect. Systems 2023, 11, 318. [Google Scholar] [CrossRef]
- Kun, C.T.S. Research on the Inhibitory Influence of Housing Speculation on Enterprise Real Economy Investment. Soc. Sci. J. 2023, 5, 125–132. [Google Scholar]
- Rogoff, K.; Yang, Y. Has China’s housing production peaked? China World Econ. 2021, 29, 1–31. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, Q.; Cao, S. Real estate supports rapid development of China’s urbanization. Land Use Policy 2020, 95, 104582. [Google Scholar] [CrossRef]
- Fang, Y.; Jin, Z.B.; Ma, X. The Spillover Effect of Chinese Real Estate Marketon Banking Systemic Risk. China Econ. Q. 2021, 6, 24. [Google Scholar]
- Allen, F.; Gu, X.; Li, C.W.; Qian, J.; Qian, Y. Implicit guarantees and the rise of shadow banking: The case of trust products. J. Financial Econ. 2023, 149, 115–141. [Google Scholar] [CrossRef]
- Schwarcz, S.L. Shadow Banking, Financial Markets, and the Real Estate Sector. Rev. Bank. Fin. L. 2012, 32, 179. [Google Scholar] [CrossRef]
- Chaney, T.; Sraer, D.; Thesmar, D. The Collateral Channel: How Real Estate Shocks Affect Corporate Investment. Am. Econ. Rev. 2012, 102, 2381–2409. [Google Scholar] [CrossRef]
- Chen, T.; Liu, L.X.; Zhou, L.-A. The crowding-out effects of real estate shocks–evidence from China. Available SSRN 2584302 2015. [Google Scholar] [CrossRef]
- Cuñat, V.; Cvijanović, D.; Yuan, K. Within-Bank Spillovers of Real Estate Shocks. Rev. Corp. Financ. Stud. 2018, 7, 157–193. [Google Scholar] [CrossRef]
- O’Malley, T. The Impact of Repossession Risk on Mortgage Default. J. Financ. 2021, 76, 623–650. [Google Scholar] [CrossRef]
- Fang, Y.; He, W.; Jing, Z. A Study of Risk Spillovers between China’s Real Economy and Financial Markets. J. World Econ. 2021, 44, 3–27. [Google Scholar]
- Xiang, Y.; Borjigin, S. Downside and upside risk spillovers between financial industry and real economy based on linear and nonlinear networks. Int. Rev. Econ. Financ. 2023, 88, 1337–1374. [Google Scholar] [CrossRef]
- Juwei, Z.W.Z. China’s Virtual Economy and Calculation of the Scale of Its Added Value: From the Perspective of Sources of National Income. Soc. Sci. China 2022, 8, 20. [Google Scholar]
- Xu, S.J.; Dong, J.C.; Dong, Z.; Li, X.T. The impact of rising housing prices on investment behavior of real enterprises: An industry chain perspective. Manag. Rev. 2024, 36, 40–48. [Google Scholar] [CrossRef]
- Guo, K.; Kang, Y.; Ma, D.; Lei, L. How do climate risks impact the contagion in China’s energy market? Energy Econ. 2024, 133, 107450. [Google Scholar] [CrossRef]
- Tong, Z.; Xie, X.; Deng, M. A Study on the Social-digestion Mechanism of Banks’ Systemic Risk in China. Econ. Res. J. 2018, 53, 16. [Google Scholar]
- Zihui, Y.; Yinggang, Z. Global Systemic Financial Risk Spillovers and Their External Shocks. Soc. Sci. China 2020, 41, 24. [Google Scholar] [CrossRef]
- Gkillas, K.; Tsagkanos, A.; Vortelinos, D.I. Integration and risk contagion in financial crises: Evidence from international stock markets. J. Bus. Res. 2019, 104, 350–365. [Google Scholar] [CrossRef]
- Asgharian, H.; Nossman, M. Risk contagion among international stock markets. J. Int. Money Finance 2011, 30, 22–38. [Google Scholar] [CrossRef]
- Sun, T. Identifying Vulnerabilities in Systemically Important Financial Institutions in a Macro-Financial Linkages Framework. J. Econ. Asymmetries 2010, 7, 77–103. [Google Scholar] [CrossRef]
- Kleinow, J.; Nell, T. Determinants of systemically important banks: The case of Europe. J. Financ. Econ. Policy 2015, 7, 446–476. [Google Scholar] [CrossRef]
- Pais, A.; Stork, P.A. Contagion risk in the Australian banking and property sectors. J. Bank. Financ. 2011, 35, 681–697. [Google Scholar] [CrossRef]
- Barja, A.; Martínez, A.; Arenas, A.; Fleurquin, P.; Nin, J.; Ramasco, J.J.; Tomás, E. Assessing the risk of default propagation in interconnected sectoral financial networks. EPJ Data Sci. 2019, 8, 32. [Google Scholar] [CrossRef]
- Zhu, Z.; Luo, Q. Inter-industry risk spillover, role reversal, and economic stability. Financ. Res. Lett. 2023, 57, 104246. [Google Scholar] [CrossRef]
- Midmore, P.; Munday, M.; Roberts, A. Assessing industry linkages using regional input–output tables. Reg. Stud. 2006, 40, 329–343. [Google Scholar] [CrossRef]
- Marconi, N.; Rocha, I.L.; Magacho, G.R. Sectoral capabilities and productive structure: An input-output analysis of the key sectors of the Brazilian economy. Braz. J. Politi Econ. 2016, 36, 470–492. [Google Scholar] [CrossRef]
- Titze, M.; Brachert, M.; Kubis, A. The Identification of Regional Industrial Clusters Using Qualitative Input–Output Analysis (QIOA). Reg. Stud. 2011, 45, 89–102. [Google Scholar] [CrossRef]
- Hategan, C.-D.; Curea-Pitorac, R.-I. Testing the Correlations between Corporate Giving, Performance and Company Value. Sustainability 2017, 9, 1210. [Google Scholar] [CrossRef]
- Cao, D.; Long, W.; Yang, W. Sector indices correlation analysis in China’s stock market. Procedia Comput. Sci. 2013, 17, 1241–1249. [Google Scholar] [CrossRef]
- Kai-di, B.L.L. Research on China’s Industry Systemic Importance Evaluation and Systemic Risk Prevention. Financ. Forum 2021, 26, 60–69+80. [Google Scholar]
- Liang, Z. Research on Dynamic Characteristics and Influencing Factors of Industry Systematic Risk. J. Hebei Univ. (Philos. Soc. Sci.) 2020, 45, 108–119. [Google Scholar]
- Li, Y.; Zhang, Z.; Niu, T. Two-Way Risk Spillover of Financial and Real Sectors in the Presence of Major Public Emergencies. Sustainability 2022, 14, 12571. [Google Scholar] [CrossRef]
- Baldwin, R.; Freeman, R. The COVID concussion and supply-chain contagion waves. VoxEU. org 2020, 1. Available online: https://cepr.org/voxeu/columns/supply-chain-contagion-waves-thinking-ahead-manufacturing-contagion-and-reinfection (accessed on 20 May 2024).
- Cecchetti, S.G.; Schoenholtz, K.L. Contagion: Bank runs and COVID-19. Econ. Time COVID-19 2020, 77. Available online: https://www.moneyandbanking.com/commentary/2020/3/2/contagion-bank-runs-and-covid-19 (accessed on 20 May 2024).
- Taihui, Z.X.Z. Rethink about the Relationship between Financial System and Real Economy. Stud. Int. Financ. 2014, 3, 43–54. [Google Scholar]
- Baur, D.G. Financial contagion and the real economy. J. Bank. Financ. 2012, 36, 2680–2692. [Google Scholar] [CrossRef]
- Chiu, W.-C.; Peña, J.I.; Wang, C.-W. Industry characteristics and financial risk contagion. J. Bank. Financ. 2015, 50, 411–427. [Google Scholar] [CrossRef]
- Liu, X.; Gu, S. Research on risk spillovers from the real estate department to financial system based on AR-GARCH-CoVaR. Syst. Eng. Theory Pract. 2014, 34, 106–111. [Google Scholar]
- Sun, L.; Zhang, Y.; Li, J. Study on Systemic Risk Spillover Effect from the Real Estate Industry to Financial Institutions: Empirical Analysis from the Perspectives of Industry and Enterprises. S. China J. Econ. 2019, 38, 33–48. [Google Scholar]
- Silva, T.C.; da Silva, M.A.; Tabak, B.M. Systemic risk in financial systems: A feedback approach. J. Econ. Behav. Organ. 2017, 144, 97–120. [Google Scholar] [CrossRef]
- Brunnermeier, M.K.; Dong, G.N.; Palia, D. Banks’ noninterest income and systemic risk. Rev. Corp. Financ. Stud. 2020, 9, 229–255. [Google Scholar] [CrossRef]
- Peng, Z.; Ke, J. Spillover Effect of the Interaction between Fintech and the Real Economy Based on Tail Risk Dependent Structure Analysis. Sustainability 2022, 14, 7818. [Google Scholar] [CrossRef]
- Yongtan, Z.B.M. Industrial Characteristics, Monetary Policy and Systemic Risk—An Analysis Based on “Economic and Financial” Linkage Network. Stud. Int. Financ. 2018, 4, 22–32. [Google Scholar]
- Liang-hai, C.J.L. Risk Spillover Effect between Financial and Real Sectors via a Dynamic Generalized Delta CoVaR Approach. Syst. Eng. 2019, 37, 122–131. [Google Scholar]
- Li, Z.; Liu, Q.; Liang, Q. A Study on Forestalling China’s Systemic Risk Based on Financial Industry and Real Economy Interacted Network. Stat. Res. 2019, 36, 15. [Google Scholar]
- Huang, Q.H. On the Development of China’s Real Economy at the New Stage. China Ind. Econ. 2017, 9, 5–24. [Google Scholar]
- Meng, X.C.; Zhang, Y.S.; Li, T.Y. The Optimal Macro-prudential Policy for Effective Regulation of the Housing Market and “the Transfer of Capital from the Virtual to the Real”. China Ind. Econ. 2018, 6, 81–97. [Google Scholar]
- Yi, X.R. The transformation of the “real estate-oriented” economy and the establishment of long-term real estate mech-anisms. Explor. Free. Views 2017, 8, 108–114. [Google Scholar]
- Chan, S.; Han, G.; Zhang, W. How strong are the linkages between real estate and other sectors in China? Res. Int. Bus. Financ. 2014, 36, 52–72. [Google Scholar] [CrossRef]
- Wang, R.; Yu, B.; Huang, Y. Performance Recession, Development Cycle and Enterprise Investment Choices: Micro-evidence Based on China’s Manufacturing Industry Listed Enterprises. J. Nanjing Audit. Univ. 2019, 16, 65–73. [Google Scholar]
- Linan, Z.; Gang, Z.; Lianlei, C. Analysis of House Price Spillover Effect Based on ESDA Method and Spatial Econometric Model. J. Ind. Technol. Econ. 2017, 36, 98–106. [Google Scholar]
- Zhang, G.; Guo, K.; Wang, J.; Wang, S. The Effect of Real Estate Price on Real Estate Stock Excess Returns. Manag. Rev. 2014, 26, 8. [Google Scholar]
- Ahuja, A.; Myrvoda, A. The Spillover Effects of a Downturn in China’s Real Estate Investment. IMF Work. Pap. 2012, 12, 1. [Google Scholar] [CrossRef]
- Gan, J. Collateral, debt capacity, and corporate investment: Evidence from a natural experiment. J. Financ. Econ. 2007, 85, 709–734. [Google Scholar] [CrossRef]
- Hu, N.; Wang, X.; Sun, L.; Jin, Q. Can the Housing Purchase Restriction Policy Promote the Enterprises to “Shift from the Fictitious Economy to the Real Economy”? A Research Based on the DID Design. Nankai Bus. Rev. 2019, 22, 20–31. [Google Scholar]
- Martínez-García, E.; Grossman, V. Explosive dynamics in house prices? An exploration of financial market spillovers in housing markets around the world. J. Int. Money Financ. 2020, 101, 102103. [Google Scholar] [CrossRef]
- Abbas, G.; Bashir, U.; Wang, S.; Zebende, G.F.; Ishfaq, M. The return and volatility nexus among stock market and macroeconomic fundamentals for China. Phys. A Stat. Mech. Appl. 2019, 526, 121025. [Google Scholar] [CrossRef]
- Yaming, H.C.M. The Effect of Strong Financial Supervision on Extreme Risk Bidirectional Spillover between Financial Insti-tutions and Real Economy. Stud. Int. Financ. 2022, 9, 56–66. [Google Scholar]
- Diebold, F.X.; Yilmaz, K. Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets. Econ. J. 2009, 119, 158–171. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Korobilis, D.; Yilmaz, K. Measuring dynamic connectedness with large Bayesian VAR models. Available SSRN 3099725 2018. [Google Scholar] [CrossRef]
- Athari, S.A.; Kondoz, M.; Kirikkaleli, D. Dependency between sovereign credit ratings and economic risk: Insight from Balkan countries. J. Econ. Bus. 2021, 116, 105984. [Google Scholar] [CrossRef]
- Koop, G.; Korobilis, D. Large time-varying parameter VARs. J. Econ. 2013, 177, 185–198. [Google Scholar] [CrossRef]
- Chan, J.C.C.; Eisenstat, E. Bayesian model comparison for time-varying parameter VARs with stochastic volatility. J. Appl. Econ. 2018, 33, 509–532. [Google Scholar] [CrossRef]
- Pesaran, H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar] [CrossRef]
- Nakajima, J. Time-varying parameter VAR model with stochastic volatility: An overview of methodology and empirical ap-plications. Monet. Econ. Stud. 2011, 107–142. [Google Scholar]
- Kondoz, M.; Kirikkaleli, D.; Athari, S.A. Time-frequency dependencies of financial and economic risks in South American countries. Q. Rev. Econ. Finance 2021, 79, 170–181. [Google Scholar] [CrossRef]
- Rong, L.I.; Qian, Z.X.; Ting, S. A study on the effectiveness and interaction between China’s monetary policy and stock price based on SVAR model. Econ. Theory Bus. Manag. 2017, 3, 48–60. [Google Scholar]
- Fang, H.; Gu, Q.; Xiong, W.; Zhou, L.-A. Demystifying the Chinese Housing Boom. NBER Macroecon. Annu. 2016, 30, 105–166. [Google Scholar] [CrossRef]
- Xindong, Z. The Fluctuation of China’s Real Estate Price and the Macroeconomy: A Research Based on the SVAR Model. Econ. Rev. 2010, 1, 8. [Google Scholar]
ENER | MATE | INDU | MAINCO | OPTCO | PHAR | INFO | TELE | PUB | From | |
---|---|---|---|---|---|---|---|---|---|---|
ENER | 69.4 | 6.1 | 3.5 | 4.1 | 4.4 | 3.8 | 3.7 | 1.4 | 3.8 | 30.6 |
MATE | 3.8 | 45.6 | 15.6 | 10.5 | 5.5 | 5.4 | 8 | 1.7 | 4 | 54.4 |
INDU | 1.8 | 12.4 | 34.9 | 14.9 | 7.6 | 7.9 | 13.7 | 1.7 | 5 | 65.1 |
MAINCO | 2.4 | 8.2 | 15.3 | 37.1 | 9.4 | 10.1 | 12.4 | 1.5 | 3.6 | 62.9 |
OPTCO | 3.1 | 5.5 | 9 | 11.4 | 45.4 | 13.3 | 7.5 | 1.4 | 3.5 | 54.6 |
PHAR | 3 | 4.8 | 8.7 | 11.4 | 12.8 | 43.9 | 9.9 | 1.4 | 4 | 56.1 |
INFO | 2.3 | 6.7 | 14.8 | 13 | 6.6 | 9.3 | 40.3 | 3.5 | 3.5 | 59.7 |
TELE | 1.7 | 2.7 | 3.5 | 3.1 | 2.2 | 2.6 | 5.9 | 76.7 | 1.6 | 23.3 |
PUB | 3.5 | 5.1 | 8.5 | 5.7 | 4.6 | 5.4 | 5.4 | 1.2 | 60.5 | 39.5 |
To | 21.7 | 51.4 | 79 | 71.4 | 53.1 | 57.7 | 66.6 | 13.7 | 29 | |
Net Spillover | −8.9 | −3.1 | 13.9 | 11.2 | −1.5 | 1.6 | 6.9 | −9.6 | −10.5 | 49.6 |
Variable | T-Value | MacKinnon p-Value | Stationarity | Variable | T-Value | Mackinnon p-Value | Stationarity |
---|---|---|---|---|---|---|---|
MO | −1.8915 | 0.6563 | non-stationary | mo | −12.5197 | 0.0000 | Stationary |
RE | −2.2653 | 0.4511 | non-stationary | re | −14.8152 | 0.0000 | Stationary |
FC | −3.3135 | 0.0662 | non-stationary | fc | −11.9599 | 0.0000 | Stationary |
Lag | LogL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | −4070.27 | NA | 2.55E+09 | 30.17237 | 30.21235 | 30.18843 |
1 | −4039.474 | 60.68017 | 2.17e+09 | 30.01092 | 30.17085 | 30.07514 |
2 | −4031.858 | 14.83768 | 2.19e+09 | 30.02117 | 30.30104 | 30.13355 |
3 | −4023.416 | 16.25726 | 2.20e+09 | 30.02531 | 30.42513 | 30.18586 |
4 | −4014.444 | 17.08062 | 2.20e+09 | 30.02551 | 30.54528 | 30.23423 |
5 | −4003.995 | 19.65854 | 2.18e+09 | 30.01478 | 30.65450 | 30.27166 |
6 | −4000.494 | 6.509874 | 2.27e+09 | 30.05551 | 30.81518 | 30.36056 |
7 | −3994.578 | 10.86908 | 2.32e+09 | 30.07835 | 30.95797 | 30.43157 |
8 | −3989.886 | 8.513702 | 2.40e+09 | 30.11027 | 31.10983 | 30.51165 |
Variable | Mean | Std | 95%L | 95%U | Geweke | Invalidation Factor |
---|---|---|---|---|---|---|
sb1 | 0.0225 | 0.0026 | 0.0182 | 0.0281 | 0.334 | 15.23 |
sb2 | 0.0145 | 0.0009 | 0.0129 | 0.0164 | 0.076 | 4.62 |
sa1 | 0.0791 | 0.0319 | 0.0410 | 0.1605 | 0.059 | 116.80 |
sa2 | 0.1138 | 0.0806 | 0.0429 | 0.3438 | 0.026 | 235.21 |
sh1 | 0.5328 | 0.1200 | 0.3376 | 0.8034 | 0.030 | 94.54 |
sh2 | 0.4294 | 0.0624 | 0.3188 | 0.5640 | 0.754 | 21.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huangfu, Y.; Yu, H.; Dong, Z.; Wang, Y. Research on the Risk Spillover among the Real Economy, Real Estate Market, and Financial System: Evidence from China. Land 2024, 13, 890. https://doi.org/10.3390/land13060890
Huangfu Y, Yu H, Dong Z, Wang Y. Research on the Risk Spillover among the Real Economy, Real Estate Market, and Financial System: Evidence from China. Land. 2024; 13(6):890. https://doi.org/10.3390/land13060890
Chicago/Turabian StyleHuangfu, Yubin, Haibo Yu, Zuoji Dong, and Yingman Wang. 2024. "Research on the Risk Spillover among the Real Economy, Real Estate Market, and Financial System: Evidence from China" Land 13, no. 6: 890. https://doi.org/10.3390/land13060890
APA StyleHuangfu, Y., Yu, H., Dong, Z., & Wang, Y. (2024). Research on the Risk Spillover among the Real Economy, Real Estate Market, and Financial System: Evidence from China. Land, 13(6), 890. https://doi.org/10.3390/land13060890