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Abstract: A third of the world’s ecosystems are considered degraded, and there is an urgent need for
protection and restoration to make the planet healthier. The Sustainable Development Goals (SDGs)
target 15.3 aims at protecting and restoring the terrestrial ecosystem to achieve a land degradation-
neutral world by 2030. Land restoration through inclusive and productive growth is indispensable
to promote sustainable development by fostering climate change-resistant, poverty-alleviating, and
environmentally protective economic growth. The SDG Indicator 15.3.1 is used to measure progress
towards a land degradation-neutral world. Earth observation datasets are the primary data sources
for deriving the three sub-indicators of indicator 15.3.1. It requires selecting, querying, and processing
a substantial historical archive of data. To reduce the complexities, make the calculation user-friendly,
and adapt it to in-country applications, a module on the FAO’s SEPAL platform has been developed in
compliance with the UNCCD Good Practice Guidance (GPG v2) to derive the necessary statistics and
maps for monitoring and reporting land degradation. The module uses satellite data from Landsat,
Sentinel 2, and MODIS sensors for primary productivity assessment, along with other datasets
enabling high-resolution to large-scale assessment of land degradation. The use of an in-country land
cover transition matrix along with in-country land cover data enables a more accurate assessment of
land cover changes over time. Four different case studies from Bangladesh, Nigeria, Uruguay, and
Angola are presented to highlight the prospect and challenges of monitoring land degradation using
various datasets, including LCML-based national land cover legend and land cover data.

Keywords: remote sensing; land cover; land cover meta language; cloud computing; sustainable land
management

1. Introduction

Land degradation is defined as a process that reduces the current or potential capabil-
ity of the land to produce goods or services. It can be caused by natural or human-induced
factors, such as water erosion, salinization, compaction, waterlogging, deforestation, over-
grazing, etc. [1]. Based on estimates, 34 percent of pasture and cropland are affected by
degradation brought on by humans [2]. An estimated 24 billion metric tons of fertile soil
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is lost annually, primarily as a result of unsustainable agricultural practices [3]. About
25 percent of the total land area has been degraded due to anthropogenic causes that are
also contributing to climate change through the release of soil carbon and nitrous oxide
into the atmosphere [4]. If this trend of degradation continues, about 95 percent of the
Earth’s land areas could become degraded by 2050 [3]. According to the United Nations
Convention to Combat Desertification (UNCCD), land degradation affects about 1.5 billion
people [5]. Therefore, monitoring and assessing land degradation is essential for develop-
ing effective strategies and policies to combat further degradation and restore the already
degraded land. UNCCD introduced Land Degradation Neutrality (LDN) to combat land
degradation. It is a state in which the quantity and quality of land resources necessary to
support ecosystem functions and services remain stable or increase at a given spatial and
temporal scale [6]. So, land restoration through inclusive and productive growth promotes
sustainable development by fostering climate change-resistant, poverty-alleviating, and en-
vironmentally protective economic growth [7]. The UN Decade on Ecosystem Restoration
is another notable recent initiative that promotes restoration as a nature-based solution for
the safeguarding and restoration of ecosystems worldwide [8].

LDN is a key component of Sustainable Development Goals (SDGs) target 15.3, which
aims at protecting and restoring the terrestrial ecosystem to achieve a land degradation-
neutral world by 2030. Indicator 15.3.1 (proportion of degraded land over total land area) is
used to measure progress towards LDN. It has three sub-indicators: (i) Land productivity;
(ii) Land cover and land cover change; (iii) Carbon stocks above and below ground [9].

Earth observation and geospatial techniques offer valuable tools and data for mapping,
assessing, and monitoring land degradation [10]. Earth observation data have been widely
used to monitor land productivity dynamics at different spatial and temporal resolutions,
from local to global scales and from daily to decadal time steps [11]. Satellite data provide
timely, accurate, and reliable information on the biophysical and spectral characteristics of
the land surface, which can be used to detect and quantify different types of land degrada-
tion [12]. Various methods and approaches have been developed to analyse remote sensing
and earth observation data for detecting, quantifying, and modelling land productivity
dynamics and land cover changes [13,14]. For example, trend analysis methods can identify
the direction and magnitude of land productivity changes over time, breakpoint detection
methods can detect abrupt changes or shifts in land productivity time series, machine
learning methods can model the relationships between land productivity and its driving
factors, and forecasting methods can predict the future scenarios of land productivity under
different climate and land use conditions [15]. Biophysical variables such as vegetation in-
dices are common indicators used to monitor the trend in land productivity. It is a measure
of vegetation greenness and photosynthetic activity that has been shown to be related to
biophysical variables that control vegetation productivity and land/atmosphere fluxes [16].
On the other hand, GIS techniques enable the integration and analysis of multiple data
sources, such as remote sensing images, digital elevation models (DEMs), soil maps, climate
data, etc., to identify the causes, drivers, and impacts of land degradation [17].

However, there are still challenges in using suitable information for reporting land
degradation or restoration. The use of newly available technologies and data allows
for the preparation of information at high spatial resolution and has the potential to
combine the use of geographic information for reporting and planning land degradation
and restoration. Recently available Sentinel and Landsat satellite imageries, as well as
NICFI planet data, offer the potential to bring cost-efficient solutions for tracking and
implementing sustainable land management and land restoration in general. On the other
hand, technological progress in cloud computing, big data, and advanced algorithms
provides efficient solutions within a relatively short period of time.

The objective of the article is to present a cloud-based module on the SEPAL cloud
computing platform to prepare data and information for monitoring and reporting the
Sustainable Development Goals (SDGs) target 15.3 using different input data and methods
and to understand the opportunities and challenges of using country-specific information.
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Earth observation datasets are the primary sources of data for deriving these sub-indicators.
It requires selecting, querying, and processing a substantial historical archive of data to
derive the information for the sub-indicators. This module on the SEPAL platform has
been developed in compliance with the UNCCD Good Practice Guidance (GPG v2 [18]) to
remove the complexities in deriving all the necessary statistics and maps for reporting by
the relevant stakeholders.

2. Materials and Methods
2.1. The SEPAL Cloud Computing Platform

SEPAL is a cloud-computing-based platform for geospatial data analysis with a focus
on querying, processing, and building advanced analytic solutions using earth observation
data. It contains all the major open-source geospatial tools and libraries. The platform can
be accessed at https://sepal.io (accessed on 12 May 2024). It is an open platform anyone
can use after registering to it. It provides cloud computing facilities from small to very
large-scale analysis using the cloud infrastructure. The four important navigation buttons
are Process, Files, Terminal and Apps.

Process

The process tab provides a set of recipes to query and process satellite data for geospa-
tial analyses. With recipes, an user can access the multi-petabyte catalog of satellite imagery
from Google Earth Engine using easy-to-follow steps and a useful set of parameters and
options.

Files

Files is a simple file manager to manage the directories and files stored in the user’s
personal SEPAL storage folder. Data and information are stored in the SEPAL storage for
analysis and processing using SEPAL’s recipes, modules, and tools.

Terminal

Terminal provides access to the command-line interface from the instances of Ubuntu-
based GNU/Linux cloud computers. This command-line interface can be used in a va-
riety of ways to process and manage data using a set of open-source software, such as
Geospatial Data Abstraction Library (GDAL, version 3.8.4) [19], Orfeo ToolBox (OTB,
version 8.1.2) [20], GuidosToolbox Workbench (GWB, version 1.9.0) [21], and Open Foris
Geospatial Toolkit (OFGT, version 1.25.4) [22] etc. A large instance in terms of CPU and
RAM can be used to process big data, which is not possible in a personal computer. This
is one of the advantages of the platform that enables users to perform sophisticated data
analysis with complex hardware and software setups.

Apps

Apps provides a collection of preloaded applications for performing specific tasks. It
also includes tools like R Studio and Jupyter Notebook and Jupyter Labs for programming
and scripting. The SDG module 15.3.1 is available in this section.

2.2. Sepal 15.3.1 Module
2.2.1. Building Block

The SDG indicator module uses the Python API of Google Earth Engine [23] and
SEPAL’s UI framework-based frontend (Figure 1). The module performs the calculation of
high volume of satellite and other data in the Google Earth Engine, and the post processing
of the data is performed inside the app instance. The module is designed to provide
multiple option settings, from selection of the input data to the choice of indicators and
parameters, using an easy-to-use graphical user interface. This facilitates the users needs
and integration into the existing national frameworks for land degradation monitoring. For
example, the inclusion of Landsat and Sentinel 2 data makes it possible to investigate the
local context at high resolution, whereas MODIS is suitable for assessment at the national
scale. The module also allows users to use in-country land cover data to compute the land

https://sepal.io
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cover change sub-indicator. The following section presents the methodologies adopted in
the module, including the source of the default data set.

Figure 1. A simplified structure of the SEPAL’s work flows for Google-Earth-Engine-based modules
(based on the SEPAL’s architecture diagram [24]).

2.2.2. Methodology

The second version of UNCCD Good Practice Guidance (GPG v2) provides guidance
on how to calculate the extent of land degradation for reporting on the indicator 15.3.1 [18].
The methodologies implemented in the module are in line with this GPG v2.

The nature of land degradation is complex, and it is a multifaceted phenomenon that
needs a comprehensive assessment [25]. A single source of information is not enough to
accurately capture the full extent of land degradation [26]. The SDG indicator 15.3.1 uses
three sub indicators: land cover and land cover change sub-indicator, land productivity
sub-indicator, and carbon stocks above and below ground (Figure 2) [9,27]. Any area
where one or more of the sub-indicators indicate that there has been land degradation is
considered degraded land.

Final indicator (SDG indicator 15.3.1)

Land Productivity Land Cover and 
Land Cover Change

Carbon Stocks, 
Above and Below GroundState PerformanceTrend

Figure 2. The three sub-indicators of the indicator 15.3.1.

2.2.3. Land Productivity Sub-Indicator

Land productivity refers to the amount of net primary production per unit of land and
time. Changes in land productivity can provide insights into the decline or degradation
of land as well as the restoration of land. The land productivity sub-indicator measures
the changes in vegetation growth and biomass over time [28]. A continuous decrease in
land productivity for a long time indicates potential land degradation. This sub-indicator
is used to assess the status and trends of land degradation and restoration. It is one of the
main indicators for monitoring and reporting the progress of Sustainable Development
Goal 15.3.

The GPG proposes three matrices to detect such changes in land productivity, similar
to the World Desertification Atlas [18,28,29]. These are productivity trend, productivity
state, and productivity performance.
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Remote sensing data serves as the primary source for land productivity monitoring
and can provide consistent, spatially explicit, and timely information at various scales.
We use vegetation indices as a proxy for land productivity because they offer a good
approximation of NPP, accounting only for changes in productivity over time. The SEPAL
module provides access to coarser to medium-resolution satellite data for three different
vegetation indices (Table 1). Normalised Different Vegetation Index (NDVI) is the default,
as proposed by GEO LDN initiatives [18,30]. The Enhanced Vegetation Index 2 (EVI2)
can be considered for regions with high biomass, whereas the Modified Soil-adjusted
Vegetation Index (MSVI) can be used for regions with low biomass, such as rangeland
[31,32]. Vegetation indices are integrated to capture the growing seasons at the annual time
series that is used to detect the changes in land productivity, with options to use the default
annual integration, rain use efficiency model, or residual trend model [33–35]. The module
also provides the option to select a threshold to define the growing seasons.

Productivity trend: The Mann–Kendall non-parametric trend analysis is used to
describe the monotonic trend or trajectory (increasing or decreasing) of productivity for a
given time period [36]. The z-score is used that quantifies the deviation of an annual value
from the mean of the assessment period in terms of standard deviations to make sure the
level of statistical confidence that the value is not solely due to chance [37]. The z score is
categorised into three and five classes of different levels (Figure 3, Table 2).

Table 1. Available satellite dataset for land productivity assessment.

Satellite Source Temporal Coverage Spatial Resolution

Landsat 4 (TM) USGS/NASA 1982–1993 30 m
Landsat 5 (TM) USGS/NASA 1984–2013 30 m
Landsat 7 (ETM+) USGS/NASA 1999–2022 30 m
Landsat 8 (OLI) USGS/NASA 2013–Present 30 m
Sentinel 2 (MSI) ESA 2017–Present 10 m
MODIS (Aqua) NASA 2002–Present 250 m
MODIS (Terra) NASA 2000–Present 250 m
MODIS MOD17A3 (NPP) NASA 2000–Present 500 m

Productivity state compares the mean annual values of the selected vegetation index
over a three-year period with a long-term mean over a reference period as follows [18]:

µ =
∑n−3

n−15 xn

13
, (1)

σ =

√
∑n−3

n−15(xn − µ)2

13
, (2)

where x is the productivity and n is the year of analysis.
The mean productivity of the current period is given as

x̄ =
∑n

n−2 xn

3
, (3)

and the z score is given as

z =
x̄ − µ

σ√
3

, (4)

The ranges of z-values and corresponding categories are the same as those of the
productivity trend (Figure 3, Table 2).
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Figure 3. The scale and direction of productive trend and productivity state based on z score.

Table 2. Ranges of z-value and the corresponding classes of trend and state metrics.

z-Values 5 Level Classes 3 Level Classes

<−1.96 degrading degraded
<−1.28 AND ≥ −1.96 Potentially degrading Stable
≥−1.28 AND ≤ 1.28 No significant change Stable
> 1.28 AND ≤ 1.96 Potentially improving Stable
> 1.96 Improving Improved

Productivity performance indicates the level of local land productivity relative to other
regions with similar productivity potential [18].

The Maximum Productivity Index NPPmax value (90th percentile) observed within
the similar ecoregion is compared to the observed productivity value (observed NPP).

performance =
NPPobserved

NPPmax
, (5)

The pixels with an NPP (vegetation index) less than 0.5 of the NPPmax are consid-
ered degraded. The module provides a list of datasets to define the regions with similar
productivity potential; these are

• Global Agro-Environmental Stratification (GAES) [38];
• Historical agro-ecological zones (53 classes) from Global Agro Ecological Zones

(GAEZ) [39];
• World Ecosystem [40];
• Global Homogeneous Response Units [41]; and
• A custom ecoregion based on default land cover data and soil texture.

These three metrics are combined to derive the productivity sub-indicator. There
are two approaches mentioned in GPG v2 to combine the metrics. Figure 4 portrays the
combination of both approaches–GPG v2 using solid colour lines and changes in GPG v1
using dashed lines to cut the over-emphasis of productivity degradation from declining
trend alone. The three layers of circles represent the three different metrics.
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Figure 4. Possible combinations of the three metrics to get the productivity sub-indicators; dotted
lines represent the combination initially proposed in GPG v1.

2.2.4. Land Cover and Land Cover Change Sub-Indicator

Land cover is the observed (bio) physical cover on the earth’s surface [42]. In this
context, land cover is used as a proxy for land use and land use change. Changes in land
use clearly indicate the degradation and restoration of land.

The land cover sub-indicator is based on transitions of land cover from the initial year
to the final year. It describes the nature of transition from one land cover to another. A
transition matrix contains the transitions as degraded, stable, or improved. For example,
conversion of forest land to grassland is considered degraded as it may result in soil erosion,
biodiversity loss, and diminished carbon sequestration. The default matrix contains the
UNCCD land cover categories and their transitions (Figure 5).

Figure 5. Interface of the default transition matrix that uses seven UNCCD land cover categories (D
[red] = degraded, S [tan] = stable and I [green] = improved).

The default transitions can be altered based on local knowledge of land cover changes.
However, the scope to implement all the important transitions is limited to these seven
categories. A national land cover represents the most accurate and complex land cover
classes in comparison to most of the global and regional land cover data [43,44]. Therefore,
it is important to use national land cover data in combination with a customised land
cover transition matrix. The module offers the ability to use national land cover data in
combination with a customised land cover transition matrix. The customised matrix, A,
needs to be in a proper format to use in the module:
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A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann

, (6)

The first two columns, excluding the first two cells (a31...an1and a32...an2 ), contain
class labels and pixel values for the initial land cover, respectively. The first two rows,
excluding the first two cells, (a13...a1nand a23...a2n) contain class labels and pixel values for
the final land cover, respectively. The other subset of the matrix,

B =

a33 · · · a3n
...

. . .
...

2n3 · · · 3nn

, (7)

contain the main transition matrix. Cells a11, a12, a21, and a22 are available to store some
metadata. The value 1 to denote improved transitions, 0 for stable, and −1 for degraded
transitions.

The European Space Agency Climate Change Initiative Land Cover (ESA CCI LC)
dataset has been used as the default data source [45]. It provides consistent global annual
land cover maps at 300 m spatial resolution from 1992 to 2022. Each pixel value corre-
sponds to the label of a land cover class, which is defined based on the FAO Land Cover
Classification System (LCCS) [42]. The module translates the classes into seven UNCCD
broad land cover categories, as suggested in the GPG.

LCML-legend-based land cover data are more flexible and suitable for the land cover
sub-indicator [18]. The use of the LCML-based legend expedites the process of generating
an in-country land cover transition matrix. For example, the LCML-based legend can be
automatically assessed to find the similarities between land cover classes [46]. Therefore,
in-country land cover data can be used with a custom land cover transition matrix. FAO
land cover registry provides access to the different global and national land cover legends
for other countries to adapt the ISO standard (ISO 19144-2) on land cover [47,48].

In addition to module 15.3.1, SEPAL provides recipes to prepare optical and radar
mosaics and land cover classification. The classification recipe supports LCML legend as
input for land cover legend. Separate modules are also available for accuracy assessment
and validation (https://docs.sepal.io/(accessed on 12 May 2024)).

2.2.5. Carbon Stocks, Above and Below Ground

Carbon stocks are the result of several processes that influence plant development and
decomposition. These processes determine the changes in the amount of organic matter
in terrestrial ecosystems [18]. Soil organic carbon (SOC) is the suggested metric where
total terrestrial carbon stocks are not available. A reduction of 10% from the reference soil
organic carbon (SOC) is classified as degraded.

The IPCC methodology to estimate change in SOC is used to account for changes in
soil carbon stocks due to land use and land cover change [49]. The ESA CCI land cover is
used to estimate the annual rate of change in carbon stock from the reference SOC stock
from ISRIC. The method is based on the equation:

∆SOC = A × ∆C × FLU × FMG × FI (8)

where,

• ∆SOC is the annual change in SOC stock per unit area (t C ha−1 yr−1),
• A is the area of land remaining in a land-use category or converted to another category

(ha),
• ∆C is the annual rate of change in carbon stocks per unit area (t C ha−1 yr−1),

https://docs.sepal.io/
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• FLU is the stock change factor for land use or land-use change type,
• FMG is the stock change factor for management regime,
• FI is the stock change factor for input of organic matter.

2.2.6. Final Indicator

The one-out-all-out statistical principle is used to get the final state of land degradation
from three sub-indicators (Figure 6). It shows how evidence from numerous sources comes
together. So, the final layer shows degradation when any of the sub-indicator pixels in the
same place capture degradation during the assessment time.

Degraded Improved Stable

Productivity

Land cover
Carbon stock

Final indicator

Combinations

=

+
+

Legend:

Figure 6. The complete set of combinations of three sub-indicators’ statuses and the corresponding
statuses of the final indicator.

3. Results
3.1. Interface

The interface of the module has been designed into four different widgets (Figure 7):

Figure 7. Different sections of SEPAL module 15.3.1’s interface.

• Selection of area of interest—A range of options are available, from preloaded admin-
istrative boundaries to custom shapes.

• Selection of parameters—A wide range of input and specifications for each of the
sub-indicators can be specified in this section. Most of the common parameters are set
to the commonly used default values. More advance options are organised into three
different sub-indicators under the advance options banner.

• Visualization and export of results —The results from the module that can be visualised
and exported that consist of maps (raster data at sensors’ resolution) of all the sub-
indicators and productivity metrics;

• Customization of land cover categories/classes—This widget provides the functional-
ity to reclassify/aggregate a land cover map to an UNCCD or a custom classification
scheme.
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3.2. Case Study 1: Large Scale Monitoring in Bangladesh and Nigeria

The methodology implemented in SEPAl 15.3.1 was piloted in part of Bangladesh and
Nigera to test the performance in assessing the indicator in large areas.

3.2.1. Bangladesh

Two primary aspects characterising this country’s physiography are a confined hilly
region traversed by rivers and a deltaic plain that is affected by regular flooding. The major
issues in terms of land degradation are the increase rate of deforestation, landslides, soil
erosion, riverbank erosion, and intrusion of salinity [50]. The module has been tested in
Cox’s Bazar, where filed information on degradation and restoration was available [51].
This case study was intended to scale up the analysis to a larger area to test the performance
of the module. The extent of land degradation in the area of interest was assessed using the
global dataset for the baseline and reporting periods. The baseline period is assessment
years against which changes in the recent years or reporting period are assessed. The
GPG contains suggestions on the selection of reporting period, and the baseline period
is fixed from 1 January 2000 to 31 December 2015. The main inputs for the assessment
for the reporting period (2016–2022) and baseline period are the MODIS-based NDVI,
GAEZ, ISRIC soil data, and ESA CCI land cover (Figure 8). Most of the degraded areas are
located along rive courses and urbanised areas. Around 20 out of 64 districts are prone
to riverbank erosion, which consumes around 8,700 hectares of land each year [52,53].
Therefore, changes in river routes and urbanisation are the main causes of degraded land
in the area of interest (Figure 9).

(a) Baseline status (b) Reporting status

Figure 8. Status of baseline and reporting status of the SDG indicator 15.3.1.

Figure 9. Final status of SDG indicator after combining the baseline and reporting status.
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3.2.2. Nigeria

Land degradation in Nigeria is a pressing issue, with deforestation, soil erosion, and
desertification having significant impacts on the country’s agricultural productivity and
food security [54]. The study considered two distinct vegetation indices, namely the
Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index 2
(EVI2), in order to compare the degradation extent seen during the reporting years spanning
from 2012 to 2022. The degree of land degradation shown notable variations contingent
upon the specific index employed for the assessment. The NDVI-based outcome exhibited
a markedly greater degree of degradation during the reporting period in comparison to
the EVI2-based outcome (Figure 10). In general, the results indicate that the selection of
a vegetation index can exert a substantial influence on the extent of land degradation. A
close inspection with high-resolution images suggests that the soil reflectance correction
properties of the EVI2 tend to reduce the interannual variability of the vegetation signal in
vegetation sparse regions. A thorough investigation is required to identify the underlying
factors that are influencing the result.

(a) NDVI-based land productivity (b) EVI-based land productivity

Figure 10. Extent of land degradation for reporting period using NDVI and EVI in Nigeria.

3.3. Case Study 2: Monitoring Land Degradation Status Using In-Country Land Cover Data
in Uruguay

A comparative assessment of land degradation was conducted using ESA CCI and
national land cover data to analyse the baseline period from 2000 to 2015. The LCML
standard was used to prepare the national land cover data for both 2000 and 2015 [55].
There are 17 land cover classes that were used to prepare a national land cover transition
matrix. One notable distinction between the national land cover transition matrix and
the default land cover transition matrix lies in the segregation of native forests and exotic
species plantations (primarily eucalyptus and pine) for timber production. In the national
transition matrix, the latter exhibits a comparable pattern to that of crops. Conversely, in
the default matrix, both classes were classified as belonging to the “tree cover area” class
(Figure 11). The area of land forested in Uruguay for these purposes has had a substantial
rise over the past three decades, contributing considerably to alterations in the country’s
land cover. At present, the extent of planted forest in Uruguay accounts for approximately
six percent of the country’s total land area, whilst the native forest encompasses less than
five percent. From a soil degradation standpoint, it is evident that these two categories
exhibit distinct behaviours. Consequently, it was decided to segregate these categories and
consider forest plantations similar to ‘crops’.

The primary factor contributing to variations in outcomes between the national land
cover and the ESA CCI land cover data is the distinction between native forests and
forest plantations, since the latter does not allow distinguishing one class from the other.
Both classes are considered “tree cover”. This is why the degraded area appears to be
larger when using the national land cover dataset (Table 3). Conversely, the increase in
forest plantations also leads to the emergence of large areas with enhanced productivity
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(especially in the north of Uruguay) due to tree growth, as well as large areas with apparent
loss of productivity, which occur when those forest plantations are harvested (Figure 12).

Figure 11. National land cover transition matrix for Uruguay as per SEPAL SDG 15.3.1 specification.

(a) (b)

Figure 12. Land cover sub-indicator indicator (15.3.1) for the baseline period. (a) Based on national
custom transition matrix and national land cover data; (b) Based on the default transition matrix and
ESA CCI land cover data.

Table 3. Land cover sub-indicator status during the baseline period in Uruguay using the ESA CCI
and national land cover data (area in km2).

Type of Land National Land Cover Data ESA CCI Land Cover

Degraded 25,015 13,547
Stable 139,877 129,333
Improved 9460 8517
Nodata 8112 1485
Total (Land) 174,352 151,397

3.4. Case Study 3: Comparison with MODIS and Landsat Sensors in Angola

This case study was conducted to support the FAO project “Sustainable Land Man-
agement in the target landscape of Central Angola”. The goal was to use high resolution
satellite data to identify the degradation hotspot for land restoration purposes. This as-
sessment has been conducted for the baseline period (2001 to 2015) using Landsat and
MODIS data to compare the results for Alto Hama commune in Huambo province, Angola.
Apart from the different sensors, all the other parameters were the same for both analyses.
Annual integration of NDVI from MODIS and Landsat 4, 5, 7, and 8 was used to prepare the
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land productivity sub-indicator with the trend set to the original NDVI values. The look-up
table from GPG v2 was used to combine the three productivity metrics. It was found that
the MODIS-based vegetation indices are temporally consistent, whereas Landsat provides
high spatial resolution. When compared to MODIS, Landsat provided more spatial details
about degradation status (Figure 13). The Landsat-based analysis was able to capture
four times more degraded land (17%) than the MODIS-based analysis (4%). A little less
area of improved land was captured by Landsat-based analysis due to the missing part of
Landsat 7 data. In summary, MODIS-based analysis captured fewer degraded areas than
Landsat-based analysis, and in both analyses, stable land areas are the same (Table 4).

Table 4. Comparison of land degradation mapping using MODIS and Landsat satellite.

Sensor
Degraded
[km2, (%)]

Stable
[km2, (%)]

Improved
[km2, (%)]

Total
[km2]

Landsat 109, (17) 365, (57) 166, (26) 640
MODIS 26, (4) 377, (57) 237, (37) 640

(a) Based on MODIS data (b) Based on Landsat data

Figure 13. Comparison of land degradation mapping using MODIS and Landsat satellite.

4. Discussion

Assessment of land degradation requires a set of datasets that are often large in terms
of temporal and spatial dimensions. For example, assessment of land productivity for
the baseline period requires 16 years of satellite data, and if high-resolution data are to
be used, that poses challenges for data management, processing, and analysis. Big data
requires high computational power, storage capacity, bandwidth, and software tools to
deal with issues such as noise, outliers, uncertainty, and at the end calculation of the
land productivity metrics. SEPAL provides an efficient cloud computing environment
for large-scale processing and analysis of geospatial datasets without the need to set up
a sophisticated computing environment. The case studies of Bangladesh and Nigeria are
examples of such assessments where two different large geographies were considered.

Apart from the SDG module 15.3.1, the land cover classification module of SEPAL,
along with other Open Foris tools, can be used to prepare in-country land cover datasets
using country-specific legends, preferably LCML-based legends. The use of customized
transition matrices enables local context specific analysis for each national reality. When
compared to global data (e.g., ESA CCI land cover data), national land cover data provided
more spatial details about degradation status. In summary, global land cover-based analysis
captured fewer degraded areas than national land cover-based analysis. The case study of
Uruguay is an example where SEPAL was used for the preparation and validation of recent
land cover data and the indicator 15.3.1.
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In the case of local-level assessment, the spatial resolution of remote sensing data
determines the level of detail that can be observed and analyzed. Low spatial resolution
data may not capture the heterogeneity and variability of land degradation processes and
impacts. High spatial resolution data may provide more accurate and detailed information,
but they are less available. Therefore, the option to use Landsat and Sentinel 2 for land
productivity assessment is an advantage. However, in spite of a rich archive of high-
resolution Landsat data, its narrow swath width causes sudden changes in values along
the edges of the spatial mosaic and is limited by cloud cover, sensor failures, and data
gaps. Land degradation is a dynamic and complex process that can vary over time due
to natural and human factors. Also, limited temporal coverage of high resolution data
does not provide enough information to capture the growing season properly. Therefore,
temporal coverage is important to capture the changes and trends of land degradation and
restoration.

Each type of degradation may have different indicators, drivers, and impacts. There-
fore, it is challenging to develop a standardized methodology that can detect and quantify
the type and cause of degradation using remote sensing data. Moreover, different regions
may have different biophysical and socio-economic conditions that affect the definition and
assessment of land degradation. The importance of selecting the most suitable index for
accurate monitoring and reporting is also highlighted in the Nigeria case study. Therefore,
it is important to use a suitable vegetation index considering the different factors involved.
For example, EVI2 performs better in high biomass areas, whereas MSAVI performs better
in rangeland areas. The assessment can be carried out separately for diverse geographies
to apply a better-performing index for different ecological zones.

Another important challenge is the difficulty of detecting the type/cause of degrada-
tion using a standardized methodology and default global dataset. Several other indicators
can be used to complement the result or for restoration of the degraded land using sustain-
able land management.

Moving forward, it will be crucial for policymakers and land managers to consider
these differences in order to effectively combat land degradation and implement sustain-
able land management practices. Additionally, further research may be needed to better
understand the factors influencing the discrepancies in results in order to improve future
monitoring efforts. Validation of land degradation results is another area where further
studies are required to formulate frameworks and methodologies, particularity for baseline
status, as it detects degradation in the historical period.
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